FINAL

BASELINE HUMAN HEALTH RISK ASSESSMENT
FOR THE
GULFCO MARINE MAINTENANCE
SUPERFUND SITE
FREEPORT, TEXAS

PREPARED BY:

Pastor, Behling & Wheeler, LLC 2201 Double Creek Drive Suite 4004 Round Rock, Texas 78664 (512) 671-3434

MARCH 31, 2010

TABLE OF CONTENTS

				<u>Page</u>	
LIST	OF T	ABLES .		iii	
LIST	OF T	ABLES .		iv	
LIST	OF F	IGURES	S	iv	
LIST	OF P	LATES .		iv	
LIST	OF A	APPEND!	ICES	v	
LIST	OF A	CRONY	MS	vi	
EXE	CUTI	VE SUM	IMARY	viii	
1.0	INT:		TIONOCATION AND HISTORY		
	1.1		ONMENTAL SETTING		
2.0	DATA EVALUATION AND IDENTIFICATION OF POTENTIAL CHEMICALS OF				
			EVALUATION		
	2.1		EVALUATION		
	2.2		IFICATION OF POTENTIAL CHEMICALS OF CONCERN		
		2.2.1	Concentration-Toxicity Screen		
		2.2.2	Comparison to the Background Areas		
		2.2.3	Summary of Potential Chemicals of Concern	15	
3.0	EXP	OSURE	ASSESSMENT	16	
	3.1		TIAL EXPOSURE PATHWAY EVALUATION		
		3.1.1	Land Use Evaluation	17	
		3.1.2	Groundwater Use Evaluation		
		3.1.3	Surface Water Use Evaluation	17	
		3.1.4	Fish and Shellfish Resources Evaluation	18	
	3.2	POTEN	TIALLY EXPOSED POPULATIONS		
	3.3	CONCI	EPTUAL SITE MODELS AND POTENTIALLY COMPLETE EXPOSURE		
		PATHV	VAYS	20	
	3.4	OUAN'	TIFICATION OF EXPOSURE	21	
		3.4.1	Estimating the Exposure Point Concentration		
		3.4.2	Quantifying Intake		
		3.4.3	Exposure Assumptions and Intake Calculations		
		3.4.4	Vapor Intrusion Pathway for Future On-Site Worker Scenarios		
4.0	тол	ZICITV /	ASSESSMENT	20	
4.0	4.1		SURE ROUTE-SPECIFIC TOXICITY CRITERIA		
	4.1				
	4.2		NOGENIC EFFECTSARCINOGENIC EFFECTS		
			CES OF TOXICITY CRITERIA		
	4.4	$ \infty$ 0 K 0	JED OF TOAIGHT CRITERIA		

5.0	RIS	K CHARACTERIZATION	32
	5.1	POTENTIAL CARCINOGENIC RISKS	32
	5.2	POTENTIAL NONCARCINOGENIC HAZARD QUOTIENTS	33
	5.3	PATHWAYS QUALITATIVELY EVALUATED (I.E., ELIMINATED DURING	
		SCREENING STEP)	35
	5.4	FISH INGESTION PATHWAY	35
6.0	UNCERTAINTY ASSESSMENT		36
		DATA ANALYSIS UNCERTAINTIES	
	6.2	EXPOSURE ANALYSIS UNCERTAINTIES	37
	6.3	TOXICITY ASSESSMENT UNCERTAINTIES	39
	6.4	RISK CHARACTERIZATION UNCERTAINTIES	
	6.5	IMPACT OF UNCERTAINTIES	40
7.0	COI	NCLUSIONS	41
8.0	REF	FERENCES	42

LIST OF TABLES

<u>Table</u>	<u>Title</u>
1	Exposure Point Concentrations (mg/kg) – South Area Surface Soil
2	Exposure Point Concentrations (mg/kg) – South Area Soil
3	Exposure Point Concentrations (mg/L) – South Area Zone A Groundwater
4	Exposure Point Concentrations (mg/L) – Intracoastal Waterway Surface Water (Total)
5	Exposure Point Concentrations (mg/L) – Intracoastal Waterway Background Surface Water (Total)
6	Exposure Point Concentrations (mg/kg) - Intracoastal Waterway Sediment
7	Exposure Point Concentrations (mg/kg) – Intracoastal Waterway Background Sediment
8	Exposure Point Concentrations (mg/kg) – North Area Surface Soil
9	Exposure Point Concentrations (mg/kg) – North Area Soil
10	Exposure Point Concentrations (mg/L) – North Area Zone A Groundwater
11	Exposure Point Concentrations (mg/L) – Wetland Surface Water (Total)
12	Exposure Point Concentrations (mg/L) – Pond Surface Water (Total)
13	Exposure Point Concentrations (mg/kg) – Wetland Sediment
14	Exposure Point Concentrations (mg/kg) – Pond Sediment
15	Exposure Point Concentrations (mg/kg) – Background Soil
16	Qualitative Current Off-Site Residential Receptor Evaluation – South Area Soil
17	Qualitative Current Off-Site Residential Receptor Evaluation – North Area Soil
18	Background Comparisons
19	PCOCs Identified and Quantitatively Evaluated in the BHHRA
20	Evaluation of Exposure Pathways
21	Exposure Scenarios by Media

LIST OF TABLES

<u>Table</u>	<u>Title</u>
22	Exposure Assumptions for the Industrial Worker Scenario
23	Exposure Assumptions for the Construction Worker Scenario
24	Exposure Assumptions for the Youth Trespasser Scenario
25	Exposure Assumptions for the Contact Recreation Scenario
26	Johnson and Ettinger Vapor Intrusion Model Output for South Area Groundwater
27	Johnson and Ettinger Vapor Intrusion Model Output for North Area Groundwater
28	Summary of Hazard Indices and Cancer Risk Estimates for Soil and Sediment Exposure

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>
1	Site Location Map
2	Wetland Map
3	Soil and Intracoastal Waterway Sediment and Surface Water Background Sample Locations
4	Human Health Conceptual Site Model South Area
5	Human Health Conceptual Site Model North Area

LIST OF PLATES

<u>Plate</u>	<u>Title</u>
1	Investigation Sample Locations

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>
A	Pro UCL Output
В	Background Comparisons
C	Intake Calculations
D	Risk Calculations
Е	Restrictive Covenants

LIST OF ACRONYMS

AAF – absorption adjustment factor

ADD - average daily dose

AF – soil/sediment to skin adherence factor

AirSoil_{Inh-VP} – soil concentration that is protective of the air inhalation pathway

AST – aboveground storage tank

AT – averaging time

ATSDR – Agency for Toxic Substances and Disease Registry

BHHRA – Baseline Human Health Risk Assessment

BW – body weight (kg)

COC - chemical of concern

COI - chemicals of interest

CSF – cancer slope factor

CSM – conceptual site model

4,4'-DDD – dichlorodiphenyldichloroethylene

4,4'-DDT – dichlorodiphenyltrichloroethane

DQO – data quality objective

EA – exposure assessment

ED – exposure duration

EF – exposure frequency

EPA - United States Environmental Protection Agency

EPC – exposure point concentration

FI – fraction ingested

FSP - Field Sampling Plan

Ft. – feet

GRG - Gulfco Remediation Group

HI - hazard index

HQ - hazard quotient

IR - ingestion rate

IRIS - Integrated Risk Information System

IUR – inhalation unit risk

J&E VIM – Johnson & Ettinger Vapor Intrusion Model

KM – Kaplan-Meier

LIST OF ACRONYMS

LADD - lifetime average daily dose

MDL - method detection limit

NEDR - Nature and Extent Data Report

NOAEL - no observable adverse effects level

NPL - National Priorities List

OSWER - Office of Solid Waste and Emergency Response

PBW - Pastor, Behling & Wheeler, LLC

PCB – polychlorinated biphenyl

PCL – Protective Concentration Limit

PCOC – potential chemical of concern

PPRTV – Provisional Peer Reviewed Toxicity Values

PSA – potential source area

PSV - preliminary screening value

QA – quality assurance

QAPP - Quality Assurance Project Plan

QC – quality control

RfC – reference concentration

RfD - reference dose

RI – Remedial Investigation

RI/FS – Remedial Investigation/Feasibility Study

RME – reasonable maximum exposure

RSL – Regional Screening Level

SA – skin surface area

SOW - Statement of Work

SWRBEL – risk-based exposure limit for surface water

TCEQ - Texas Commission on Environmental Quality

TDS – total dissolved solids

TDSHS - Texas Department of State Health Services

TRRP – Texas Risk Reduction Program

TSWQS - Texas Surface Water Quality Standard

UAO – Unilateral Administrative Order

UCL – upper confidence limit

VOC - volatile organic compound

Gulfco Marine Maintenance Superfund Site

EXECUTIVE SUMMARY

The purpose and scope of this document is to summarize the analytical data for environmental media sampled during the Remedial Investigation (RI) and to conduct a baseline human health risk assessment (BHHRA) based on those data for the Gulfco Marine Maintenance Superfund Site located at 906 Marlin Avenue in Freeport, Texas in Brazoria County (the Site). A BHHRA is the systematic, scientific characterization of potential adverse effects resulting from exposures to hazardous agents or situations. The results of the BHHRA are used to support risk management decisions and determine if remediation or further action is warranted at a site.

The Site consists of approximately 40 acres within the 100-year coastal floodplain along the north bank of the Intracoastal Waterway between Oyster Creek to the east and the Old Brazos River Channel to the west. Beginning in approximately 1971, barges were brought to the facility and cleaned of waste oils, caustics and organic chemicals, with these products reportedly stored in on-site tanks and later sold. Sandblasting and other barge repair/refurbishing activities also reportedly occurred on the Site. During the operation, wash waters were reportedly stored either on a floating barge, in on-site storage tanks, and/or in surface impoundments present on Lot 56 of the Site. The surface impoundments were closed under the Texas Water Commission's direction in 1982.

The area of the Site south of Marlin Avenue (South Area) includes approximately 20 acres of upland that were created from dredged material from the Intracoastal Waterway. Prior to construction of the Intracoastal Waterway, this area was most likely coastal wetlands. The area of the Site north of Marlin Avenue (North Area), excluding the capped surface impoundments and access roads, is considered estuarine wetland. The North Area consists of approximately five acres of upland, which supports a variety of herbaceous vegetation that is tolerant of drier soil conditions, while the North Area wetlands are approximately 15 acres in size.

Data related to the nature and extent of potential contamination in environmental media (e.g., soil, sediment, groundwater and surface water) at the Site were obtained as part of the RI. Unless otherwise noted, the samples were analyzed for the full suite of analytes as specified in the approved Remedial Investigation/Feasibility Study (RI/FS) Work Plan for the Site. Samples included:

- Eighty-three surface soil samples (0 to 0.5 ft below ground surface) and 83 subsurface soil samples (0.5 ft to 4 ft below ground surface) were collected in the South Area.
- Eighteen surface soil and subsurface soil samples were collected in the North Area.

- Two additional surface soil samples were collected near the former transformer shed at the South Area for polychlorinated biphenyls (PCBs) analyses only.
- Ten background soil samples were collected within the approved background area approximately 2,000 feet east of the Site near the east end of Marlin Avenue.
- Thirteen groundwater samples were collected from the shallow Zone A groundwater from the South Area and sixteen groundwater samples were collected from the shallow Zone A groundwater from the North Area.
- Sixteen sediment samples were collected from the Intracoastal Waterway in front of the Site. One additional sediment sample was collected near the Site and analyzed for 4,4'-DDT.
- Nine background sediment samples were collected from the Intracoastal Waterway east of the Site and across the main waterway canal.
- Forty-eight sediment samples were collected in the North Area wetlands. Additional sediment samples were collected from the North Area wetlands and analyzed for 4,4'-DDT; five of these samples were also analyzed for zinc.
- Eight sediment samples were collected from the two ponds located in the North Area.
- Four surface water samples were collected in the Intracoastal Waterway adjacent to the Site.
- Four surface water samples were collected from the background surface water area.
- Four surface water samples were collected in the North Area wetlands.
- Six surface water samples were collected from the two ponds located in the North Area.

All data were compared to appropriate human health screening levels (multiplied by a factor of 0.1 to ensure adequate protection) to identify the potential chemicals of concern (PCOCs) that were quantitatively evaluated further in the BHHRA. The exposure assessment was developed using information about current land, surface water, and groundwater uses to identify reasonably anticipated current and future receptors. For each receptor, potential exposure pathways were identified and considered fate and transport of the chemicals in the environment, point of contact with the exposure media, and possible routes of intake.

Based on the exposure assessment, it was assumed that potentially exposed populations for the South Area included: 1) future commercial/industrial workers; 2) future construction workers; and 3) a youth trespasser. Potentially exposed populations for the North Area were assumed to be the same. A contact recreation scenario was assessed for the sediment and surface water at both areas to represent the hypothetical person who occasionally contacts these media while swimming wading, or participating in other recreational activities. Potential impacts from fugitive dust generation and volatile compound

emissions from South and North Area soils, and subsequent exposure to nearby residents was also evaluated. A previous report submitted to and approved by EPA evaluated the potential risks to recreational anglers via the consumption of fish from the Intracoastal Waterway. The findings of that evaluation are also included in the BHHRA.

Chemical exposure was quantified by estimating a daily dose or intake for each pathway given standard exposure assumptions using average and a reasonable maximum exposure concentration, which was generally represented by a 95th percent upper confidence limit on the mean. Toxicity values for the chemicals of concern were obtained from standard resources such as EPA's on-line database -- Integrated Risk Information System (IRIS).

Risk characterization is the integration of the exposure estimate (or dose) and the toxicity information to make quantitative estimates and/or qualitative statements regarding potential risk to human health. The risk assessment concluded that, for the five different exposure scenarios that were quantitatively evaluated, the cancer risk estimates and noncancer hazard indices for all of the current or future exposure scenarios were within EPA's acceptable risk range or below the target hazard index of 1 with the exception of potential risks associated with future exposure to an indoor industrial worker if a building is constructed over the area of impacted groundwater in the North Area. It is recommended that the potential future exposure to workers in an enclosed space (if a building were constructed above the groundwater plume in the North Area) from vapors possibly emanating from groundwater and migrating to the indoor air be prevented. No further action or investigation is necessary for the other media at the Site since adverse risks are not expected to result from potential current or future exposure at the Site.

1.0 INTRODUCTION

The United States Environmental Protection Agency (EPA) named the former site of Gulfco Marine Maintenance, Inc. (the Site) in Freeport, Brazoria County, Texas to the National Priorities List (NPL) in May 2003. The EPA issued a modified Unilateral Administrative Order (UAO), effective July 29, 2005, which was subsequently amended effective January 31, 2008. The UAO required the Respondents to conduct a RI/FS for the Site. The Statement of Work (SOW) for the RI/FS at the Site, provided as an Attachment to the UAO from the EPA, requires the performance of a BHHRA to "evaluate and assess the risk to human health posed by the contaminants present at the Site." As specified in Paragraph 37a of the SOW, BHHRA activities include the submittal of Draft and Final Potential Chemicals of Concern Memoranda and Draft and Final Exposure Assessment (EA) Memoranda, ending with a Draft and Final BHHRA. In order to expedite completion of the RI/FS through submittal of a single BHHRA deliverable, the interim BHHRA deliverables (i.e., the PCOC and EA Memoranda) have been incorporated in this BHHRA.

Pursuant to Paragraphs 17 through 28 of the SOW, an RI/FS Work Plan and a Sampling and Analysis Plan were prepared for the Site. These documents were approved with modifications by EPA on May 4, 2006 and were finalized on May 16, 2006. This BHHRA has been prepared in accordance with Section 5.7.1 of the approved RI/FS Work Plan (the Work Plan) (PBW, 2006a). The BHHRA was prepared by Pastor, Behling & Wheeler, LLC (PBW), on behalf of LDL Coastal Limited LP (LDL), Chromalloy American Corporation (Chromalloy), and The Dow Chemical Company (Dow), collectively, the Gulfco Restoration Group (GRG).

A BHHRA is the systematic, scientific characterization of potential adverse effects resulting from exposures to hazardous agents or situations (NRC, 1983). The results of the BHHRA are used to support risk management decisions and determine if remediation or further action is warranted at a site.

The RI/FS is the methodology that the Superfund program has established for characterizing the nature and extent of risks posed by uncontrolled hazardous wastes sites and for developing and evaluating remedial options. The risk assessment methodology is based on approaches described by the EPA in *Risk Assessment Guidance for Superfund (RAGS), Volume 1, Human Health Evaluation Manual, Part A* (EPA, 1989) and various supplemental and associated guidance (e.g., EPA, 1986; 1991a and b; 1992a and b; 1997a; 1999; 2001; 2002a, and b; 2004a and b; 2008; and 2009). The BHHRA generally consists of the following components:

- Review of analytical data and identification of potential chemicals of concern or PCOCs;
- Exposure assessment, including identification of potentially exposed populations, exposure pathways, and chemical intakes;
- Human health toxicity assessment;
- Risk characterization; and
- Uncertainty analysis.

The Nature and Extent Data Report (NEDR) (PBW, 2009) describes the history and background of the Site, and the environmental investigations conducted during the various phases of the RI. It also includes all of the analytical data generated during the RI and a discussion of the environmental conditions at the Site.

Section 2.0 of the BHHRA describes the process for evaluating the data and selecting PCOCs. Section 3.0 provides the exposure assessment. The toxicity assessment is contained in Section 4.0. Risks are characterized in Section 5.0. Section 6.0 describes uncertainties associated with the risk assessment process. Section 7.0 presents the conclusions of the risk assessment. Appendix A provides statistical calculations for the analytical data, by media; Appendix B provides the statistical comparisons between Site data and background data; Appendix C provides the intake calculations for the receptors evaluated herein; Appendix D provides the risk calculations; and Appendix E provides a copy of the restrictive covenants for the Site.

1.1 SITE LOCATION AND HISTORY

The Site is located northeast of Freeport, Texas in Brazoria County at 906 Marlin Avenue (also referred to as County Road 756). The Site consists of approximately 40 acres within the 100-year coastal floodplain along the north bank of the Intracoastal Waterway between Oyster Creek to the east and the Old Brazos River Channel to the west. Figure 1 provides a map of the Site vicinity; Plate 1 provides a detailed Site map and shows site features and sampling locations.

During the 1960s, the Site was used for occasional welding but there were no on-site structures (Losack, 2005). According to the Hazard Ranking Score Documentation (TNRCC, 2002), from 1971 through 1999, at least three different owners used the Site as a barge cleaning facility. Beginning in approximately 1971, barges were brought to the facility and cleaned of waste oils, caustics and organic chemicals, with these products reportedly stored in on-site tanks and later sold (TNRCC, 2002). Sandblasting and other barge repair/refurbishing activities also occurred on the Site. At times during the operation, wash waters were reportedly stored either on a floating barge, in on-site storage tanks, and/or in surface impoundments on Lot 56 of the Site. The surface impoundments were closed under the Texas Water Commission's (Texas Commission on Environmental Quality (TCEQ) predecessor agency) direction in 1982 (Carden, 1982).

Marlin Avenue divides the Site into two areas. For the purposes of this report, it is assumed that Marlin Avenue runs due west to east. The property to the north of Marlin Avenue (the North Area) consists of undeveloped land and the closed impoundments, while the property south of Marlin Avenue (the South Area) was developed for industrial uses with multiple structures, a dry dock, sand blasting areas, an aboveground storage tank (AST) tank farm that is situated on a concrete pad with a berm, and two barge slips connected to the Intracoastal Waterway.

The South Area is zoned as "W-3, Waterfront Heavy" by the City of Freeport. This designation provides for commercial and industrial land use, primarily port, harbor, or marine-related activities. The North Area is zoned as "M-2, Heavy Manufacturing." Restrictive covenants prohibiting any land use other than commercial/industrial and prohibiting groundwater use have been filed for all parcels within both the North and South Areas. Additional restrictions requiring any building design to preclude vapor intrusion have been filed for Lots 55, 56, and 57. A further restriction requiring EPA and TCEQ notification prior to any building construction has also been filed for Lot 55, 56, and 57. Copies of these covenants, including parcel maps with the specific Lot identified, are provided in Appendix E.

Adjacent property to the north, west and east of North Area is unused and undeveloped, and/or is designated as wetlands as shown in Figure 2. Adjacent property to the east of the South Area is currently used for industrial purposes while the property directly to the west of the Site is currently vacant and previously served as a commercial marina. The Intracoastal Waterway bounds the Site to the south. Residential areas are located south of Marlin Avenue, approximately 300 feet west of the Site, and 1,000 feet east of the Site.

1.2 ENVIRONMENTAL SETTING

The Site is located between Galveston and Matagorda Bays and is situated along approximately 1200 feet (ft.) of shoreline on the Intracoastal Waterway. The Intracoastal Waterway is a coastal shipping canal that extends from Port Isabel to West Orange on the Texas Gulf Coast and is a vital corridor for the shipment of bulk materials and chemicals. It is the third busiest shipping canal in the United States, and along the Texas coast carries an average of 60 to 90 million tons of cargo each year (TxDOT, 2001). Of the cargo carried between Galveston and Corpus Christi, TX, 49 percent is comprised of petroleum and petroleum products and 38 percent is comprised of chemicals and related products. Approximately 50,000 trips were made by vessels making the passage through the Intracoastal Waterway between Galveston and Corpus Christi, TX in 2006 (USACE, 2006).

The South Area includes approximately 20 acres of upland that were created from dredged material from the Intracoastal Waterway. Prior to construction of the Intracoastal Waterway, this area was most likely coastal wetlands. The North Area, excluding the capped impoundments, the uplands area, and access roads, is considered estuarine wetland (USFWS, 2008), as shown in Figure 2. The North Area consists of approximately five acres of upland, which supports a variety of herbaceous vegetation that is tolerant of drier soil conditions, while the North Area wetlands are approximately 15 acres in size. The wetlands at the Site are typical of irregularly flooded tidal marshes of the Texas Gulf Coast and supports wildlife that would be common in the Texas coastal marsh.

There are two ponds on the North Area, located east of the former surface impoundments (Plate 1). The larger of the two ponds is called the Fresh Water Pond while the other pond is referred to as the Small Pond. It should be noted, however, that based on field measurements of salinity, the water in the Fresh Water Pond is brackish while water in the Small Pond is less brackish (but is not fresh water). The Fresh Water Pond is believed to be a borrow pit and the water depth is generally 4 to 4.5 feet. The Small Pond is a shallow depression that tends to dry out during summer months and periods of drought. The water depth in the Small Pond was approximately 0.2 feet when sampled in July 2006 and nearly dry when sampled in June 2008.

The Intracoastal Waterway supports barge traffic and other boating activities. Fishermen have occasionally been observed on and near the Site in the Intracoastal Waterway. Red drum (*Sciaenops ocellatus*), black drum (*Pogonias cromis*), spotted seatrout (*Cynoscion nebulosus*), southern flounder (*Paralichthys lethostigma*) and other species are reportedly caught in the Freeport Area (TPWD, 2009). It should be noted that, during the fish sampling conducted for the human health fish ingestion pathway risk

assessment, red drum were not caught (using nets) as frequently as other species (see discussion in NEDR (PBW, 2009)), presumably because of a lack of habitat and prey items near the Site. Recreational and commercial fishermen reportedly collect blue crabs (*Callinectes sapidus*) from waterways in the region. The Texas Department of State Health Services (TDSHS) has banned the collection of oysters from this area due to biological hazards and has issued a consumption advisory for king mackerel for the entire Gulf Coast due to mercury levels in the fish (TDSHS, 2005).

2.0 DATA EVALUATION AND IDENTIFICATION OF POTENTIAL CHEMICALS OF CONCERN

This section describes the general data evaluation procedures that were used to ensure that data included in the risk assessment are of sufficient quality for quantitative risk assessment, as per EPA (1992a) guidance. This section also presents the methods that were followed to identify PCOCs for applicable exposure media in the BHHRA. Data collected as part of the RI were collected to support three objectives: nature and extent evaluation, risk assessment, and evaluation of potential remedial alternatives. The NEDR (PBW, 2009) discusses data collected to define the nature and extent of contamination at the Site and may contain data that are not of concern from a human health exposure perspective (e.g., Zone B and Zone C groundwater due to high total dissolved solids concentration and restrictive covenants precluding Site groundwater use (Appendix E)).

For the purposes of this risk assessment, a chemical of interest (COI) is defined as any compound detected in at least one environmental sample. A PCOC is any compound that does not get eliminated from further consideration based on frequency of detection, evaluation with blank contamination or background concentrations, and a concentration-toxicity screen, described in this section. PCOCs are quantitatively evaluated in the risk assessment. A chemical of concern (COC) is a compound that is determined as part of the risk assessment to present a potential adverse human health risk and will be evaluated further in the Feasibility Study, if necessary.

Data related to the nature and extent of potential contamination at the Site were obtained as part of the RI and, as noted previously, are discussed in the NEDR (PBW, 2009). Unless otherwise noted, the samples were analyzed for the full suite of analytes as specified in the approved Work Plan (PBW, 2006a). Plate 1 provides sample locations for site-related samples, and Figure 3 provides sample locations for the background soil, surface water, and sediment samples. Tables 1 through 15 summarize the key parameters for the COIs measured in these samples and provide maximum and minimum measured concentrations, as well as summary statistics for each COI for each media. Average and 95% upper confidence limits (95% UCLs) on the mean were estimated using EPA guidance (EPA, 2002b) and are presented in the tables as well. The method for estimating the average and 95% UCLs is described in greater detail in the Section 3.4.

Eighty-three surface soil samples (0 to 0.5 ft below ground surface (bgs)) and 83 subsurface soil samples (0.5 ft to 4 ft bgs) were collected in the South Area (summarized in Tables 1 and 2). Eighteen surface soil samples and 18 subsurface soil samples were collected in the North Area (summarized in Tables 8 and 9).

Two additional surface soil samples were collected near the former transformer shed at the South Area for PCBs analyses only. Ten background soil samples were collected within the approved background area approximately 2,000 feet east of the Site near the east end of Marlin Avenue (summarized in Table 15; sample locations shown on Figure 3).

Thirteen groundwater samples were collected from Zone A in the South Area (summarized in Table 3) and sixteen groundwater samples were collected from Zone A in the North Area (summarized in Table 10). The groundwater investigation evaluated contamination in deeper zones, Zones B and C. This information is discussed in the NEDR (PBW, 2009) but was not included in the BHHRA since it is unlikely that contaminants in deeper groundwater affect the media evaluated in the risk assessment based on high total dissolved solids (TDS) and the restrictive covenants on the property (Appendix E). While groundwater data from Zone A were used to evaluated the vapor intrusion pathway, data from Zones B and C were not used in this evaluation since they underlie Zone A and are COIs measured in deeper groundwater would not be as likely to impact indoor air as COIs measured in the more shallow groundwater unit, Zone A.

Sixteen sediment samples were collected from the Intracoastal Waterway in front of the Site (summarized in Table 6). One additional sediment sample was collected from the Intracoastal Waterway near the Site and analyzed for 4,4'-DDT to further characterize the extent of contamination as described in the NEDR (PBW, 2009). Nine background sediment samples were collected from the Intracoastal Waterway east of the Site and across the canal (summarized in Table 7). Forty-eight sediment samples were collected in the North Area wetlands (summarized in Table 13). Seven additional sediment samples were collected from the North Area wetlands and analyzed for 4,4'-DDT; five of these samples were also analyzed for zinc. A total of eight sediment samples were collected from the two ponds located in the North Area (summarized in Table 14).

Four surface water samples were collected in the Intracoastal Waterway adjacent to the Site (summarized in Table 4). Four surface water samples were collected from the background surface water area, located in the Intracoastal Waterway east of the Site, and across the canal (summarized in Table 5; sampling locations shown on Figure 3). Four surface water samples were collected in the wetlands drainage areas north of Marlin Avenue (summarized in Table 11) and a total of six surface water samples were collected from the two ponds located in the North Area (summarized in Table 12). Chemical analyses of these surface water samples included both total and dissolved concentrations of metals. For the purposes of the BHHRA, total concentrations were used since it is unlikely that samples would be filtered prior to incidental exposure as defined by the scenarios evaluated in this risk assessment.

2.1 DATA EVALUATION

The Quality Assurance Project Plan (QAPP) (PBW, 2006c) and Field Sampling Plan (FSP) (PBW, 2006b), which were developed concurrently with the RI/FS Work Plan (PBW, 2006a), were designed to ensure that the data collected during the RI are appropriate for quantitative risk assessment. After RI data collection, the existing data and RI data were subject to a data evaluation following procedures recommended by EPA (1992a) to ensure that these data are of adequate quality for quantitative risk assessment and to support risk management decisions. These include consideration of the following factors: data sources, completeness of documentation, adequacy of detection limits, and "data quality indicators" as defined by the EPA (1992a) guidance. The data quality indicators include: 1) sampling completeness; 2) representativeness of sampling locations for relevant exposure areas; 3) usability indicated by data validation results (including considerations of laboratory precision and accuracy); and 4) comparability of data analyzed by different methods. Data representativeness is one of the most important criteria when selecting data for use in the quantitative risk assessment. Representativeness is the extent to which data characterize potential exposure and hence risks to human health and the environment. Data selected for use in the quantitative risk assessment should be of overall high quality, and data validation should confirm that the data collected during the RI are of adequate quality for risk assessment.

Data validation was performed following the procedures set forth in the RI/FS Work Plan (PBW, 2006a) and the QAPP (PBW, 2006c). Results of the data evaluation and validation for the BHHRA data set are summarized as follows:

- Data Sources All BHHRA data were generated using rigorous analytical methods (i.e., EPA-approved methods) by a single analytical laboratory with a documented quality system (i.e., accredited under the National Environmental Laboratory Accreditation Program). Historical data was not used for the BHHRA.
- Completeness of Documentation Field sampling activities were documented on field data sheets. Sample custody was documented to maintain security and show control during transfer of samples. Analytical results were reported in laboratory data packages containing all information necessary for the data validation.
- Adequacy of Detection Limits The QAPP specifies target Method Detection Limits (MDL), which were established based on the laboratory's capabilities and are less than the human health

Preliminary Screening Value (PSV), where possible, based on the standard available method with the lowest possible MDL. The MDL, as reported by the laboratory, for all constituents is at or below the target MDL or the human health PSV for the BHHRA data set except for 3,3'-dichlorobenzidine in the four Phase 2 surface water samples and benzidine in the seventeen Phase 2 sediment samples, one Phase 3 sediment sample, and four Pahse 4 sediment samples. (For Phase 1, the sample detection limits, or SDLs, are below the target MDLs for both of these constituents. Benzidine was not detected in any sample from the Site and 3,3'-dichlorobenzidine was only detected in a one sediment sample from the Site.)

Data Quality Indicators

- o Sampling Completeness The percentage of environmental samples collected versus that planned is 100% for samples critical to the BHHRA and is greater than the QAPP goal of 90% for every media and test except chromium VI. Chromium VI analyses were not performed for most of the Phase 1 sediments and all of the Phase 1 soils. However, there is no effect on usability for the BHHRA data set since total chromium, which includes any chromium VI, is reported for all samples.
- o Representativeness of Sampling Locations Phase 1 samples were collected in accordance with the sampling plan presented in the FSP (PBW, 2006b), which was designed to meet the Data Quality Objectives (DQOs) detailed in the QAPP (PBW, 2006c), and additional samples were collected as needed based on the results of the initial sampling event. All samples were properly located and collected using approved standard operating procedures. As described in the RI/FS Work Plan (PBW, 2006a), it was decided that the majority of the soil and sediment sampling would be conducted on a random grid basis with some focused sampling in areas of known historical use. This type of sampling program is appropriate for estimating risks since human health exposure generally occurs randomly over a site, or a portion of a site. Plate 1 shows locations of soil, surface water, sediment and groundwater samples.
- Data Validation Results All data were validated using an approved standard operating procedure (Appendix F in the QAPP) based on the EPA *National Functional Guidelines* for organics and inorganics, respectively (EPA, 1999 and 2002c). A Level III validation including all quality control (QC) checks such as spike recovery, duplicate precision, blanks, holding time, calibration, surrogates, and internal standards was completed for 100% of the samples. Additionally, a Level IV validation that included examination of the raw data was completed for 10% of the soil, sediment, and surface water samples as stipulated in the QAPP. If a QC deficiency was found, sample results were flagged as

O Comparability of Data – Data were generated using the same analytical method for each constituent except naphthalene. Naphthalene was analyzed using SW-846 Method 8260B for all samples but four groundwater samples, which were analyzed using SW-846 Method 8270C. Both methods are rigorous analytical methods performed by a fixed analytical laboratory with a documented quality system meeting stringent QC requirements (unless qualified as rejected) and thus are comparable. All sample results are in standardized units of measure with dry-weight correction for soils and sediments.

As per EPA (1989 and 1992a), validated data qualified as J (estimated) and U (blank-affected) are included in the risk assessment. For quantitative purposes, when a compound was not detected or was blank-affected, one-half of the sample quantitation limit (as defined by the U.S. EPA (1992a)) was used as a proxy to provide a measurement for analysis. Only those data that were rejected (i.e., qualified as "R") were not included in the quantitative risk assessment. As indicated in the RI/FS Work Plan (PBW, 2006a), once the data collection, chemical analysis, and data evaluation/validation were complete, the data were analyzed to identify COIs for the human health risk assessment. The following section describes the process for determining whether a COI became a PCOC and was evaluated further in the BHHRA.

2.2 IDENTIFICATION OF POTENTIAL CHEMICALS OF CONCERN

EPA guidance (EPA, 1989) recommends considering several steps to eliminate compounds from further evaluation and, as such, this section describes the process used to reduce the list of chemicals evaluated in the BHHRA. Compounds were eliminated from further consideration if: 1) they were detected infrequently in a given media (i.e., in less than five percent of the samples); 2) they were measured at similar concentrations in blank samples; 3) they were detected at a low concentration (below one tenth of the screening value discussed below); or 4) they were measured at similar concentrations in background samples.

All analytes detected in at least one sample above the detection limit (including "J-flagged" data) were initially reviewed. If a compound was detected in less than five percent of the samples, the compound was eliminated from further evaluation for that media. This step was only considered in media where

twenty or more samples were collected and if that compound was not present in another media. The lab did not report any blank contamination issues with the data so no compounds were eliminated based on this criterion.

The data for soil, groundwater, surface water, and sediment are summarized in Tables 1 through 15. These tables show the frequency of detection, minimum, maximum, and average concentration for each COI. The 95% UCL on the mean concentration was calculated as described in Section 3. Appendix A provides the statistical calculations for these data.

2.2.1 Concentration-Toxicity Screen

A "concentration-toxicity screen" step, as recommended by EPA (EPA, 1989), was conducted to limit the number of chemicals that were included in a quantitative risk assessment while also ensuring that all chemicals that might contribute significantly to the overall risk were addressed. The screening values used were 1/10th of the human health criteria, which were the lower of the EPA or TCEQ human health values as presented in the NEDR (PBW, 2009) for soil, surface water, and sediment. (It should be noted that NEDR tables also included ecological criteria and background values.) These screening criteria were compared to the maximum measured Site concentration and those compounds measured in Site samples in excess of the screening criteria (if any) have been denoted in bold on Tables 1, 2, 4, 6, 8, 9, 11, 12, 13, and 14. Because there are no readily available screening levels appropriate for the complete groundwater pathway at the Site, all chemicals of interest for groundwater media (Tables 3 and 10) were quantitatively evaluated in the risk assessment. It should be noted that if a compound was measured in more than five percent of the samples but a screening level was not available, it was retained for further evaluation in the BHHRA (eg., iron in sediment).

A similar screen was conducted for media collected at the background areas (Tables 5, 7, and 15), but this was done merely for comparative purposes. Risks associated with background concentrations were not calculated in the BHHRA.

In addition, PCOC concentrations in soil samples from the South Area and North Area were compared to TCEQ's Protective Concentration Levels (PCLs) that were developed to evaluate exposure to air emissions from particulate dust and volatile organic compounds (VOCs) emitted from contaminated soil (Air Soil InhV-P) in order to assess potential impacts from air emissions to nearby off-site residents. This approach is conservative since diluting effects of off-site migration and dispersion were not considered.

Aroclor-1254 and naphthalene were detected in South Area soil at a concentration greater than 1/10th of the screening criteria, as shown in Tables 16, while no COIs were measured in North Area soil at a concentration greater than 1/10th of the screening criteria, as shown in Table 17. While two compounds were measured at a concentration greater than 1/10th of the screening criteria, it is unlikely that there is a potentially unacceptable risk since no attenuation was assumed for migration and dispersion, and because neither the average nor 95% UCL for these compounds exceed the screening criteria. Since this pathway was the only exposure pathway for the off-Site resident and because the screening evaluation shows no likelihood of adverse risk, this potential receptor was eliminated from further evaluation in the BHHRA. It should be noted, however, that inhalation of particulate dust and VOCs in soil at the South Area and North Area was evaluated for the industrial worker, construction worker, and youth trespasser scenarios as discussed in Section 3.0.

Exposure and risk calculations were not estimated for the surface water pathway in the Intracoastal Waterway and Wetlands Area because none of the measured maximum COI concentrations exceeded 1/10th of their respective TCEQ's contact recreation PCL. These PCLs were developed for a child exposure scenario for noncarcinogenic compounds, and an age-adjusted scenario for carcinogenic compounds. The PCL is based on incidental ingestion and dermal contact of surface water while swimming for three hours, 39 times per year. It is believed that this is a bounding estimate for the Intracoastal Waterway, surface water north of Marlin Ave., and the ponds north of Marlin Ave. since none of these surface water bodies are very favorable for swimming and true exposure is likely to be much less than the scenario described by the Texas Risk Reduction Program's (TRRP) contact recreation PCL. All surface water concentrations were well below 1/10th of the PCL for the Intracoastal Waterway and wetlands area surface water. Maximum measured concentrations of arsenic and thallium in the pond samples exceeded 1/10th of their respective PCL but did not exceed the PCL and, therefore, neither were retained for further evaluation. Although TCEQ does not provide a PCL for iron, one was calculated using the contact recreation assumptions (TCEQ, 2006). Measured concentrations of iron in surface water were well below the calculated contact recreation PCL of 2,800 mg/L. Therefore, it was concluded that chemical concentrations of COIs in surface water samples from the Intracoastal Waterway near the Site, surface water in the North Area wetlands, and surface water in the North Area ponds do not pose an unacceptable health risk and chemical concentrations in these media were not evaluated further in the BHHRA.

In a response to EPA comments on the Draft BHHRA (EPA, 2010), Texas Surface Water Quality Standards (TSWQS) saltwater fish criteria (specifically the ^{SW}RBELs) were compared to measured concentrations of COIs in Intracoastal Waterway surface water (Table 4), Intracoastal Waterway

Background surface water (Table 5), wetlands surface water (Table 11), and Pond surface water (Table 12). The saltwater fish criteria represents a screening concentration in water that, above this level, may adversely impact humans eating fish caught in a given water body. The comments (EPA, 2010) requested that the Intracoastal Waterway and wetlands surface water be considered sustainable fisheries and measured concentrations in these media be compared with the TSWQS saltwater fish criteria, while the ponds be considered incidental fisheries, which allowed a factor of ten to be multiplied by the criteria prior to comparison with the site data.

No COIs were measured above the saltwater fish criteria in the surface water samples from the Intracoastal Waterway near the Site (Table 4). 4,4'-DDD, 4,4'-DDT, aldrin, and benzo(k)fluoranthene were detected in at least one surface water sample collected from the background area of the Intracoastal Waterway at concentrations above the saltwater fish criteria (Table 5). Total manganese and mercury concentrations was reported in at least one surface water sample collected from the wetlands area at levels above the saltwater fish criteria (Table 11). Dissolved manganese was measured in at least one surface water sampled collected from the wetlands area at a level above the saltwater fish criteria (Table 11). Total arsenic, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, and thallium were measured in at least one surface water sample collected from the ponds at a concentration above the saltwater fish criteria for an incidental fishery (Table 12). Dissolved manganese was measured in at least one surface water sample collected from the ponds at a concentration above the saltwater fish criteria (Table 12).

Although the above TSWQS comparisons noted a few exceedences in the wetland and pond surface water samples, it is unlikely that there are consumable or desirable fish in these waters. The Small Pond is a shallow depression (on the order of a few inches deep) that often becomes dry during summer months and periods of drought. The Fresh Water Pond is believed to be a borrow pit with little vegetation and, thus, minimal habitat for fish. During the period over which the RI was performed, there were no indications of fish in this pond nor were any fishing activities observed. The wetlands are hydrologically isolated from Oyster Creek (and the Intracoastal Waterway), except during intermittent, and typically brief, flooding events. This lack of hydraulic connection prevents the wetlands from being a hatchery or nursery for fish that, as they mature, could move to larger water bodies. In addition, it is unlikely that fish of consumable size live in the wetlands given the shallow depth of standing water.

2.2.2 Comparison to the Background Areas

The background evaluation was conducted using the approach outlined on page 5-19 of EPA guidance (EPA, 1989), which indicates "If inorganic chemicals are present at the site at naturally occurring levels, they may be eliminated from the quantitative risk assessment". COIs were retained for further evaluation in the BHHRA if they were measured in Site media at concentrations that were statistically different (higher) than background soils.

To help provide an understanding of what COIs and concentrations are considered to be Site-related, a background evaluation was conducted (as described in the Work Plan (PBW, 2006a)) that included: 1) soil samples from ten off-site locations; 2) sediment samples from nine off-site locations in the Intracoastal Waterway; and 3) surface water samples within four off-site "zones" in the Intracoastal Waterway. This information was used to characterize Site conditions in the NEDR (PBW, 2009).

The soil background data were compared to soil from the South Area and North Areas of the Site, as well as sediments from the North wetland and the North Area ponds. As described in the NEDR (PBW, 2009), based on similarities in composition and condition between background soil and sediments of the North wetlands area, this comparison was appropriate. Sediment and surface water data for the Intracoastal Waterway samples were compared to sediment and surface water data collected in the Intracoastal Waterway background location.

Comparisons between Site sampling data and Site-specific background data were conducted for all inorganic compounds measured regardless if they exceeded the concentration-toxicity screen. The background comparisons were performed in accordance with EPA's *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites* (EPA, 2002d). Distribution testing was conducted to estimate 95% UCLs and the summary statistics were used to perform comparison of the means analyses. The output of these background statistical comparison tests is provided in Appendix B. Table 18 summarizes the results of the testing and indicates whether the Site data were found to be statistically different than the background data.

In several instances (e.g., lithium in South Area soil; barium in North Area wetlands sediment), statistical differences between the two data sets were due to higher concentrations in the background population, as noted in Table 18. If there was not Site-specific background data for a COI (as noted in Table 18 with an "NA") and it was measured in excess of $1/10^{th}$ of the screening level, the COI was retained for further

evaluation in the BHHRA (e.g., iron). COIs shown to be statistically different (and higher) when compared to background data were also retained for quantitative evaluation in the BHHRA.

A statistical comparison between Site surface water and background surface water could not be conducted given the small size of both data sets. Visual inspection of the data indicates that there is no consistent observable difference between the data sets for the COIs. It should be noted, however, that all COIs in surface water were screened out during the toxicity-concentration step and are not evaluated further in the BHHRA.

Background groundwater data were not collected as part of the RI. Therefore, all COIs detected in Zone A groundwater, as shown in Tables 3 and 10 for the South Area and North Area, respectively, were evaluated quantitatively in the BHHRA and are discussed in greater detail in the following sections.

2.2.3 Summary of Potential Chemicals of Concern

The PCOCs carried through the BHHRA for soil, surface water, and sediment are listed in Table 19. For a COI to be considered at PCOC, it was:

- Measured in more than five percent of the samples for a given media;
- Measured at a concentration greater than 1/10th of the screening criteria or measured but no screening criteria are available; and
- Measured at a concentration statistically greater than what is considered background.

PCOCs were quantitatively evaluated further in the BHHRA. Based on the comparison with screening criteria, COIs measured in surface water and, thereby, the surface water pathway were eliminated from further evaluation in the BHHRA because none were measured above their respective screening value. Likewise, the pathway for off-site residential exposure to fugitive dust and VOC emissions from soils at the South Area and North Area was eliminated from further evaluation because no COIs were measured above their screening criteria for this pathway. These media, South Area and North Area soil, were retained for further evaluation for other receptors and pathways. Table 20 summarizes the media of interest, potential exposure pathways by media, and the general outcome of the screening process for that media.

3.0 EXPOSURE ASSESSMENT

The exposure assessment estimates the extent of human contact with PCOCs by characterizing potentially exposed populations (i.e., receptors), identifying actual or potential routes of exposure, and quantifying the intake (or dose) of human exposure. The exposure assessment also identifies possible exposure pathways that are appropriate for each potential receptor and exposure scenario and considers the source of contamination and fate and transport properties of the compound and surrounding environment. An exposure pathway typically includes the following elements:

- A source of contaminant and mechanism of contaminant release;
- An environmental retention or transport medium (e.g., air, groundwater, etc.);
- A point of contact with the medium (i.e., receptor or potentially exposed population); and
- A route of human intake (e.g., inhalation, ingestion, etc.).

Each of these elements must generally be present for an exposure pathway to be complete, although it is not necessary that environmental transport occurs when assessing exposure from direct contact. Exposure was evaluated for both current and potential future receptors to allow for evaluation of long-term risk management options.

3.1 POTENTIAL EXPOSURE PATHWAY EVALUATION

The identification of potentially exposed populations (also called receptors) possibly at risk from exposure to PCOCs at the Site is dependent on current and future land uses. The Site is located at 906 Marlin Avenue in Freeport, TX, as shown on Figure 1.

The Site consists of approximately 40 acres within the 100-year coastal floodplain along the north bank of the Intracoastal Waterway between Oyster Creek to the east and the Old Brazos River Channel to the west (Figure 1). Approximately 78 people live within the one square mile area surrounding the Site (EPA, 2005a). Approximately 3,392 people live within 50 square miles of the Site (EPA, 2005a). There are no schools, nursing homes, or other sensitive subpopulations within a mile of the Site. Residential areas are located south of Marlin Avenue, approximately 300 feet west of the Site, and 1,000 feet east of the Site.

3.1.1 Land Use Evaluation

Historically, the South Area of the Site was used as a barge cleaning and maintenance facility. The Site currently is unused but it is anticipated that the South Area will be used for commercial/industrial purposes in the future. The South Area includes approximately 20 acres of upland that was created from dredged material from the Intracoastal Waterway. To the west of and directly adjacent to the Site is an unused lot that was formerly a commercial marina. West of that lot, beyond a second vacant lot, is a residential development with access to the Intracoastal Waterway. An active commercial operation is located east of the South Area.

The North Area of the Site contains closed surface impoundments (closed in 1982) and is, for the most part, unused. Some of the North Area is upland created from dredge spoil, but most of this area is considered wetlands (Figure 2) and the wetlands area has never consistently been used. According to the National Wetlands Inventory map for the Freeport Quadrangle, the wetlands on the north of the Site are estuarine, intertidal, emergent, persistent, and irregularly flooded. The upland area of the North Area has been used as a parking lot. Future land use at the North Area is limited given that much of it is considered wetlands and most of the upland part of the North Area consists of the closed former surface impoundments.

3.1.2 Groundwater Use Evaluation

Because of high total dissolved solids in Zone A, B, and C groundwater at the Site, the groundwater ingestion and use pathway is incomplete for these three units. Also, as noted previously, restrictive covenants prohibiting groundwater use have been filed for the Site. Based on Site potentiometric and analytical data presented in the NEDR (PBW, 2009), impacted groundwater does not affect surface water at the Site. Additional information regarding the geologic and hydrogeologic characteristics of these units will be provided in the RI Report.

3.1.3 Surface Water Use Evaluation

The Intracoastal Waterway supports barge traffic and other activities. It is one of the main arteries for shipping goods from Freeport's deep-water port to destinations along the Texas Coast and beyond. Fishing boats also use the Intracoastal Waterway to gain access to the fishing grounds in the Gulf of

Mexico and the shorelines, tributaries, and marshes of the many Texas Bays. The area near the Site is regularly dredged. The nearby residential areas have canal access to the Intracoastal Waterway.

As noted previously, impacted groundwater does not discharge to surface water at the Site. However, surface water data were collected for the Intracoastal Waterway, as well as surface waters contained in the wetlands and ponds on the North Area to evaluate the potential for contaminants in surface soils to be released to surface water via overland surface runoff.

3.1.4 Fish and Shellfish Resources Evaluation

As mentioned previously, fishing and crabbing are reported to occur in waters of the Intracoastal Waterway in the general vicinity of the Site. Fishing and crabbing have not been observed in the wetlands or ponds of the North Area primarily because neither provide suitable habitat for consumable fish or blue crabs (e.g., larger fish and mature blue crabs prefer deeper water habitat).

Subsistence fishing was not considered in the Intracoastal Waterway Fish Ingestion Pathway Human Health Baseline Risk Assessment (PBW, 2007) because of the small shoreline of the Site and other considerations described below. Subsistence fishing is generally characterized by individuals who catch fish as their primary protein source and, although a formal study has not been conducted, there are no known subsistence populations in the Freeport area. The habitat along the Intracoastal Waterway is generally not conducive to attracting and keeping fish and their prey due to the poor sediment base that results from scouring, dredging and wave action from barge traffic. Moreover, given the significant barge and boat traffic in the area, it is unlikely that a fisherman would routinely fish near the Site due to safety concerns. It was, therefore, assumed that a recreational fishing scenario best represented possible and likely fishing patterns in the Intracoastal Waterway near the Site.

Molluscan shellfish harvesting is currently banned by the TDSHS in all waterbodies from an area about two miles east of the Site, to well beyond the Brazos River inlet, about 7 miles west of the Site (TDSHS, 2009). The ban has been enacted because of poor conditions and water quality. It should be noted, however, that risk from molluscan shellfish consumption harvested from the area if allowed would most likely not pose a human health risk, since exposure would be similar if not the same as for the fish and crab (a crustacean shellfish) ingestion pathway, which as described in Section 5.4 below was found to pose an acceptable risk in the Site vicinity. However, bioaccumulation of fish and shellfish, including molluscan and crustacean shellfish, can be different and may impart uncertainty in the analysis if

molluscan shellfish are consumed. Additional discussion related to this potential uncertainty is presented in Section 6.2.

3.2 POTENTIALLY EXPOSED POPULATIONS

Potentially exposed populations were based on current and reasonable future land use, groundwater use, and surface water use. Table 20 describes the potentially exposed populations that may encounter COPCs at the Site. Table 21 summarizes the various exposure scenarios evaluated in the BHHRA by media. While exposure might occur at the background locations, exposure and potential risks for the background areas were not evaluated in the BHHRA.

Potentially exposed populations for the South Area and North Area include:

- 1. future commercial/industrial workers;
- 2. future construction workers at the Site:
- 3. current/future youth trespasser (although the South Area perimeter is fenced, this area could still be accessed by a trespasser via the Intracoastal Waterway);
- 4. contact recreation receptor; and
- 5. off-site residential receptor.

Soil is the primary media of concern for the commercial/industrial worker, construction worker, and youth trespasser receptor while surface water and sediment are the primary media of concern for the contact recreation receptor. A future indoor air exposure pathway was evaluated for the commercial/industrial worker since VOCs were detected in Zone A groundwater. Additionally, a contact recreation scenario was assessed for surface water and sediment in the Intracoastal Waterway, wetlands, and ponds to represent a hypothetical person that occasionally contacts these media while swimming, wading, or participating in other recreational activities. Potential impacts from fugitive dust generation and VOC emissions, and subsequent exposure to nearby residents were also considered in the BHHRA as shown in Tables 16 and 17 and discussed in Section 2.2.1. It should be noted that the off-site residential receptor and surface water exposure to the contact recreation receptor were eliminated from further quantitative evaluation in the BHHRA, as described in Section 2.2.

A recreational fishing receptor was identified as the potential receptor of concern in the Fish Ingestion Pathway Human Health Baseline Risk Assessment (PBW, 2007), and a quantitative evaluation of risks for this potentially exposed population was presented in the report. The conclusions of that report are summarized in Section 5.4.

3.3 CONCEPTUAL SITE MODELS AND POTENTIALLY COMPLETE EXPOSURE PATHWAYS

A conceptual site model (CSM) identifies exposure pathways for potentially complete pathways at the Site and describes the process or mechanism by which human receptors may reasonably come into contact with Site-related constituents. A CSM was developed as part of the Work Plan (PBW, 2006a) to focus the data collection activities of the RI so that analytical data could support a risk-based analysis. These preliminary CSMs were included as Figures 7 and 8 in the Work Plan (PBW, 2006a) and summarized exposure to the North Area and South Area, respectively.

Figures 4 and 5 of the BHHRA provide revised CSMs for the South and North Areas, respectively, which were refined to reflect current information about the Site. These revised CSMs were used to develop the quantitative exposure assessment of the BHHRA. Complete pathways are indicated with a bold line and check in the potential receptors column. Incomplete pathways are denoted with an "X" and a footnote indicating why the pathway is incomplete.

At the South Area, PCOCs were potentially released from historical Potential Source Areas (PSAs) to the soil and may have migrated to groundwater via leaching through the soil column, and to surface water in the Intracoastal Waterway via overland surface runoff. Once in surface water, some compounds tend to stay dissolved in the water whereas some tend to partition to sediment. Volatilization and fugitive dust generation may have caused PCOCs in soil to migrate within the Site or off-site. Exposure to on-site receptors may also occur directly from contact to the soil. However, based on PCOC data for surface soil samples collected on Lots 19 and 20 directly west of the Site (see Section 2.4.2 of the NEDR for detailed discussion of these data (PBW, 2009)) and the qualitative screening conducted for the off-site residential receptor described in Section 2.2, it does not appear that significant entrainment and subsequent deposition of particulates occurred at the Site or at off-site locations. Once in groundwater, VOCs may migrate with the groundwater and/or volatilize through the soil pore space and be emitted into outdoor or indoor air.

At the North Area, PCOCs were potentially released from historical PSAs to the soil and/or may have migrated to groundwater. PCOCs may have also migrated from soil to surface water and sediments in the

nearby wetlands area via overland surface runoff. Fugitive dust generation was considered a potentially significant transport pathway for PCOC migration on-site and evaluated quantitatively in the BHHRA for the on-site receptors although this pathway was eliminated during the screening process for the off-site residential receptor. Once in groundwater, VOCs may migrate with the groundwater and/or volatilize through the soil pore space and be emitted into outdoor or indoor air.

It was assumed, as part of the risk assessment, that these media were potentially contacted by the various hypothetical receptors possibly at the Site and, as such, these exposure pathways were potentially complete. The remainder of this section describes how exposure was quantified for each of these complete exposure pathways.

3.4 QUANTIFICATION OF EXPOSURE

In keeping with EPA guidance (EPA, 1992c), the goal of the exposure assessment was to provide a reasonable, high-end (i.e., conservative) estimate of exposure that focuses on potential exposures in the actual population. This concept is termed the reasonable maximum exposure (RME) approach. This should not be confused with: (1) a worst-case scenario which refers to a combination of events and conditions such that, taken together, produces the highest conceivable exposure; or (2) a bounding estimate that purposefully overestimates exposure (EPA, 1992c). Thus, in accordance with EPA guidance, site-specific exposure assumptions and parameters were used when available and, when not available, assumptions were deliberately chosen to represent a high-end RME estimate (EPA, 1989). A central tendency or average scenario was also evaluated to provide a range of exposures.

Chemical exposure is quantified by the calculation of an intake, or dose, that is normalized to body weight and exposure time of the receptor. A dose is calculated by combining assumptions regarding contact rate (intake amount and time, frequency and duration of exposure) to a contaminated medium with representative chemical exposure point concentrations for the medium of concern at the point of contact. Receptors are chosen based on their exposure patterns that may put them at risk or at a higher risk than other individuals. Intake assumptions, in general, were based on central tendency or RME assumptions determined by EPA (1989; 1991a), or were based on information obtained from site-specific studies. Reasonable maximum exposure scenarios use a combination of assumptions, such as average values for physical characteristics of the receptors (body weight and corresponding body surface area), UCL values (values at the 90 or 95 percentile of the distribution) for contact rate, and UCL on the mean

(95 percent UCL) for the exposure point concentrations. The combination of these factors is assumed to provide an upper-bound estimate of exposure and risk to that particular receptor.

The intake or dose of a particular compound by a receptor is quantified with the generic equation below (EPA, 1989):

$$I = \frac{C \times CR \times EFD}{BW} \times \frac{1}{AT}$$
 (Equation 1)

where:

I = the compound intake or dose (mg/Kg BW-day);

C = the compound concentration (mg/Kg or mg/L);

CR = contact rate or the amount of contaminated medium contacted per event

(L/day or mg/day);

EFD = the frequency (days/year) and duration (number of years) of exposure days;

BW = the average body weight of the receptor (Kg); and

AT = averaging time of the exposure (days); for noncarcinogens, AT equals

(ED) x (365 day/year); for carcinogens, AT equals (70

years over a lifetime) x (365 day/year).

This equation calculates an intake that is normalized over the body weight of the individual and the time of the exposure. Because the intake or dose is combined with quantitative indices of toxicity (chemical-specific dose-response information such as reference doses (RfDs) for noncarcinogenic compounds or cancer slope factors (CSFs) for carcinogenic compounds, which is discussed further in Section 4.0) to give a measure of potential risk, the intake or dose must be calculated in a manner that is compatible with the quantitative dose-response information for chemical constituents evaluated in the analysis. Two different types of health effects are considered in this analysis: 1) carcinogenic effects and 2) noncarcinogenic effects (either chronic or subchronic, depending on the receptor's exposure).

For carcinogenic effects, the relevant intake is the total cumulative intake averaged over a lifetime because the quantitative dose-response function for carcinogens is based on the assumption that cancer results from chronic, lifetime exposures to carcinogenic agents. This intake or dose is then averaged over a lifetime to provide an estimate of intake or dose to carcinogens as (mg/Kg-day), which is expressed as a lifetime average daily dose (LADD). Thus, for potentially carcinogenic compounds, the averaging time (AT) is equal to 70 years (EPA, 1989).

Noncarcinogenic effects are evaluated for chronic, subchronic, or acute exposures by receptors to systemic or reproductive toxicants. For noncarcinogenic effects, the relevant intake or dose is based on the daily intake averaged over the exposure period of concern. As defined in EPA guidance (EPA, 1989),

an exposure period for toxicity can be either acute (exposure occurring from one event or over one day), subchronic (cumulative exposures occurring from two weeks up to seven years), or chronic (cumulative exposure over seven years to a lifetime in duration). The quantitative dose-response function for noncarcinogenic effects (chronic and subchronic) is based on the assumption that effects occur once a threshold dose is attained from repeated exposure. Therefore, the intake or dose for noncarcinogenic risk assessment is based on an average daily dose (ADD) that is averaged over the duration of exposure. The averaging time for assessing noncarcinogenic effects is equal to the exposure duration for the receptor. In the BHHRA, exposure was assumed to be chronic for all receptors even though some exposures described in this report were intermittent or less than chronic duration.

3.4.1 Estimating the Exposure Point Concentration

The exposure point concentration (EPC) is meant to be "a conservative estimate of the average chemical concentration in an environmental medium" (EPA, 2002b). The EPA (2002b) also states that the 95% UCL should be used as the EPC for a given area and its sample concentrations. The EPA's ProUCL Version 4.00.04 software program (EPA, 2009) was used to calculate distribution-free (i.e., nonparametric) 95% UCL concentrations from data sets including non-detect concentration values (i.e., represented by the sample quantitation limit). ProUCL calculates various types of the 95% UCL, and then makes a recommendation for the most appropriate UCL type. In instances where the generated output did not indicate a recommended UCL type, then rules based on the EPA guidance (EPA, 2009) were used to choose the most appropriate UCL. If the sample size was small or there was a large proportion of non-detect concentrations in a particular data set, EPA guidance (EPA, 2009) noted that a computed 95% UCL would not be reliable or justifiable. Instead, the guidance recommended using the median or mode value of the entire data set (i.e., detected and non-detected concentrations) to represent the EPC.

The following rules were used to select the most appropriate UCL based on EPA guidance (EPA, 2009), based on the nature of the data set:

- 1. Select the recommended UCL, unless the number of detections was less than 8.
- 2. If the number of detections was less than 8, compute median value of entire data set and select it for the EPC.

- 3. If number of detections is 8 or more, **and** no UCL is recommended **and** non-detects are less than five percent **and** data distribution appears normal (often the case for metals) **and** there are not multiple sample quantitation limits, then select the Winsor (t) UCL or the Student's (t) UCL.
- 4. If number of detections is 8 or more and no UCL is recommended and non-detects are greater than five percent, then select the highest Kaplan-Meier (KM) UCL other than the 99% KM (Chebyshev) UCL (considered to be too conservative) if it is less than the maximum detected value.
- 5. If the number of detections is 8 or more **and** no UCL is recommended **and** non-detects are less than five percent **and** data distribution is not normal, then select the highest KM UCL other than the 99% KM(Chebyshev) (conserved too conservative) UCL if it is less than the maximum detected value.

Appendix A provides the ProUCL output when there were sufficient samples to generate statistics (soil and sediment). It should be noted that when evaluating exposure from fugitive dust generation, the EPC was based on surface soil data because it is unlikely that deeper soils (i.e., soils below a depth of 0.5 ft) are transported as wind-borne dust.

Both averages and 95% UCLs (or means or medians where appropriate as discussed above) were used in the BHHRA to provide a range of EPCs and are summarized in Tables 1 through 15. The dose estimates using the 95% UCL EPC were considered to represent reasonable maximum exposure (RME). The average was used to represent the average or central tendency exposure. It should be noted that with more robust data sets, the average and 95% UCL EPCs are very similar. It should also be noted that often, for data sets with a high percentage of non-detects, the average of detected data are higher than the recommended UCL (or RME) value since, with these types of datasets, the median value is often the recommended UCL and is often lower than the average of the detected data.

3.4.2 **Quantifying Intake**

To quantify potential exposures associated with the pathways of potential concern, Equation 1 is modified according to the specific exposure routes and intake assumptions.

Incidental Ingestion of Soil. The intake or dose for the incidental ingestion pathway from soil is calculated based on the following equation (EPA, 1989):

$$ADD_{ing} = \frac{Conc_{soil} \times IR \times FI \times AAF \times EF \times ED \times CF}{BW \times AT}$$
 (Equation 2)

where:

ADD_{ing} = average daily intake of compound via ingestion of soil (mg/Kg BW-day);

 $Conc_{soil} = exposure concentration in soil (mg/Kg);$

IR = ingestion rate (mg soil/day);
FI = fraction ingested (unitless);

AAF = absorption adjustment factor (fraction absorbed);

EF = exposure frequency (days/year);

ED = exposure duration (years);

CF = conversion factor (10^{-6} Kg/mg) ;

BW = body weight (Kg); and AT = averaging time (days).

The exposure concentration in the soil (Conc_{soil}) is the concentration of a PCOC at the point of contact. Exposure point concentrations represent random exposure over the exposure unit and were discussed in greater detail in the Section 3.4.1. The ingestion rate (IR) is the amount of soil incidentally ingested per day or event. For soil, the incidental intake values vary according to the receptor and the specific activities or exposure patterns that the receptor is engaged in at the Site.

The fraction ingested (FI) relates to the fraction of soil that is contacted daily from the contaminated area. This is highly dependent on the different activities that an individual is engaged in and the number of hours (fraction of time) spent in the contaminated portions of the site (EPA, 1989). The fraction ingested was conservatively assumed to be 100 percent. The absorption adjustment factor (AAF) is used in the ingestion pathway to account for differences in relative absorption for the chemical from the test vehicle versus the exposure medium (i.e., soil) and was assumed to be 1.0 unless compound-specific data were available to suggest otherwise. (The test vehicle is the material (e.g., soil, food, or solvent) in which the chemical was administered in the toxicity study.) Body weight (BW) varies according to the age range of the receptor. Adult receptors are assumed to weigh 70 kilograms (Kg), which corresponds to the 50th percentile value for all adults, as recommended by EPA (1989). For receptors other than adults, body weight is dependent on the age of the receptor and is calculated as the time-weighted average body weight using values reported by the *Exposure Factors Handbook* (EPA, 1997a). The exposure frequency (EF) and duration (ED) of the event is based on the particular exposure pattern and activity related to the

receptor (EPA, 1997a). The averaging time is 70 years for carcinogenic effects, and for noncarcinogenic effects depends on the frequency and duration of exposure for the particular receptor (EPA, 1989; 1991a).

Dermal Contact with Soil. When calculating intake via dermal contact with soil or sediment, Equation 1 is modified slightly to account for skin surface area, soil-to-skin adherence factors, and chemical-specific absorption factors. An intake or dose is quantified from dermal contact with the equation (EPA, 1989):

$$ADD_{der} = \frac{Conc_{soil} \times SA \times AF \times AAF \times EF \times ED \times CF}{BW \times AT}$$
 (Equation 3)

where:

ADD_{der} = average daily dose from dermal contact with chemical in soil (mg/Kg-day);

 $Conc_{soil}$ = exposure concentration in soil (mg/Kg);

SA = skin surface area available for direct dermal contact (cm²/event);

AF = soil/sediment to skin adherence factor (mg/cm²);

AAF = absorption adjustment factor (unitless)

EF = exposure frequency (days or events/year);

ED = exposure duration (years)

 $CF = conversion factor (10^{-6} \text{ Kg/mg});$

BW = body weight (Kg); and AT = averaging time (days).

The exposed skin surface area (SA) is the area or portion of the body exposed for dermal contact. As with many exposure variables, surface area depends on the age and exposure pattern that the receptor is engaged in that relate to repeated or average exposure. Surface area can be predicted based on factors such as activity and types of clothing. Typical exposures via dermal contact for most receptors are generally limited to certain parts of the body (e.g., hands, forearms, head, and neck) since clothing tends to significantly reduce the potential for direct contact with soil (Kissel, 1995). The soil adherence factor (AF) is the density of soil adhering to the exposed fraction of the body. The adherence factor is highly dependent on the specific activity of the receptor as well as physical properties of the soil (e.g., moisture content, textural class, and organic carbon content) (Kissel et al., 1996). The AAF accounts for the relative absorbance of a chemical between dermal exposure from the environmental medium and oral exposure in the critical toxicity study, which was used to derive the dose-response information for that chemical. Therefore, the AAF is highly chemical-specific and, unless otherwise noted, was assumed to be 1.0. Factors such as body weight, exposure frequency, exposure duration, and averaging time are similar to that discussed above for incidental ingestion.

Inhalation of Volatiles and Fugitive Dusts. An intake or dose from inhalation of vapors or particles emitted from the Site is calculated by modifying Equation 1 to account for the volatilization and/or

particulate emission factor and the difference in methodology when evaluating air impacts (i.e., dose was not calculated, but rather an effective air concentration that the receptor may be exposed to was calculated). An effective air concentration was generally calculated using the following equation:

$$EAC = \frac{Conc_{soil} \times VF \times EF \times ED}{AT}$$
 (Equation 4)

where:

EAC = effective air concentration (mg/m^3) ;

 $Conc_{soil}$ = exposure point concentration in soil (mg/Kg);

VF = volatilization factor (mg/m³-air/Kg-soil) and/or particulate emission factor:
EF = exposure frequency; describes how often exposure occurs (days/year);
ED = exposure duration; describes how long exposure occurs (years); and
AT = averaging time; period over which exposure is averaged (days).

A risk assessment from inhalation of volatiles and dusts is different from the quantification of potential risks from dermal contact or incidental ingestion. Risks from inhalation exposure are based on a comparison of a measured or calculated air concentration (effective air concentration) to a risk-based acceptable air concentration, either a reference concentration (RfC) or an inhalation unit risk (IUR) value. Where monitoring data do not exist, an exposure point concentration in air can be calculated based on a volatilization model and/or particulate emissions factor and the exposure point concentration in soil. Surface soil data were used when estimating the air concentration for particulate dust generation.

3.4.3 Exposure Assumptions and Intake Calculations

The exposure assumptions are provided in Tables 22, 23, 24, and 25 for the industrial worker, construction worker, youth trespasser, and contact recreation receptors, respectively. References for the various assumptions are provided in the tables and citations are listed in Section 8.0. Appendix C provides the detailed spreadsheets for the intake calculations for the different receptors for the South and North Areas of the Site. Tables 16 and 17 and Section 2.2.1 describe the evaluation of potential impacts from volatile emissions and fugitive dust generation from Site soils to off-site residential receptors.

3.4.4 Vapor Intrusion Pathway for Future On-Site Worker Scenarios

Except for an AST farm, a dry dock, and a former transformer shed, there are currently no structures present on the South or North Areas at the Site. However, future development of the area may result in

construction of buildings at the Site. In the event that permanent and enclosed structures are built on-Site in the future, the Johnson and Ettinger Vapor Intrusion Model (J&E VIM) (EPA, 2002a) was used to assess the potential migration of volatile chemicals from groundwater into the breathing space of an overlying building. Exposure estimates are calculated in the model using default exposure parameters for an industrial worker similar to those provided in Table 22 and site-specific soil and hydrogeologic properties. While a construction worker could also be exposed to VOCs migrating from groundwater to outdoor air, that exposure and risk scenario was not calculated separately since it is likely to be less than the industrial worker's exposure under the indoor air scenario since there would be greater dispersion and mixing in the ambient outdoor air that a construction worker would encounter (no dispersion and mixing is assumed with the J&E VIM), and because the construction worker's exposure frequency and duration is less than the industrial worker's.

The input parameters used to run the J&E VIM Version 3.1 followed EPA guidance on the subject and recommended values (EPA, 2002a) that are available on-line at

www.epa.gov/oswer/riskassessment/airmodel/johnson ettinger.htm . Site-specific input variables used in the model are described below. The model was only run for those compounds that are considered volatile since non-volatile compounds would not migrate from the groundwater to the overlying soil pore space and to ambient air via this pathway. As noted previously, a restrictive covenant is currently in place for Lots 55, 56, and 57 and requires any building design to preclude vapor intrusion. Thus, this evaluation represents a conservative assessment of the vapor intrusion pathway for these lots.

The site-specific variables used in the J&E model were determined from information gathered during previous Site investigation and presented in the NEDR (PBW, 2009). Depth below grade to the bottom of a hypothetical enclosed space floor was assumed to be 15 cm, or the thickness of a typical slab (basement construction was not considered due to the geographic location of the Site). Depth below grade to the water table was conservatively estimated to be 5 feet (152 cm) based on water gauging data from both North and South Area monitoring wells. Clay (USCS code CL) was selected as the soil type directly above the water table, which is the dominant soil type in shallow soils at both the North and South Areas as indicated on the boring logs provided in NEDR (PBW, 2009). The average soil/groundwater temperature used in the model was 25° C based on the geographical location of the site and regional climatic conditions.

Both average and RME EPCs were used in the calculations to provide a range of exposure and potential risks. These values are listed in Tables 26 and 27, respectively for the South Area and North Area groundwater. Estimated risks are provided and discussed in Section 5.0.

4.0 TOXICITY ASSESSMENT

The toxicity assessment provides a description of the relationship between a dose of a chemical and the anticipated incidence of an adverse health effect (Preuss and Ehrlich, 1987 and EPA, 1989). The purpose of the toxicity assessment is to provide a quantitative estimate of the inherent toxicity of PCOCs to incorporate into the risk characterization. Toxicity values are derived from the quantitative dose response association and are correlated with the quantitative exposure assessment in the risk characterization.

For risk assessment purposes, toxic constituent effects are separated into two categories of toxicity: carcinogenic effects and noncarcinogenic effects. This division relates to the EPA policy that the mechanisms of action for these endpoints differ. Generally, the EPA has required that potentially carcinogenic chemicals be treated as if minimum threshold doses do not exist (EPA, 1986), whereas noncarcinogenic effects are recognized to have a threshold below which toxicity is unlikely.

4.1 EXPOSURE ROUTE-SPECIFIC TOXICITY CRITERIA

In deriving toxicity criteria, EPA methodologies consider the route of administration (or exposure) of the test chemical in toxicity or epidemiological studies. Typically oral reference doses (RfDs) and oral cancer slope factors (CSFs) are derived from toxicity studies with oral administration or exposure route, and reference concentrations (RfCs) or inhalation unit risks are derived from inhalation toxicity studies. While one could attempt to extrapolate an inhalation toxicity criterion to the oral pathway or visa versa, this practice is not recommended because there can be a great deal of uncertainty introduced (EPA, 1989). Therefore, in the BHHRA, oral RfDs were not extrapolated to provide toxicity values for inhalation pathways. Quantitative risk evaluation of the inhalation exposure pathways was conducted only for those chemicals that have reference toxicity values specifically from inhalation administration.

On the other hand, EPA has not derived specific toxicity criteria for the dermal exposure pathway. This presents a complication because oral and inhalation toxicity criteria are based on administered dose and not absorbed dose while dermal exposure pathways consider the absorbed dose (i.e., how much of the chemical in soil or water crosses the skin barrier and is absorbed by the body). Per EPA (1989), the oral RfD or oral CSF can be applied in evaluation of the dermal exposure pathway following adjustment of the oral toxicity criteria for gastrointestinal absorbance. In later guidance (EPA, 2004b), EPA recommends adjusting oral toxicity criteria by gastrointestinal absorbance factors if gastrointestinal absorbance of the chemical in the vehicle of administration in the critical study is less than 50 percent. Generally, organic

chemicals are assumed to be relatively bioavailable in oral and gavage toxicity studies and, thus, the administered dose is likely to be similar to absorbed dose. Therefore, no adjustment of oral toxicity criteria is recommended for organic PCOCs (EPA, 2004b). EPA recommends adjusting oral toxicity criteria for a number of inorganic constituents based on the possibility of low gastrointestinal absorbance in the critical study as shown in Exhibit 4-1 of the associated guidance (EPA, 2004b). It should be noted that none of the PCOCs quantitatively evaluated in the BHHRA are recommended for the adjustment described above.

4.2 CARCINOGENIC EFFECTS

Potential carcinogenic effects resulting from human exposure to constituents are estimated quantitatively using CSFs, which represent the theoretical increased risk per milligram of constituent intake/kilogram body weight/day (mg/Kg-day)⁻¹ or unit risks, which are the theoretical increased risks per exposure concentration. CSFs or unit risks are typically derived for "known or probable" human carcinogens. CSFs or unit risks are used to estimate a theoretical upper-bound lifetime probability of an individual developing cancer as a result of exposure to a particular lifetime daily dose of a potential carcinogen. Constituents that are believed to be carcinogenic may also have non-cancer effects. Potential health risks for these constituents are evaluated for both cancer and other types of effects as described below.

4.3 NONCARCINOGENIC EFFECTS

Unlike carcinogenic effects, it is widely accepted that noncarcinogenic biological effects of chemical substances occur only after a threshold dose is achieved (Klaassen et al., 2007). This threshold concept of noncarcinogenic effects assumes that a range of exposures up to some defined threshold can be tolerated without appreciable risk of harm. Adverse effects may be minimized at concentrations below the threshold by pharmacokinetic processes, such as decreased absorption, distribution to non-target organs, metabolism to less toxic chemical forms, and excretion (Klaassen et al., 2007).

RfD values and RfCs are developed by the EPA RfD Work Group on the basis of a wide array of noncarcinogenic health effects. The RfD and RfC are estimates of the daily maximum level of exposure to human populations (including sensitive subpopulations) that are likely to be without an appreciable risk of deleterious effects during a lifetime (EPA, 1989). RfDs are expressed in units of daily dose (mg/Kg-

day) while RfCs are expressed as an air concentration (mg/m³). Both incorporate uncertainty factors to account for limitation in the quality or quantity of available data.

4.4 SOURCES OF TOXICITY CRITERIA

There are a variety of toxicity databases that regulatory agencies rely on for the purposes of quantifying the toxicity of chemicals in the environment. Per EPA (1989 and 2003), the primary source (i.e., "Tier 1") for toxicity information in the risk assessment should be EPA's IRIS (EPA, 2008). According to a recent EPA Office of Solid Waste and Emergency Response (OSWER) Directive (EPA, 2003), that revises the human health toxicity value hierarchy, if RfDs for noncarcinogenic compounds and CSFs for possible carcinogens are not available in IRIS, the "Tier 2" toxicity resource is the EPA's database of Provisional Peer Reviewed Toxicity Values for Superfund (PPRTV). The "Tier 3" resources that can be consulted if IRIS and PPRTV databases lack relevant toxicity criteria include the Health Effects Assessment Summary Tables (EPA, 1997b) and the Centers for Disease Control's Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs). Toxicity values contained in the Region 6 Human Health Medium-Specific Screening Levels (EPA, 2004a) were also used as a resource for toxicity values. Regional Screening Levels (RSLs) were not available when the project began and, as such, they were not used in the screening step or as a resource for toxicity information in the BHHRA.

The toxicity criteria used in the BHHRA are provided in Appendix D, along with the risk calculations. All toxicity values were obtained from EPA's IRIS on-line database, as accessed during December 2008.

5.0 RISK CHARACTERIZATION

Risk characterization is the integration of the exposure and toxicity information to make quantitative estimates and/or qualitative statements regarding potential risk to human health. This section describes the risk characterization process for carcinogenic and noncarcinogenic PCOCs.

5.1 POTENTIAL CARCINOGENIC RISKS

Potential carcinogenic effects are characterized in terms of the excess probability of an individual developing cancer over a lifetime as a result of exposure to a potential carcinogen. For chemicals that exhibit carcinogenic effects, EPA has developed a model that is based on the theory that one or more molecular events as a result of exposure to a potential carcinogenic compound can evoke changes in a single cell or a small number of cells that can lead to tumor formation. This non-threshold theory of carcinogenesis suggests that any level of exposure to a carcinogen can result in some finite possibility of generating the disease. It should be noted that this is a very conservative approach and EPA's more recent Guidelines for Cancer Risk Assessment (EPA, 2005b) recognize that there are "threshold" carcinogens as well.

To characterize the potential for carcinogenic effects, a lifetime average daily dose (LADD) is combined with a CSF to calculate a probability that an individual would develop cancer over a lifetime of exposure to a specific PCOC, with the following equation:

$$Risk = LADD \times CSF$$
 (Equation 5)

All risk estimates are summed for the receptor by media to provide a theoretical excess lifetime cancer risk. Theoretical excess lifetime cancer risks are evaluated based on an acceptable cancer risk range of 1 x 10^{-6} to 1 x 10^{-4} . EPA (1991b) indicates that carcinogenic effects at a site should first be evaluated based on the 1 x 10^{-4} cancer risk levels, but depending on site-specific conditions, a range of 1 x 10^{-6} to 1 x 10^{-4} may be used. Typically, cancer risks less than 1 x 10^{-6} are considered *de minimis* and acceptable while cancer risks less than 1 x 10^{-4} are considered acceptable (EPA, 1991b).

The BHHRA evaluated site-specific exposures based on realistic current and possible future land use. All cancer risk estimates fell within the EPA cancer risk range of 10^{-6} to 1×10^{-4} or less, except for the hypothetical industrial worker scenario at the North Area. Exposure from the vapor intrusion pathway for

PCOCs in groundwater for a hypothetical industrial worker employed in a building sited at the North Area resulted in a cancer risk greater than 1 x 10⁻⁴, as shown in Table 27. Table 28 provides a summary of the cancer risk estimates for each scenario using average and RME assumptions for the soil and sediment pathways. Detailed spreadsheets containing the risk calculations are provided in Appendix D by scenario and media.

Risks were summed for the hypothetical industrial worker scenario that might be exposed to both soil and vapors emanating from groundwater, as shown in Table 28. The total risk for the hypothetical RME industrial worker at the South Area was 7 x 10⁻⁶ while the total risk for the hypothetical RME industrial worker at the North Area was 1.6 x 10⁻¹. The "unacceptable" risk driver for the hypothetical industrial worker scenario at the North Area was the inhalation of vapors emanating from groundwater. Risks were not summed for other soil and sediment-based receptors since adding across areas or media would, in fact, "double count" the exposure assumptions nor is it likely or determinable that a receptor will be exposed to multiple media. It would be reasonable to add surface water and sediment exposure for the contact recreation pathway but the surface water pathway was shown to be a *de minimus* risk and screened out as discussed in Section 2.2.

5.2 POTENTIAL NONCARCINOGENIC HAZARD QUOTIENTS

For noncarcinogenic compounds, a potential hazard is expressed as a hazard quotient (HQ), which is the ratio of the average daily dose (ADD) for a site-specific receptor to an acceptable dose (or RfD) for that compound. The HQ is calculated as follows

$$HQ = ADD/RfD$$
 (Equation 6)

An RfD is developed with the assumption that the degree of toxicity of noncarcinogenic compounds is based on the ability of organisms to repair and detoxify after exposure to a compound. The repair and detoxification mechanisms must be exceeded by some critical concentration (threshold) before the health effect is manifested. This threshold view holds that a range of exposures from just above zero to some finite value (i.e., the RfD) can be tolerated by an individual without an appreciable risk of adverse effects.

HQs are summed for all chemical intakes to yield a hazard index (HI) for each exposure pathway. An HI equal to or less than 1 indicates that no adverse noncarcinogenic health effects are expected to occur from cumulative exposure to multiple chemicals and exposure pathways. An HI greater than 1 provides an

indication that such effects may occur, especially in sensitive subpopulation, but does not provide a prediction of the severity or probability of the effects. An HI above 1 indicates the need for further evaluation. For example, effects of different chemicals are not necessarily additive (although the HI approach assumes additivity), nor do all chemicals affect the same target organ. Thus, EPA recommends that if an HI exceeds 1, further evaluation should occur to categorize hazards based on chemical-specific and route-specific toxicity (e.g., which chemicals act on the same target organ, by which route of entry, etc.) (EPA, 1989).

The BHHRA evaluated site-specific exposures based on realistic current and possible future land use. Table 28 provides a summary of the HIs for each scenario using average and RME assumptions for the soil and sediment pathways. None of the HIs for the soil and sediment exposure pathways exceeded EPA's target hazard index of 1. Exposure from the vapor intrusion pathway from PCOCs in groundwater for a hypothetical industrial worker employed in a building sited at the North Area resulted in an HI greater than 1, as shown in Table 27. Detailed spreadsheets containing the risk calculations are provided in Appendix D by scenario.

Hazard Indices were summed for the industrial worker scenario that might be exposed to both soil and vapors emanating from groundwater, as shown in Table 28. The total hazard index for the RME industrial worker at the South Area was 0.09 while the total hazard index for the RME industrial worker at the North Area was 156. The "unacceptable" driver for the industrial worker scenario at the North Area was the inhalation of vapors emanating from groundwater. Hazard indices were not summed for other soil and sediment-based receptors since adding across areas or media would, in fact, "double count" the exposure assumptions nor is it likely or determinable that a receptor will be exposed to multiple media. It would be reasonable to add surface water and sediment exposure for the contact recreation pathway but the surface water pathway was shown to be a *de minimus* risk and screened out as discussed in Section 2.2.

It should be noted that due to lead's unique toxicological properties, noncancer risk estimates could not be calculated similarly to the other noncarcinogenic PCOCs. However, none of the measured concentrations of lead in Site soil samples exceeded EPA's screening level for industrial properties of 800 mg/kg (EPA, 2004a). Thus, it is unlikely that lead at the Site poses an unacceptable risk.

5.3 PATHWAYS QUALITATIVELY EVALUATED (I.E., ELIMINATED DURING SCREENING STEP)

Exposure to surface water by the contact recreation receptor and potential air impacts to off-site residential receptors were qualitatively evaluated in Section 2.2 using a concentration-toxicity screen to eliminate compounds or pathways that were unlikely to present an unacceptable risk. Based on this evaluation, it was concluded that exposure to PCOCs in these media is unlikely to result in an adverse health risk.

5.4 FISH INGESTION PATHWAY

Based on the analytical results for the Intracoastal Waterway sediment samples and in accordance with Section 5.6.8 of the Work Plan, fish tissue samples were collected from four Site zones and one background area within the Intracoastal Waterway. Red drum (*Sciaenops ocellatus*) (6 samples), spotted seatrout (*Cynoscion nebulosus*) (9 samples), southern flounder (*Paralichthys lethostigma*) (9 samples), and blue crab (*Callinectes sapidus*) (9 samples) samples were collected from the Site for laboratory analysis. Samples of these species were also collected from the background area and were archived.

The Site fish tissue samples (fillet samples for finfish, edible tissue for crabs) were analyzed for 12 COIs, based on Intracoastal Waterway sediment data, in accordance with EPA's November 14, 2006 letter. The only COIs with concentrations measured above sample detection limits in any of the 33 samples were silver (detected in four samples), benzo(b)fluoranthene (detected in two samples), and 4,4'-DDE (detected in two samples). The fish tissue data were used to calculate potential risks associated with exposure to Site COIs via the fish ingestion pathway to recreational anglers fishing at the Site, or their families.

This risk assessment (presented in a March 20, 2007 letter to EPA) concluded that the fish ingestion pathway does not pose a human health threat (PBW, 2007). That conclusion was subsequently approved in a June 29, 2007 letter from EPA.

6.0 UNCERTAINTY ASSESSMENT

Uncertainties are inherent in every aspect of a quantitative risk assessment. The inclusion of site-specific factors can decrease uncertainty, although significant uncertainty persists in even the most site-specific risk assessments. Worst-case assumptions and default values, which conform to EPA guidance (EPA, 1989), add conservatism to human health risk assessments. This conservatism is intentionally included in order to tilt the assessment toward over-prediction of risk and hence protection of human health. Therefore, it is important to the risk management decision-making process that the sources of uncertainty are provided.

A careful and comprehensive analysis of the critical areas of uncertainty in a risk assessment is an important part of the risk assessment process. EPA guidance (EPA, 1989) stresses the importance of providing a complete analysis of uncertainties so that risk management decisions take these uncertainties into account when evaluating risk assessment conclusions. The uncertainty analysis provides a context for better understanding the assessment conclusions by identifying the uncertainties that have most significantly affected the assessment results. Therefore, sources of uncertainty in the identification of PCOCs, exposure assessment, and toxicity assessment sections of the risk assessment report are identified and qualitatively evaluated in this section.

6.1 DATA ANALYSIS UNCERTAINTIES

Data collected at the Site satisfied the goals described in the Work Plan (PBW, 2006a) and, thus, adequately characterized the nature and extent of contamination at this Site. As described in the NEDR (PBW, 2009), hundreds of samples of soil, sediment, groundwater and surface water were collected at the South Area, North Area, Intracoastal Waterway, and background soil, sediment, and surface water locations. Characterization was initially conducted for the entire Site and continued at certain areas if a screening level was exceeded.

Overall, the data were determined to be of high quality. Data were collected and analyzed in accordance with approved procedures specified in the FSP (PBW, 2006b) and were validated in accordance with approved validation procedures specified in the QAPP (PBW, 2006c). Very few of the data for any of the analytes were found to be unusable (i.e., "R-flagged"). In instances where data were unusable, the analysis was conducted again (when possible) and the R-flagged data was not used. Some of the data are qualified (i.e., "J-flagged") as estimated because the measured concentration is above the sample

detection limit but below the sample quantitation limit and/or due to minor quality control deficiencies. According to the *Guidance for Data Useability in Risk Assessment (Part A)* (EPA, 1992b), data that are qualified as estimated can be used for risk assessment purposes. Data quality was discussed in greater detail in the NEDR (PBW, 2009).

Compounds were eliminated from further quantitative evaluation in the BHHRA if they were determined to be statistically no different than background concentrations, as summarized in Table 18. While this may result in an underestimation of overall site risks, this approach is appropriate for this Site given that there is no identifiable source of metals at the Site and, regardless, very few inorganic organic compounds were measured above 1/10th of their respective screening criteria.

6.2 EXPOSURE ANALYSIS UNCERTAINTIES

The EPA risk assessment guidance for exposure assessments generally requires standard hypothetical exposure scenarios rather than realistic site-specific evaluation of exposure (EPA, 1989), and this conservative default approach was used for the future industrial and construction worker scenarios. Under this approach, if a chemical is found to be present at a site, it is assumed that exposure to that chemical will occur regardless of whether that exposure is realistic or likely. Uncertainties associated with the exposure assessment included calculation of EPCs and selection of exposure parameters. For example, the intake equations are based on several 95th percentile values. When multiplied together, these data compound the uncertainties in the exposure assessments and result in estimated intakes (and resultant cancer risks) that likely estimate exposure well over the 95th percentile.

It is difficult to assess the likelihood of any of the hypothetical future scenarios occurring (i.e., future construction worker or future industrial worker) nor is it possible to know the extent, if any, that trespassers and contact recreation receptors are exposed to PCOCs at the Site. It was assumed that the youth trespasser accesses the Site once a week for twelve years. It was assumed that the contact recreation scenario receptor visits the Site for 39 times per year for 25 years. The exposure assumptions used for all scenarios were chosen to purposefully overestimate exposure in order to err on the side of protection. For the current scenarios (i.e., the youth trespasser and the contact recreation scenario) it appears that these represent a bounding estimate since exposure is likely to be much less.

The screening conducted to evaluate off-site impacts from particulate dust generation and VOC emissions and migration was very conservative because it did not assume any dispersion during transport. Despite that very conservative assumption, no adverse risks to off-site residents were likely.

Soil ingestion rates for adults and older youth are highly uncertain. Because the ingestion rate is a very sensitive parameter in the intake equation, uncertainty and variability in this assumption has a large impact on the dose estimate. This is especially relevant for the construction worker scenario when an enhanced ingestion rate was used. The uncertainty related to this value is tremendous given the study design, small study population, and limited exposure length that are the basis for the soil ingestion rate.

Assumptions regarding bioavailability of metals in soil can significantly influence risk estimates. EPA typically assumes that the bioavailability of compounds from soil is equal to that observed in the toxicity studies used to derive oral toxicity factors but this is most often not the case. Rather, toxicity studies are often, if not always, conducted using a concentration of a compound in either food or water. Bioavailability was assumed to be 100% (i.e., AAF was 1.0) although it is well known that metals and some organic compounds bound to soil are less than 100% bioavailable. This assumption leads to an overestimation of risks, which can be significant.

In the fish tissue risk assessment (PBW, 2007), ingestion rates for finfish were used to represent fish and shellfish ingestion rates, and site-specific fish and crab concentrations were used to estimate exposure. It is unlikely that there is significant uncertainty presented in the fish/shellfish ingestion risk assessment based on the uptake and bioaccumulation differences between crab (a crustacean shellfish) and oysters and clams (molluscan shellfish) since exposure to molluscan shellfish, if harvesting these species were allowed, would be similar if not the same as for the fish and crab (a crustacean shellfish) ingestion pathway

For surface water and groundwater, maximum concentrations were selected as the EPC for purposes of evaluating human health risks. This is likely to be a conservative approach since there were other, lower concentrations, also measured for these media. It is unlikely that surface water concentrations would increase in the future since surface runoff does not appear to be significantly impacting surface water, and impacted groundwater does not discharge to surface water.

6.3 TOXICITY ASSESSMENT UNCERTAINTIES

The studies/basis for the toxicity information and the use of this information generate uncertainty. Toxicity assessments for many of the PCOCs in the BHHRA involve the extrapolation of results from studies on animals. The following are standard assumptions applied by the EPA when extrapolating the results of studies of carcinogenicity in animals to humans.

- Any constituent showing carcinogenic activity in any animal species will also be a human carcinogen.
- There is no threshold dose for carcinogens.
- The results of the most sensitive animal study are appropriate to apply to humans.
- Humans are more sensitive than the most sensitive animal species on a body weight basis.

Uncertainties are introduced in animal to human extrapolation and high to low dose extrapolation. Mathematical models are used by EPA to estimate the possible responses due to exposure to chemicals at levels far below those tested in animals. These models contain several limitations, which should be considered when the results (e.g., risk estimates) are evaluated. Primary among these limitations is the uncertainty in extrapolation of results obtained in animal research to humans and the shortcomings in extrapolating responses obtained from high-dose research studies to estimate responses at very low doses. For example, humans are typically exposed to environmental chemicals at levels that are less than a thousandth of the lowest dose tested in animals. Such doses may be easily degraded or eliminated by physiological internal mechanisms that are present in humans (Ames, 1987).

Additionally, approaches typically used for designating RfDs are highly conservative. For example, EPA (1989) applies a factor of 10 to a No-Observable-Adverse-Effect-Level (NOAEL) for a compound in an animal study for animal-to-human extrapolation. An additional factor of 10 is applied for inter-individual variation in the human population, and additional factors of 10 may be applied to account for limitations in data quality or incomplete studies. Frequently, RfDs are derived from animal studies that have little quantitative bearing on potential adverse effects in humans. Some of this uncertainty may be reduced if the absorption, distribution, metabolic fate, and excretion parameters of a compound are known.

Potential long-term, or chronic, exposures are typically evaluated in risk assessments for Superfund sites, and chronic RfDs and RfCs are the appropriate toxicity criteria to apply to chronic exposure scenarios (chronic exposure is defined in EPA, 1989 as greater than or equal to seven years). The BHHRA includes a construction worker scenario, which was assumed to be of a shorter duration than seven years and is,

therefore, considered a subchronic exposure scenario. In some cases, EPA provides recommended subchronic RfDs which are typically 10 times higher than chronic values. Only chronic toxicity values were used in the risk assessment, which imparts conservatism in the construction worker scenario.

6.4 RISK CHARACTERIZATION UNCERTAINTIES

The only instance where uncertainty may have been introduced into the risk assessment that is not considered conservative was when toxicity values or screening criteria were not available. This was only an issue when evaluating impacts to off-site receptors since there are not inhalation toxicity values for many of the compounds (or TCEQ PCLs) and, as such, a comparison could not be made. It is believed that this is insignificant since: 1) there are few VOCs present in soil at the South Area; 2) the VOCs that are present were measured in low concentrations; and 3) surficial soil testing for lead on Lots 19 and 20 did not suggest that off-site migration via fugitive dust generation was a significant concern.

It was estimated that risks associated with VOC emissions from shallow Zone A groundwater to future inhabitants of buildings were above EPA's target risk goals. It should be noted that this is a highly uncertain pathway with the use of many default assumptions to calculate risks since currently the pathway is incomplete (i.e., there is no building or no worker at the Site 250 days per year for exposure to occur). Likewise, conservative assumptions were made about the slab and slab integrity and contaminant transport in the J&E VIM that would greatly affect the resulting risk estimates. Therefore, it is advisable to consider the results of this analysis in light of the substantial amount of uncertainty in the underlying assumptions of this pathway.

6.5 IMPACT OF UNCERTAINTIES

As described in this section, efforts were made in the BHHRA to purposefully err on the side of conservatism in the absence of site-specific information. It is believed that the overall impact of the uncertainty and conservative nature of the evaluation results in an overly protective assessment.

Therefore, for scenarios with risks and HIs within or below the Superfund risk range goal and target HI, it can be said with confidence that these environmental media and areas do not present an unacceptable risk.

7.0 CONCLUSIONS

The primary objective of this BHHRA was to evaluate the possible risks associated with PCOCs in environmental media on human receptors at the Gulfco Marine Maintenance Site. This information will be used to help guide future risk management decisions at the Site. The risk assessment methodology used to conduct this analysis was based on the approach described by EPA in various supplemental and associated guidance documents as documented throughout the report.

Data were segregated by media and by location (e.g., North Area soil and South Area soil; Intracoastal Waterway sediment and wetlands sediment) and distribution testing was performed. Exposure point concentrations were estimated for all PCOCs for both central tendency (average) and RME (95% UCL) exposures using EPA's ProUCL program.

Five different exposure scenarios were quantitatively evaluated for the thirteen different potentially contaminated media identified at the Site. Exposure scenarios were developed to describe current and potential future land use by various human receptors and included a future industrial worker, future construction worker, current youth trespasser, current contact recreation receptor, and current off-site residential receptor. Exposure and risks were calculated for both central tendency and RME scenarios.

Based on the risk estimates and hazard indices shown in Table 28, there were not unacceptable cancer risk or noncancer hazard indices for any of the current or future exposure scenarios except for future exposure to an indoor industrial worker if a building is constructed over impacted groundwater in the North Area. Potential cancer risks in the North Area using maximum shallow Zone A groundwater concentrations and the J&E VIM were predicted to be greater than 1 x 10⁻⁴ while the HIs were estimated to be greater than 1. It should be noted that this scenario was evaluated despite the current restrictive covenant on Lots 55, 56, and 57 that require future building design to preclude vapor intrusion, which would effectively make this pathway incomplete. Estimated risks from Zone A groundwater at the South Area were below EPA's goals and, therefore, adverse risks associated with the vapor intrusion pathway are unlikely in this area.

8.0 REFERENCES

- Ames, B.N., R. Magaw, and L.S. Gold, 1987. Ranking Possible Carcinogenic Hazards. *Science*. 236, 271-280.
- Carden, Clair A., 1982. Fish Marine Services, Freeport, Texas, Pond Closure Certification. August 18.
- Kissel, J.C., 1995. Characterization of soil adherence to skin: Impact of historical misinterpretation of the Que Hee et al. data. *Risk Analysis* 15(6):613-614.
- Kissel, J., K. Richter, and R. Fenske, 1996. Factors affecting soil adherene to skin in hand-press trials. *Bull. Environ. Contam. Toxicol.* 56:722-728.
- Klaassen, C.D., H.O. Amdur, and J.E. Doull, 2007. *Cassarett and Doull's Toxicology The Basic Science of Poisons, Seventh Edition*. MacMillan Publishing Company: New York, NY.
- Losack, Billy, 2005. Personal communication with Pastor, Behling & Wheeler, LLC. July.
- National Research Council (NRC), 1983. *Recommended Dietary Allowances, 10th ed. Report of the Food and Nutrition Board*, National Academy of Sciences, Washington, National Academy Press, Washington, DC. 285 p.
- Pastor, Behling & Wheeler, LLC (PBW), 2006a. *Remedial Investigation/Feasibility Study (RI/FS) Work Plan*, Gulfco Marine Maintenance Superfund Site, Freeport, Texas. March 14.
- Pastor, Behling & Wheeler, LLC (PBW), 2006b. Final Sampling and Analysis Plan Volume I Field Sampling Plan, Gulfco Marine Maintenance Superfund Site, Freeport, Texas. March 14.
- Pastor, Behling & Wheeler, LLC (PBW), 2006c. Final Sampling and Analysis Plan Volume II Quality Assurance Project Plan, Gulfco Marine Maintenance Superfund Site, Freeport, Texas. March 14.
- Pastor, Behling & Wheeler, LLC (PBW), 2007. *Intracoastal Waterway Fish Ingestion Pathway Human Health Baseline Risk Assessment*, Gulfco Marine Maintenance Superfund Site, Freeport, Texas. July 18.
- Pastor, Behling & Wheeler, LLC (PBW), 2009. *Final Nature and Extent Data Report*. Gulfco Marine Maintenance Superfund Site, Freeport, Texas. May 20.
- Preuss, P.W. and A.M. Ehrlich, 1987. *The Environmental Protection Agency's Risk Assessment Guidelines*. J. Air Pollution Control Assoc. 37:784-791.
- Texas Commission on Environmental Quality (TCEQ), 2002. *Determining PCLs for Surface Water and Sediment. Remediation Division*. RG-366/TRRP-24 (Revised) December 2002.
- Texas Commission on Environmental Quality (TCEQ), 2006. PCLs for Surface Water and Sediment. Remediation Division. April 2006.
- Texas Department of State Health Services (TDSHS), 2005. Services Seafood and Aquatic Life Group. On-line database and maps showing shellfish harvesting bans and fish consumption advisories and bans. www.tdh.state.tx.us/bfds/ssd/.

- Texas Department of State Health Services (TDSHS), 2009. Classification of Shellfish Harvesting Areas of Freeport Area. Seafood and Aquatic Life Group. Order Number; MR-1280. November 1.
- Texas Department of Transportation (TxDOT), 2001. *Transportation Multimodal Systems Manual*. September.
- Texas Natural Resource Conservation Commission (TNRCC), 1998. *Implementation of the Existing Risk Reduction Rule* (referred to as the Consistency Memo). Remediation Division, Office of Waste Management. July 23.
- Texas Natural Resource Conservation Commission (TNRCC), 2002. HRS Documentation Record, Gulfco Marine Maintenance, Inc. Freeport, Brazoria County, Texas TXD 055 144 539. Prepared in cooperation with the U.S. Environmental Protection Agency. February.
- Texas Parks and Wildlife Department (TPWD), 2009. Online fishing reports by region. www.tpwd.state.tx.us/fishboat/fish/recreational/fishreport.html.
- United States Army Corps of Engineers (USACE), 2006. Waterborne Commerce of the United States, Calendar Year 2006. IWR-WCUS-06-2.
- United States Environmental Protection Agency (EPA), 1986. *Guidelines for Carcinogenic Risk Assessment*. Federal Register. 51:33992.
- United States Environmental Protection Agency (EPA), 1989. *Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A.* Office of Solid Waste and Emergency Response. 9285.701A. December.
- United States Environmental Protection Agency (EPA), 1991a. *Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors.* OSWER Directive 9285.6-03. March 25.
- United States Environmental Protection Agency (EPA), 1991b. *The Role of the Baseline Risk Assessment in Remedy Selection*. Office of Emergency and Remedial Response. Washington, DC. OSWER Directive 9355.0-30. April.
- United States Environmental Protection Agency (EPA), 1992a. *Guidance for Data Usability in Risk Assessment (Part A)*. Final. Office of Emergency Planning and Remedial Response. 9285.7-09A. April.
- United States Environmental Protection Agency (EPA), 1992b. *Guidelines for Exposure Assessment*. Fed. Reg. 57(104). May 29.
- United States Environmental Protection Agency (EPA), 1992c. Memorandum from F. Henry Habicht II, Deputy Administrator of U.S. Environmental Protection Agency. Subject: Guidance on Risk Characterization for Risk Managers and Risk Assessors. Washington, D.C.
- United States Environmental Protection Agency (EPA), 1997a. *Exposure Factors Handbook*. Office of Research and Development. EPA/600/P-95/002F. August.
- United States Environmental Protection Agency (EPA), 1997b. *Health Effects Assessment Summary Table (HEAST)*. Office of Solid Waste and Emergency Response. EPA-540R-97-036. July.

- United States Environmental Protection Agency (EPA), 1999. *U.S. EPA Contract Laboratory Program Functional Guidelines for Organic Data Review*. Office of Emergency and Remedial Response. OSWER 9240.1-05A-P, PB99-963506, EPA 540-R-99-008. October.
- United States Environmental Protection Agency (EPA), 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Research and Development. OSWER 9355.4-24. March.
- United States Environmental Protection Agency (EPA), 2002a. *Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway*. Office of Solid Waste and Emergency Response. Washington, D.C. November.
- United States Environmental Protection Agency (EPA), 2002b. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. Office of Emergency and Remedial Response. Washington, DC. 20460. OSWER 9285.6-10. December.
- United States Environmental Protection Agency (EPA), 2002c. *U.S. EPA Contract Laboratory Program Functional Guidelines for Inorganic Data Review Final*. Office of Emergency and Remedial Response. OSWER 9240.1-35 EPA 540-R-01-008. July.
- United States Environmental Protection Agency (EPA), 2002d. *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites*. Office of Emergency and Remedial Response. EPA 540-R-01-003. OSWER 9285.7-41. September.
- United States Environmental Protection Agency (EPA), 2003. *Human Health Toxicity Values in Superfund Risk Assessments*. Memo from Michael Cook to National Policy Directors Region 1-10. OSWER Directive 9285.7-53. December 5.
- United States Environmental Protection Agency (EPA), 2004a. *Region 6 Human Health Medium-Specific Screening Levels*. Dallas, TX. November.
- United States Environmental Protection Agency (EPA), 2004b. *Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)*. Office of Solid Waste and Emergency Response. EPA/540/R/99/005. OSWER 9285.7-02EP. PB99-963312. July.
- United States Environmental Protection Agency (EPA), 2005a. Community Involvement Plan, Gulfco Marine Maintenance, Inc. Superfund Site, Freeport, Brazoria County, Texas. August.
- United States Environmental Protection Agency (EPA), 2005b. *Guidelines for Cancer Risk Assessment*. Risk Assessment Forum. Washington, D.C. EPA/630/P-03/001F. March.
- United States Environmental Protection Agency (EPA), 2008. Integrated Risk Information System (IRIS). On-line database. December.
- United States Environmental Protection Agency (EPA), 2009. PRO UCL Version 4.00.04 Statistical software available at http://www.epa.gov/nerlesd1/ and PRO UCL Version 4 User's Guide. EPA 600/R-07/038. Office of Research and Development; National Exposure Research Laboratory; Environmental Sciences Division; EPA Technology Support Center for Characterization and Monitoring Branch. February.

United States Environmental Protection Agency (EPA), 2010. EPA Comments on Draft Baseline Human Health Risk Assessment (BHHRA). January.

United States Fish and Wildlife Service (USFWS), 2008. National Wetlands Inventory, Online Wetlands Mapper. http://wetlandsfws.er.usgs.gov/wtlnds/launch.html. Accessed July 9, 2008.

TABLE 1 EXPOSURE POINT CONCENTRATIONS (mg/kg) SOUTH AREA SURFACE SOIL*

		Max	Min	l	EPA Region 6 Soil				# of Detects/#
Chemical of Interest*	Average	Detection	Detection	TotSoil _{Comb} (1)	Screening Criteria (2)		95% UCL	Statistic Used (3)	of Samples
2-Methylnaphthalene	2.97E-02	5.01E-01	1.06E-02	2.48E+03			7.90E-02	97.5% KM (Chebyshev)	22 of 83
4,4'-DDD	3.07E-03	2.43E-02	2.64E-03	1.04E+02	1.10E+01	<	2.70E-04	median	5 of 83
4,4'-DDE	1.92E-03	6.93E-02	4.28E-04	7.32E+01	7.80E+00		7.52E-03	97.5% KM (Chebyshev)	17 of 83
4,4'-DDT	3.89E-03	6.25E-02	2.81E-04	6.84E+01	7.80E+00		1.03E-02	97.5% KM (Chebyshev)	37 of 83
Acenaphthene	6.08E-02	1.69E+00	1.13E-02	3.72E+04	3.30E+04		2.00E-01	97.5% KM (Chebyshev)	26 of 83
Acenaphthylene	4.55E-02	9.35E-01	1.84E-02	3.72E+04			1.21E-01	97.5% KM (Chebyshev)	19 of 83
Aluminum	5.34E+03	1.52E+04	4.14E+02	5.70E+05	1.00E+05		5.95E+03	95% Student's-t	83 of 83
Anthracene	9.71E-02	2.46E+00	1.12E-02	1.86E+05	1.00E+05		2.99E-01	97.5% KM (Chebyshev)	37 of 83
Antimony	1.65E+00	5.14E+00	2.00E-01	3.06E+02	4.50E+02		2.24E+00	97.5% KM (Chebyshev)	72 of 83
Aroclor-1254	1.46E-01	7.98E+00	3.34E-03	7.10E+00	8.30E-01		7.64E-01	97.5% KM (Chebyshev)	13 of 85
Arsenic	3.74E+00	2.43E+01	2.60E-01	1.96E+02	1.80E+00		6.49E+00	97.5% KM (Chebyshev)	71 of 83
Barium	3.45E+02	2.18E+03	1.86E+01	8.90E+04	7.90E+04		5.84E+02	97.5% KM (Chebyshev)	83 of 83
Benzo(a)anthracene	3.57E-01	5.02E+00	2.86E-02	2.36E+01	2.30E+00		9.03E-01	97.5% KM (Chebyshev)	30 of 83
Benzo(a)pyrene	4.53E-01	4.57E+00	1.03E-02	2.37E+00	2.30E-01		1.09E+00	97.5% KM (Chebyshev)	65 of 83
Benzo(b)fluoranthene	5.88E-01	5.42E+00	4.08E-02	2.36E+01	2.30E+00		1.10E+00	95% KM (Chebyshev)	61 of 83
Benzo(g,h,i)perylene	3.04E-01	4.24E+00	9.89E-03	1.86E+04			7.89E-01	97.5% KM (Chebyshev)	51 of 83
Benzo(k)fluoranthene	2.44E-01	4.25E+00	1.95E-02	2.37E+02	2.30E+01		6.58E-01	97.5% KM (Chebyshev)	33 of 83
Beryllium	4.08E-01	4.60E+00	1.40E-02	2.47E+02	2.20E+03		7.68E-01	97.5% KM (Chebyshev)	82 of 83
Boron	5.56E+00	5.44E+01	2.43E+00	1.90E+05	1.00E+05	 	7.07E+00	97.5% KM (Bootstrap)	34 of 83
Butyl Benzyl Phthalate	1.90E-02	2.97E-01	1.29E-02	1.00E+04	2.40E+02	<	1.25E-02	median	6 of 83
Cadmium	4.69E-01	9.71E+00	2.30E-02	8.52E+02	5.60E+02	<u> </u>	1.25E+00	97.5% KM (Chebyshev)	50 of 83
Carbazole	6.20E-02	1.54E+00	1.04E-02	9.54E+02	9.60E+01		1.95E-01	97.5% KM (Chebyshev)	29 of 83
Chromium	1.61E+01	1.36E+02	3.37E+00	5.71E+04	5.00E+02		2.68E+01	97.5% Chebyshev	83 of 83
Chrysene	4.09E-01	4.87E+00	9.32E-03	2.36E+03	2.30E+02	 	9.84E-01	97.5% KM (Chebyshev)	56 of 83
Cobalt	3.71E+00	1.60E+01	4.90E-02	2.70E+02	2.10E+03		5.25E+00	97.5% KM (Chebyshev)	82 of 83
Copper	2.80E+01	2.16E+02	1.55E+00	3.69E+04	4.20E+04		5.22E+01	97.5% KM (Chebyshev)	83 of 83
Dibenz(a.h)anthracene	1.87E-01	1.64E+00	6.39E-02	2.37E+00	2.30E-01		2.45E-01	95% KM (Bootstrap)	36 of 83
Dibenzofuran	3.41E-02	8.21E-01	1.67E-02	2.73E+03	1.70E+03		7.23E-02	95% KM (BCA)	17 of 83
Dieldrin	1.40E-03	2.05E-02	2.43E-04	1.14E+00	1,20E-01		3.14E-03	97.5% KM (Chebyshev)	21 of 83
Di-n-butyl Phthalate	9.38E-02	7.53E-01	3.68E-02	1.62E+04	6.80E+04		1.25E-01	97.5% KM (Chebyshev)	9 of 83
Endosulfan Sulfate	2.09E-03	7.13E-02	4.56E-04	4.09E+03	0.002104		4.21E-03	95% KM (BCA)	17 of 83
Endrin Aldehyde	8.82E-03	7.38E-02	4.97E-04	2.04E+02			8.72E-03	97.5% KM (Chebyshev)	22 of 83
Endrin Ketone	2.25E-03	2.00E-02	4.69E-04	1.77E+02	***		4.41E-03	97.5% KM (Chebyshev)	18 of 83
Fluoranthene	8.00E-01	1.42E+01	1.33E-02	2.48E+04	2.40E+04		2.14E+00	97.5% KM (Chebyshev)	59 of 83
Fluorene	5.18E-02	1.11E+00	9.45E-03	2.48E+04	2.60E+04		1.57E-01	97.5% KM (Chebyshev)	28 of 83
gamma-Chlordane	1.23E-03	1.56E-02	7.10E-04	5.10E+01			2.90E-03	97.5% KM (Chebyshev)	8 of 83
Indeno(1,2,3-cd)pyrene	4.83E-01	6.49E+00	6.34E-02	2.37E+01	2.30E+00		9.31E-01	95% KM (Chebyshev)	63 of 83
Iron	1.63E+04	7.71E+04	3.45E+03		1.00E+05		2.40E+04	97.5% Chebyshev	83 of 83
Lead	6.96E+01	6.43E+02	2.82E+00	1.60E+03	8.00E+02		1.47E+02	97.5% Chebyshev	83 of 83
Lithium	7.86E+00	2.80E+01	6.50E-01	1.90E+03	2.30E+04		1.18E+01	97.5% Chebyshev	83 of 83
Manganese	2.57E+02	8.92E+02	5.93E+01	2.41E+04	3.50E+04		2.81E+02	95% Student's-t	83 of 83
Mercury	2.22E-02	6.60E-01	3.20E-03	3.26E+00	3.40E+02		7.42E-02	97.5% KM (Chebyshev)	37 of 83
Molybdenum	1.32E+00	8.42E+00	9.80E-02	4.51E+03	5.70E+03		2.40E+00	97.5% KM (Chebyshev)	71 of 83
Nickel	1.16E+01	3.67E+01	2.84E+00	7.94E+03	2.30E+04		1.50E+01	97.5% KM (Chebyshev)	83 of 83
Phenanthrene	5.13E-01	1.26E+01	1.39E-02	1.86E+04			1.06E+04	97.5% KM (Chebyshev)	57 of 83
Pyrene	5.32E-01	8.47E+00	1.21E-02	1.86E+04	3.20E+04		1.36E+00	97.5% KM (Chebyshev)	57 of 83
Strontium	7.06E+01	5.27E+02	1.65E+01	4.91E+05	1.00E+05		1.01E+02	95% Chebyshev	83 of 83
Tin	8.06E-01	4.95E+00	5.20E-01	3.97E+05			1.31E+00	97.5% KM (Chebyshev)	23 of 83
Titanium	2.98E+01	6.45E+02	1.15E+01	1.00E+06			6.30E+01	95% Chebyshev	83 of 83
Vanadium	1.38E+01	4.56E+01	5.42E+00	2.29E+03	1.10E+03	<u> </u>	1.80E+01	97.5% Chebyshev	83 of 83
Zinc	6.01E+02	4.77E+03	1.23E+01	2.45E+05	1.00E+05		1.06E+03	97.5% Chebyshev	81 of 83
						<u> </u>			

Notes:
* Surface soil was collected from 0 to 0.5 ft. below ground surface.

^{*} Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a

maximum concentration that exceeded one-tenth of the screening value.

(1) - Tot Soil_{Comb} PCL = TCEQ protective concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).

^{(2) -} From EPA's "Region 6 Human Health Medium-Specific Screening Levels 2004-2005". Industrial Outdoor Worker.

^{(3) -} Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

TABLE 2 EXPOSURE POINT CONCENTRATIONS (mg/kg) SOUTH AREA SOIL*

Chemical of Interest* 1,3,5-Trimethylbenzene 2-Butanone 2-Hexanone 2-Methylnaphthalene 4,4'-DDD 4,4'-DDT	9.89E-02 3.29E-03 1.65E-03 6.97E-02	Max Detection 4.36E+00 2.26E-02	Min Detection 2.67E-04	**Tot Soil Comb (1) 8.32E+01	EPA Region 6 Soil Screening Criteria (2) 7.80E+01		95% UCL 5.56E-01	Statistic Used (3)	# of Detects/# of Samples
1,3,5-Trimethylbenzene 2-Butanone 2-Hexanone 2-Methylnaphthalene 4,4'-DDD 4,4'-DDE	9.89E-02 3.29E-03 1.65E-03	4.36E+00	2.67E-04						
2-Butanone 2-Hexanone 2-Methylnaphthalene 4,4'-DDD 4,4'-DDE	3.29E-03 1.65E-03			8.32E+01	7 80 ⊑ ±01		5.56E-01		
2-Hexanone 2-Methylnaphthalene 4,4'-DDD 4,4'-DDE	1.65E-03	2.26E-U2				_		97.5% KM (Chebyshev)	9 of 83
2-Methylnaphthalene 4,4'-DDD 4,4'-DDE		2.07E-02	9.92E-04 1.09E-03	7.26E+04 7.92E+01	3.40E+04		4.14E-03 3.63E-02	95% KM (Bootstrap) 97.5% KM (Chebyshev)	4 of 83 8 of 83
4,4'-DDD 4,4'-DDE		7.21E+00	1.09E-03 1.06E-02	2.48E+03		-	1.60E-01	95% KM (BCA)	32 of 166
4,4'-DDE	7.76E-03	1.12E+00	3.69E-04	1.04E+02	1.10E+01	-	5.08E-02	97.5% KM (Chebyshev)	21 of 166
	1.58E-03	6.93E-02	4.28E-04	7.32E+01	7.80E+00	- +	2.81E-03	95% KM (BCA)	22 of 166
	3.75E-03	1.13E-01	2.81E-04	6.84E+01	7.80E+00	-	9.27E-03	97.5% KM (Chebyshev)	68 of 166
Acenaphthene	4.33E-02	1.69E+00	1.13E-02	3.72E+04	3.30E+04		1.16E-01	97.5% KM (Chebyshev)	35 of 166
Acenaphthylene	4.84E-02	1.20E+00	1.72E-02	3.72E+04			7.19E-02	95% KM (BCA)	37 of 166
Acetone	3.70E-02	1.60E-01	3.10E-02	8.11E+03	1.00E+05		5.41E-02	97.5% KM (Chebyshev)	10 of 83
Aluminum	6.45E+03	1.57E+04	4.14E+02	5.70E+05	1.00E+05	1	8.20E+03	97.5% Chebyshev	166 of 166
Anthracene	8.89E-02	2.46E+00	1.12E-02	1.86E+05	1.00E+05		1.24E-01	95% KM (BCA)	65 of 166
Antimony	1.45E+00	5.51E+00	2.00E-01	3.06E+02	4.50E+02		1.87E+00	97.5% KM (Chebyshev)	144 of 166
Aroclor-1254	2.16E-01	1.15E+01	3.34E-03	7.10E+00	8.30E-01		7.73E-01	97.5% KM (Chebyshev)	25 of 170
Arsenic	3.33E+00	2.43E+01	2.30E-01	1.96E+02	1.80E+00	4	4.92E+00	97.5% KM (Chebyshev)	139 of 166
Barium	2.37E+02	2.18E+03	1.86E+01	8.90E+04	7.90E+04		3.30E+02	95% Chebyshev	166 of 166
Benzene	3.89E-03	2.21E-02	3.39E-04	1.11E+02	1.60E+00		6.09E-03	97.5% KM (Chebyshev)	72 of 83
Benzo(a)anthracene	2.69E-01	5.02E+00	1.18E-02	2.36E+01	2.30E+00		6.43E-01	97.5% KM (Chebyshev)	44 of 166
Benzo(a)pyrene	3.48E-01	4.88E+00	9.99E-03	2.37E+00	2.30E-01	l T	7.63E-01	97.5% KM (Chebyshev)	113 of 166
Benzo(b)fluoranthene	4.77E-01	5.97E+00	4.08E-02	2.36E+01	2.30E+00		8.22E-01	95% KM (Chebyshev)	102 of 166
Benzo(g,h,i)perylene	2.17E-01	4.24E+00	9.89E-03	1.86E+04			4.94E-01	97.5% KM (Chebyshev)	81 of 166
Benzo(k)fluoranthene	1.58E-01	4.25E+00	1.58E-02	2.37E+02	2.30E+01		3.81E-01	97.5% KM (Chebyshev)	45 of 166
Beryllium	4.65E-01	4.60E+00	1.40E-02	2.47E+02	2.20E+03		5.25E-01	95% KM (BCA)	165 of 166
Boron	5.68E+00	5.44E+01	2.43E+00	1.92E+05	1.00E+05		6.51E+00	95% KM (Bootstrap)	72 of 166
Butyl Benzyl Phthalate	2.01E-02	6.17E-01	1.29E-02	1.00E+04	2.40E+02		4.72E-02	97.5% KM (Chebyshev)	10 of 166
Cadmium	3.40E-01	9.71E+00	2.30E-02	8.52E+02	5.60E+02		4.67E-01	95% KM (Bootstrap)	93 of 166
Carbazole Carbon Disulfide	4.64E-02 1.67E-03	1.54E+00 2.80E-02	1.04E-02 9.87E-04	9.54E+02 7.19E+03	9.60E+01 7.20E+02		1.19E-01 3.92E-03	97.5% KM (Chebyshev) 97.5% KM (Chebyshev)	42 of 166 13 of 83
	1.35E+01	1.36E+02	2.03E+00	5.71E+04	5.00E+02	-	1.78E+01		
Chromium	3.28E-01	4.87E+00	9.01E-03	2.36E+03	2.30E+02	-	7.12E-01	95% Chebyshev 97.5% KM (Chebyshev)	166 of 166 93 of 166
Chrysene Cobalt	4.11E+00	1.60E+01	4.90E-02	2.70E+02	2.30E+02 2.10E+03		4.35E+00	95% Winsor-t	165 of 166
Copper	2.43E+01	4.87E+02	1.30E-01	3.69E+04	4.20E+04		4.01E+01	95% KM (Chebyshev)	164 of 166
Cyclohexane	2.65E-01	2.17E+01	6.26E-04	4.20E+04	6.80E+03		1.91E+00	97.5% KM (Chebyshev)	47 of 83
Dibenz(a,h)anthracene	1.48E-01	1.64E+00	6.19E-02	2.37E+00	2.30E-01		1.80E-01	95% KM (Bootstrap)	56 of 166
Dibenzofuran	3.34E-02	8.21E-01	1.67E-02	2.73E+03	1.70E+03		7.31E-02	97.5% KM (Chebyshev)	23 of 166
Dieldrin	8.89E-04	2.05E-02	2.43E-04	1.14E+00	1.20E-01	_	2.11E-03	97.5% KM (Chebyshev)	33 of 166
Di-n-butyl Phthalate	4.18E-02	7.53E-01	3.11E-02	1.62E+04	6.80E+04		7.65E-02	97.5% KM (Chebyshev)	11 of 166
Endosulfan Sulfate	1.27E-03	7.13E-02	7.13E-02	4.09E+03			2.30E-03	95% KM (BCA)	21 of 166
Endrin Aldehyde	2.01E-03	7.38E-02	4.97E-04	2.04E+02			3.54E-03	95% KM (BCA)	31 of 166
Endrin Ketone	1.35E-03	2.00E-02	4.69E-04	1.77E+02			2.53E-03	97.5% KM (Chebyshev)	25 of 166
Ethylbenzene	3.40E-03	1.05E-01	6.54E-04	1.00E+04	2.30E+02		5.91E-03	95% KM (Bootstrap)	47 of 83
Fluoranthene	5.95E-01	1.42E+01	1.33E-02	2.48E+04	2.40E+04		1.41E+00	97.5% KM (Chebyshev)	96 of 166
Fluorene gamma-Chlordane	4.44E-02 9.98E-04	1.11E+00 1.56E-02	9.45E-03 7.10E-04	2.48E+04 5.10E+01	2.60E+04		1.07E-01 1.84E-03	97.5% KM (Chebyshev) 97.5% KM (Chebyshev)	41 of 166 12 of 166
Indeno(1,2,3-cd)pyrene	3.85E-01	6.49E+00	5.74E-02	2.37E+01	2.30E+00	-	6.58E-01	95% KM (Chebyshev)	104 of 166
Iron	1.43E+04	7.71E+04	2.41E+03	2.37 E+U1	1.00E+05		1.75E+04		
•						_		95% Chebyshev	166 of 166
Isopropylbenzene (cumene)	8.31E-01	6.49E+01	3.18E-04	6.25E+03	5.80E+02	_	5.85E+00	97.5% KM (Chebyshev)	16 of 83
Lead	5.35E+01	7.02E+02	2.48E+00	1.60E+03	8.00E+02		1.04E+02	97.5% Chebyshev	166 of 166
Lithium	1.00E+01	2.86E+01	6.50E-01	1.90E+03	2.30E+04	\vdash	1.22E+01	95% Chebyshev	166 of 166
m,p-Xylene	3.43E-02 2.61E+02	2.56E+00 8.92E+02	5.58E-04 5.93E+01	6.50E+03 2.41E+04	2.10E+02 3.50E+04		1.69E-01 2.78E+02	95% KM (Chebyshev) 95% Student's-t	53 of 83 166 of 166
Manganese									
Mercury Methylogolopovono	2.56E-02	8.50E-01	2.60E-03	3.26E+00	3.40E+02	H	4.00E-02	95%KM (BCA)	73 of 166
Methylcyclohexane Molybdenum	3.66E-02 9.05E-01	2.73E+00 1.04E+01	2.23E-04 8.80E-02	3.29E+04 4.51E+03	1.40E+02 5.70E+03	\vdash	1.80E-01 1.62E+00	95% KM (Chebyshev) 97.5% KM (Chebyshev)	57 of 83 118 of 166
Naphthalene	3.26E-01	1.92E+01	4.82E-03	1.90E+02	2.10E+02	_	2.65E-03	median	8 of 83
Nickel	1.17E+01	3.67E+01	2.70E+00	7.94E+03	2.10E+02 2.30E+04		1.24E+01	95% Student's-t	166 of 166
n-Propylbenzene	2.37E-02	1.80E+00	2.70E+00 2.30E-04	4.10E+03	2.40E+02	\vdash	1.63E-01	97.5% KM (Chebyshev)	14 of 83
o-Xylene	1.30E-02	8.40E-01	2.23E-04	8.00E+03	2.80E+02	\vdash	7.75E-02	97.5% KM (Chebyshev)	32 of 83
Phenanthrene	4.02E-01	1.26E+01	1.36E-02	1.86E+04			9.99E-01	97.5% KM (Chebyshev)	95 of 166
Pyrene	4.32E-01	8.47E+00	1.21E-02	1.86E+04	3.20E+04		9.71E-01	97.5% KM (Chebyshev)	98 of 166
Strontium	7.56E+01	5.91E+02	1.65E+01	4.91E+05	1.00E+05		1.01E+02	95% Chebyshev	166 of 166
Tin	8.11E-01	6.48E+00	5.20E-01	3.97E+05			1.20E+00	97.5% KM (Chebyshev)	40 of 166
Titanium	2.58E+01	6.45E+02	4.02E+00	1.00E+06	 5.005.00	LL	3.22E+01	95% Student's-t	166 of 166
Toluene	3.99E-03	1.92E-02	7.21E-04	2.90E+04	5.20E+02	+	6.04E-03	97.5% KM (Chebyshev)	69 of 83
Vanadium Xylene (total)	1.44E+01 4.73E-02	4.56E+01 3.40E+00	4.73E+00 7.77E-04	2.29E+03 6.50E+03	1.10E+03 2.10E+02	\vdash	1.73E+01 3.04E-01	97.5% Chebyshev 97.5% KM (Chebyshev)	166 of 166 53 of 83
Zinc	4.73E-02 4.34E+02	7.65E+03	6.17E+00	2.45E+05	1.00E+05	+	8.15E+02	97.5% KW (Chebyshev)	166 of 166
	7.07LT02	7.00LT03	0.17E+00	£.70£700	1.002700	+	J. 10L TUZ	57.070 Orienyariev	100 01 100

Notes:
* Soil was collected from 0 to 4 ft. below ground surface.
* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) _ Tot Soil_Comb PCL = TCEQ Protective Concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).

^{(2) -} From EPA's "Region 6 Human Health Medium-Specific Screening Levels 2004-2005". Industrial Outdoor Worker.
(3) - Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

TABLE 3 EXPOSURE POINT CONCENTATIONS (mg/L) SOUTH AREA ZONE A GROUNDWATER

		(1)		# of Detects/#
Chemical of Interest ⁺	Average	RME EPC (1)	Notes:	of Samples
1,1,1-Trichloroethane	1.85E-04	1.40E-03	RME EPC is max detect	1 of 13
1,1-Dichloroethane	2.10E-03	1.50E-02	RME EPC is max detect	3 of 13
2-Butanone	4.30E-04	3.00E-03	RME EPC is max detect	1 of 13
2-Methylnaphthalene	7.76E-04	8.80E-03	RME EPC is max detect	1 of 13
4,4'-DDE	3.34E-06	1.00E-05	RME EPC is max detect	1 of 13
Acetophenone	3.72E-03	4.60E-02	RME EPC is max detect	1 of 13
Acrylonitrile	1.00E-03	6.50E-03	RME EPC is max detect	1 of 13
Aluminum	7.13E-01	7.52E+00	RME EPC is max detect	7 of 13
Antimony	1.02E-02	4.30E-02	RME EPC is max detect	8 of 13
Arsenic	1.61E-02	5.70E-02	RME EPC is max detect	2 of 13
Barium	9.88E-02	2.20E-01	RME EPC is max detect	13 of 13
Benzene	4.25E-04	4.20E-03	RME EPC is max detect	1 of 13
Benzo(a)pyrene	1.06E-04	6.00E-04	RME EPC is max detect	1 of 13
Benzo(b)fluoranthene	3.26E-04	2.80E-03	RME EPC is max detect	1 of 13
Benzo(g,h,i)perylene	2.11E-04	1.60E-03	RME EPC is max detect	1 of 13
Benzoic Acid	8.40E-04	1.20E-03	RME EPC is max detect	8 of 13
Bis(2-ethylhexyl)Phthalate	1.46E-03	6.00E-04	RME EPC is max detect*	2 of 13
Boron	2.67E+00	4.04E+00	RME EPC is max detect	13 of 13
Carbazole	7.00E-04	8.40E-03	RME EPC is max detect	1 of 13
Carbon Disulfide	6.50E-05	3.00E-04	RME EPC is max detect	1 of 13
Chromium	5.53E-02	1.50E-01	RME EPC is max detect	13 of 13
Chrysene	1.93E-04	6.00E-04	RME EPC is max detect	1 of 13
cis-1,2-Dichloroethene	3.27E-03	3.00E-02	RME EPC is max detect	4 of 13
Cobalt	3.06E-03	8.90E-03	RME EPC is max detect	7 of 13
Cyclohexane	6.09E-04	6.80E-03	RME EPC is max detect	1 of 13
Dibenz(a,h)anthracene	2.90E-04	2.10E-03	RME EPC is max detect	1 of 13
Di-n-octyl Phthalate	2.08E-04	7.00E-04	RME EPC is max detect	1 of 13
Endosulfan II	5.61E-06	3.10E-05	RME EPC is max detect	1 of 14
Endosulfan Sulfate	8.57E-06	1.00E-04	RME EPC is max detect	1 of 14
Endrin Ketone	3.74E-06	2.30E-05	RME EPC is max detect	1 of 13
Fluorene	1.84E-04	1.00E-03	RME EPC is max detect	1 of 13
gamma-BHC (Lindane)	7.66E-06	4.20E-05	RME EPC is max detect	2 of 14
Heptachlor Epoxide	5.07E-06	2.01E-05	RME EPC is max detect	1 of 14
Indeno(1,2,3-cd)pyrene	2.92E-04	2.40E-03	RME EPC is max detect	1 of 13
Iron	6.39E+00	2.52E+01	RME EPC is max detect	13 of 13
Isopropylbenzene (Cumene)	1.78E-04	1.60E-03	RME EPC is max detect	1 of 13
Lithium	3.61E-01	6.60E-01	RME EPC is max detect	13 of 13
m,p-Cresol	1.10E-03	8.20E-03	RME EPC is max detect	1 of 13
Manganese	4.15E+00	1.28E+01	RME EPC is max detect	13 of 13
Molybdenum	2.30E-03	2.00E-03	RME EPC is max detect	1 of 13
MTBE	3.90E-03	3.20E-02	RME EPC is max detect	3 of 13
Nickel	7.40E-03	2.20E-02	RME EPC is max detect	10 of 14
o-Cresol	4.47E-04	4.40E-03	RME EPC is max detect	1 of 13
Phenanthrene	2.12E-04	1.60E-03	RME EPC is max detect	1 of 13
Selenium	9.08E-03	3.80E-02	RME EPC is max detect	2 of 13
Silver	7.38E-03	9.46E+00	RME EPC is max detect	12 of 13
Strontium	9.03E+00	1.71E+01	RME EPC is max detect	13 of 13
Thallium	2.00E-03	7.30E-03	RME EPC is max detect	1 of 13
Titanium	5.30E-03	3.10E-02	RME EPC is max detect	7 of 13
Vanadium	8.56E-03	2.30E-02	RME EPC is max detect	7 of 13
Vinvl Chloride	1.85E-04	1.90E-03	RME EPC is max detect	1 of 13
,			2. 5 .5 max dottoot	. 51 10

^{*}The maximum detected value is sometimes lower than the average since 1/2 of the reporting limit was used as a proxy value when it was not detected and because J flagged data (estimated) were used in the risk assessment.

⁺ Chemicals of interest are any chemical measured in at least one sample.

⁽¹⁾ RME EPC is the reasonable maximim exposure exposure point concentration.

TABLE 4 EXPOSURE POINT CONCENTRATIONS (mg/L) INTRACOASTAL WATERWAY SURFACE WATER (TOTAL)

Chemical of Interest ⁺	Average	Max Detection	Min Detection	TotRW _{Comb} (1)	swRBELs Saltwater Fish Only (1)	RME EPC (2)	Statistic Used	# of Detects/# of Samples
Acrylonitrile	9.38E-04	2.10E-03	2.10E-03	7.57E-02	7.30E-03	2.10E-03	RME EPC is max detect	1 of 4
Aluminum	4.05E-01	5.50E-01	2.80E-01	4.03E+02		5.50E-01	RME EPC is max detect	4 of 4
Barium	2.40E-02	2.60E-02	2.20E-02	6.49E+01		2.60E-02	RME EPC is max detect	4 of 4
Boron	4.69E+00	4.81E+00	4.60E+00	7.44E+01		4.81E+00	RME EPC is max detect	4 of 4
Chromium	7.98E-02	1.20E-01	7.00E-02	1.26E+02	2.22E+00	1.20E-01	RME EPC is max detect	4 of 4
Copper	6.53E-03	1.10E-02	9.10E-03	3.31E+01		1.10E-02	RME EPC is max detect	2 of 4
Iron	4.63E-01	5.90E-01	3.20E-01			5.90E-01	RME EPC is max detect	4 of 4
Lithium	2.53E-01	2.70E-01	2.20E-01	1.65E+01		2.70E-01	RME EPC is max detect	4 of 4
Manganese	4.03E-02	4.80E-02	3.30E-02	4.09E+01	1.00E-01	4.80E-02	RME EPC is max detect	4 of 4
Silver	2.80E-03	3.70E-03	2.80E-03	1.57E+00		3.70E-03	RME EPC is max detect	3 of 4
Strontium	7.22E+00	7.35E+00	6.95E+00	3.38E+02		7.35E+00	RME EPC is max detect	4 of 4
Titanium	3.90E-03	5.70E-03	2.00E-03	8.67E+04		5.70E-03	RME EPC is max detect	4 of 4
Vanadium	4.25E-02	6.10E-02	3.50E-02	1.08E+00		6.10E-02	RME EPC is max detect	4 of 4

INTRACOASTAL WATERWAY SURFACE WATER (DISSOLVED METALS)

Chemicals of Interest*	Average	Max Detection	Min Detection	TotRW _{Comb} (1)	^{SW} RBELs Saltwater Fish Only ⁽¹⁾	RME EPC	Statistic Used	# of Detects/# of Samples
Aluminum	6.48E-02	4.70E-02	4.70E-02	4.03E+02		4.70E-02	RME EPC is max detect	1 of 4
Barium	2.63E-02	2.80E-02	2.30E-02	6.49E+01		2.80E-02	RME EPC is max detect	4 of 4
Boron	4.79E+00	4.99E+00	4.30E+00	7.44E+01		4.99E+00	RME EPC is max detect	4 of 4
Lithium	2.10E-01	2.20E-01	2.00E-01	1.65E+01		2.20E-01	RME EPC is max detect	4 of 4
Manganese	4.85E-03	6.00E-03	2.50E-03	4.09E+01	1.00E-01	6.00E-03	RME EPC is max detect	4 of 4
Nickel	2.63E-03	3.30E-03	1.30E-03	1.13E+00	4.60E+00	3.30E-03	RME EPC is max detect	4 of 4
Selenium	4.25E-02	6.30E-02	2.80E-02	4.13E+00	4.20E+00	6.30E-02	RME EPC is max detect	4 of 4
Strontium	8.04E+00	8.47E+00	7.36E+00	3.38E+02		8.47E+00	RME EPC is max detect	4 of 4

Notes:

* Chemicals of interest are any chemical measured in at least one sample.

(1) - TRRP 24. TCEQ, March 31, 2006.

(2) RME EPC is the reasonable maximim exposure exposure point concentration.

TABLE 5 EXPOSURE POINT CONCENTRATIONS (mg/L) INTRACOASTAL WATERWAY BACKGROUND SURFACE WATER (TOTAL)

Chemical of Interest⁺	Average	Max Detection	Min Detection	TotRW _{Comb} (1)	^{SW} RBELs Saltwater Fish Only ⁽¹⁾	RME EPC (2)	Statistic Used	# of Detects/# of Samples
4,4'-DDD	3.30E-06	7.62E-06	3.60E-06		7.00E-06	7.62E-06	RME EPC is max detect	2 of 4
4,4'-DDT	4.93E-06	1.30E-05	1.30E-05		5.00E-06	1.30E-05	RME EPC is max detect	1 of 4
Acetone	1.47E-03	4.52E-03	4.52E-03	7.80E+02		4.52E-03	RME EPC is max detect	1 of 4
Aldrin	9.24E-06	1.10E-05	4.40E-06		2.80E-06	1.10E-05	RME EPC is max detect	4 of 4
Aluminum	2.44E-01	4.00E-01	2.10E-01	4.03E+02		4.00E-01	RME EPC is max detect	4 of 4
Barium	1.96E-02	2.00E-02	2.00E-02	6.49E+01		2.00E-02	RME EPC is max detect	4 of 4
Benzo(g,h,i)perylene	1.20E-04	2.02E-04	2.02E-04			2.02E-04	RME EPC is max detect	1 of 4
Benzo(k)fluoranthene	1.73E-04	3.11E-04	3.11E-04		1.80E-04	3.11E-04	RME EPC is max detect	1 of 4
Bis(ethylhexyl) Phthalate	4.17E-03	1.97E-02	1.94E-02		2.20E-02	1.97E-02	RME EPC is max detect	2 of 4
Boron	4.38E+00	4.50E+00	4.27E+00	7.44E+01		4.50E+00	RME EPC is max detect	4 of 4
Chromium	7.84E-02	7.90E-02	7.80E-02	1.26E+02	2.22E+00	7.90E-02	RME EPC is max detect	4 of 4
Chromium VI	6.20E-03	1.10E-02	1.10E-02	2.43E-01		1.10E-02	RME EPC is max detect	1 of 4
Chrysene	1.61E-04	3.68E-04	3.68E-04		5.40E-03	3.68E-04	RME EPC is max detect	1 of 4
Di-n-butyl Phthalate	6.70E-04	1.42E-03	8.28E-04	4.49E+00		1.42E-03	RME EPC is max detect	2 of 4
Di-n-octyl Phthalate	2.65E-04	6.50E-04	6.50E-04			6.50E-04	RME EPC is max detect	1 of 4
Iron	3.40E-01	4.30E-01	3.40E-01			4.30E-01	RME EPC is max detect	4 of 4
Lithium	3.00E-01	3.40E-01	2.70E-01	1.65E+01		3.40E-01	RME EPC is max detect	4 of 4
Manganese	3.60E-02	4.10E-02	3.40E-02	4.09E+01	1.00E-01	4.10E-02	RME EPC is max detect	4 of 4
Methoxyclor	3.66E-06	1.40E-05	1.40E-05	7.19E-02	1.48E-03	1.40E-05	RME EPC is max detect	1 of 4
Molybdenum	2.72E-03	4.20E-03	1.80E-03	3.47E+00		4.20E-03	RME EPC is max detect	2 of 4
Silver	5.43E-03	5.90E-03	4.70E-03	1.57E+00		5.90E-03	RME EPC is max detect	4 of 4
Strontium	7.76E+00	8.31E+00	7.31E+00	3.38E+02		8.31E+00	RME EPC is max detect	4 of 4
Titanium	2.98E-03	4.20E-03	2.40E-03	8.67E+04		4.20E-03	RME EPC is max detect	4 of 4
Vanadium	4.14E-02	3.70E-02	1.10E-02	1.08E+00		3.70E-02	RME EPC is max detect	4 of 4
, and the second								

INTRACOASTAL WATERWAY BACKGROUND SURFACE WATER (DISSOLVED METALS)

Chemicals of Interest⁺	Average	Max Detection	Min Detection	TotRW _{Comb} (1)	^{SW} RBELs Saltwater Fish Only ⁽¹⁾	RME EPC	Statistic Used	# of Detects/#
Barium	1.65E-02	1.90E-02	1.20E-02	6.49E+01		1.90E-02	RME EPC is max detect	4 of 4
Boron	3.98E+00	4.33E+00	3.04E+00	7.44E+01		4.33E+00	RME EPC is max detect	4 of 4
Chromium	7.38E-02	7.80E-02	6.40E-02	1.26E+02	2.22E+00	7.80E-02	RME EPC is max detect	4 of 4
Iron	5.40E-02	6.00E-02	6.00E-02			6.00E-02	RME EPC is max detect	1 of 4
Lithium	2.90E-01	3.90E-01	1.90E-01	1.65E+01		3.90E-01	RME EPC is max detect	4 of 4
Manganese	1.53E-02	1.80E-02	1.10E-02	4.09E+01	1.00E-01	1.80E-02	RME EPC is max detect	4 of 4
Molybdenum	3.68E-03	3.90E-03	3.90E-03	3.47E+00		3.90E-03	RME EPC is max detect	1 of 4
Silver	5.23E-03	5.80E-03	4.30E-03	1.57E+00		5.80E-03	RME EPC is max detect	4 of 4
Strontium	6.84E+00	7.46E+00	5.20E+00	3.38E+02		7.46E+00	RME EPC is max detect	4 of 4
Vanadium	1.23E-02	1.50E-02	9.30E-03	1.08E+00		1.50E-02	RME EPC is max detect	4 of 4

Notes:

* Chemicals of interest are any chemical measured in at least one sample.

(1) _ TRRP 24. TCEQ, March 31, 2006.

(2) RME EPC is the reasonable maximim exposure exposure point concentration.

TABLE 6 EXPOSURE POINT CONCENTRATIONS (mg/kg) INTRACOASTAL WATERWAY SEDIMENT

	_	Max	Min	T-1 (0)			(2)	# of Detects/#
Chemical of Interest ⁺	Average	Detection	Detection	TotSed _{Comb} (1)		95% UCL	Statistic Used (2)	of Samples
1,2-Dichloroethane	3.02E-03	3.02E-03	3.02E-03	6.0E+02	<	3.58E-04	median	1 of 16
1,2-Diphenylhydrazine/azobenzene	3.17E-02	3.17E-02	3.17E-02	1.3E+02	<	1.10E-02	median	1 of 16
2-Methylnaphthalene	1.88E-02	1.88E-02	1.88E-02	4.9E+02	>	1.46E-02	median	1 of 16
3,3'-Dichlorobenzidine	1.51E-01	1.51E-01	1.51E-01	3.2E+01	<	6.32E-02	median	1 of 16
4,4'-DDT	6.90E-04	3.32E-03	4.81E-04	8.7E+01	<	2.03E-04	median	4 of 17
4,6-Dinitro-2-methylphenol	6.27E-02	6.27E-02	6.27E-02	3.1E+02	<	2.64E-02	median	1 of 16
Acenaphthene	2.64E-02	6.31E-02	2.39E-02	7.4E+03	<	1.35E-02	median	2 of 16
Aluminum	6.85E+03	1.25E+04	3.90E+03	1.5E+05		7.88E+03	95% Student's-t	16 of 16
Anthracene	3.00E-02	7.53E-02	2.36E-02	3.7E+04	<	1.78E-02	median	6 of 16
Antimony	2.25E+00	8.14E+00	7.40E-01	8.3E+01		4.98E+00	97.5% Chebyshev	16 of 16
Arsenic	4.03E+00	7.62E+00	2.41E+00	1.1E+02		4.64E+00	95% Student's-t	16 of 16
Atrazine (Aatrex)	8.14E-02	8.14E-02	8.14E-02	6.4E+01	<	2.59E-02	median	1 of 16
Barium	2.15E+02	3.77E+02	1.16E+02	2.3E+04		3.08E+02	97.5% Chebyshev	16 of 16
Benzo(a)anthracene	9.54E-02	3.95E-01	6.75E-02	1.6E+01	<	1.38E-02	99% Chebyshev	3 of 16
Benzo(a)pyrene	9.46E-02	4.45E-01	5.25E-02	1.6E+00	<	1.58E-02	median	6 of 16
Benzo(b)fluoranthene	1.12E-01	6.11E-01	3.24E-02	1.6E+01	+ -	3.52E-01	97.5% KM (Chebyshev)	9 of 16
Benzo(g,h,i)perylene	7.19E-02	4.42E-01	1.73E-02	3.7E+03	<	1.72E-02	median	7 of 16
Benzo(k)fluoranthene	8.18E-02	3.18E-01	4.74E-02	1.6E+02	<	2.43E-01	median	6 of 16
Beryllium	4.63E-01	8.20E-01	2.90E-01	2.7E+01		5.28E-01	95% Student's-t	16 of 16
Boron	1.65E+01	2.72E+01	1.25E+01	1.1E+05		2.47E+01	97.5% KM (Chebyshev)	10 of 16
Butyl Benzyl Phthalate	2.02E-01	2.02E-01	2.02E-01	3.1E+04	<	1.65E-02	median	1 of 16
Carbazole	2.53E-02	8.61E-02	1.95E-02	7.1E+02	<	1.38E-02	median	3 of 16
Chloroform	5.05E-02	5.27E-03	5.04E-03	7.1E+02 7.3E+03	·	4.42E-04	median	2 of 16
Chromium	9.21E+00	1.44E+01	5.04E-03 5.01E+00	7.5E+03 3.6E+04	`	1.04E+01	95% Student's-t	16 of 16
Chrysene	8.03E-02	4.75E-01	1.37E-02	1.6E+03		2.73E-01	97.5% KM (Chebyshev)	10 of 16
	4.39E+00	7.16E+00	3.05E+00	3.2E+04		4.88E+00	95% Student's-t	16 of 16
Cobalt	7.11E+00	1.26E+01	3.28E+00	2.1E+04	1	8.43E+00	95% Student's-t	16 of 16
Copper Cyclohexane	1.92E-03	1.92E-03	1.92E-03	1.0E+06	1 .	3.29E-03	median	1 of 16
					<			
Dibenz(a,h)anthracene	7.12E-02	2.35E-01	5.11E-02	1.6E+00	<	1.57E-02	median	6 of 16
Dibenzofuran	2.70E-02	3.05E-02	2.68E-02	6.1E+02	<	1.92E-02	median	2 of 16
Diethyl Phthalate	3.89E-02	3.89E-02	3.89E-02	1.2E+05	<	2.24E-02	median	1 of 16
Di-n-octyl Phthalate	2.58E-02	1.92E-01	1.47E-02	3.1E+03	<	1.13E-02	median	2 of 16
Fluoranthene	1.20E-01	8.04E-01	2.22E-02	4.9E+03		4.39E-01	97.5% KM (Chebyshev)	8 of 16
Fluorene	1.62E-02	4.60E-02	1.24E-02	4.9E+03	<	1.38E-02	median	4 of 16
gamma-Chlordane	6.54E-04	8.26E-04	6.38E-04	4.1E+01	<	3.91E-04	median	4 of 16
Hexachlorobenzene	3.19E-02	3.19E-02	3.19E-02	8.9E+00	<	1.62E-02	median	1 of 16
Indeno(1,2,3-cd)pyrene	9.99E-02	4.05E-01	5.56E-02	1.6E+01	<	2.53E-02	median	6 of 16
Iron	1.34E+04	2.82E+04	6.75E+03			2.20E+04	97.5% Chebyshev	16 of 16
Isopropylbenzene (cumene)	4.79E-03	7.04E-03	4.64E-03	7.3E+04	<	4.80E-04	median	2 of 16
Lead	1.16E+01	3.23E+01	5.00E+00	5.0E+02		2.27E+01	97.5% Chebyshev	16 of 16
Lithium	1.05E+01	2.00E+01	6.40E+00	1.1E+04		1.21E+01	95% Student's-t	16 of 16
Manganese	2.83E+02	4.74E+02	1.92E+02	1.4E+04		3.22E+02	95% Student's-t	16 of 16
Mercury	2.01E-02	3.60E-02	1.10E-02	3.4E+01		2.33E-02	95% Student's-t	16 of 16
Methylcyclohexane	3.70E-03	3.70E-03	3.70E-03	1.0E+06	<	1.70E-03	median	1 of 16
Molybdenum	6.67E-01	5.66E+00	1.40E-01	1.8E+03		2.15E+00	95% Chebyshev	16 of 16
Nickel	9.59E+00	1.67E+01	5.80E+00	1.4E+03		1.08E+01	95% Student's-t	16 of 16
n-Nitrosodiphenylamine	4.34E-02	4.34E-02	4.34E-02	9.0E+02	<	1.50E-02	median	1 of 16
Phenanthrene	8.58E-02	5.08E-01	3.11E-02	3.7E+03		2.80E-01	97.5% KM (Chebyshev)	8 of 16
Pyrene	1.33E-01	8.62E-01	1.76E-02	3.7E+03		4.82E-01	97.5% KM (Chebyshev)	10 of 16
Silver	3.35E-01	5.40E-01	3.00E-01	3.5E+02	<	8.95E-02	median	6 of 16
Strontium	4.49E+01	8.17E+01	3.28E+01	1.5E+05		5.12E+01	95% Student's-t	16 of 16
Titanium	2.56E+01	3.66E+01	1.91E+01	1.0E+06		2.78E+01	95% Student's-t	16 of 16
Toluene	5.81E-03	5.81E-03	5.81E-03	5.9E+04	<	1.73E-03	median	1 of 16
Vanadium	1.39E+01	2.12E+01	9.06E+00	3.3E+02		1.54E+01	95% Student's-t	16 of 16
Zinc	4.54E+01	9.26E+01	1.80E+01	7.6E+04		5.41E+01	95% Student's-t	16 of 16
		1						1

^{*} Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

^{(1) -} From Tier 1 Sediment PCLs. TCEQ, March 31, 2006.
(2) - Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

TABLE 7
EXPOSURE POINT CONCENTATION (mg/kg)
INTRACOASTAL WATERWAY BACKGROUND SEDIMENT

		Max	Min					# of Detects/#
Chemical of Interest ⁺	Average	Detection	Detection	TotSed _{Comb} (1)		95% UCL	Statistic Used (2)	Samples
1,2,4-Trimethylbenzene	3.91E-03	3.91E-03	3.91E-03	3.7E+04	<	7.24E-04	median	1 of 9
1,4-Dichlorobenzene	4.11E-03	4.11E-03	4.11E-03	2.3E+03	<	1.54E-03	median	1 of 9
2-Butanone	2.08E-03	2.16E-03	2.00E-03	4.4E+05	<	2.00E-03	median	2 of 9
4,4'-DDT	5.70E-04	5.70E-04	5.70E-04	8.7E+01	<	2.10E-04	median	1 of 9
Aluminum	1.22E+04	2.18E+04	4.73E+03	1.5E+05		1.65E+04	95% Student's-t	9 of 9
Antimony	4.02E+00	7.33E+00	1.68E+00	8.3E+01		5.40E+00	95% Student's-t	9 of 9
Arsenic	5.81E+00	9.62E+00	2.36E+00	1.1E+02		7.74E+00	95% Student's-t	9 of 9
Barium	209.7.2	2.80E+02	1.11E+02	2.3E+04		2.39E+02	95% Student's-t	9 of 9
Benzo(b)fluoranthene	3.69E-02	3.69E-02	3.69E-02	1.6E+01	<	1.09E-02	median	1 of 9
Beryllium	7.66E-01	1.32E+00	3.20E-01	2.7E+01		1.02E+00	95% Student's-t	9 of 9
Boron	2.76E+01	4.79E+01	1.33E+01	1.1E+05		3.56E+01	95% Student's-t	9 of 9
Carbon Disulfide	5.91E-03	8.41E-03	3.41E-03	7.3E+04	<	8.40E-04	median	2 of 9
Chromium	1.28E+01	2.25E+01	5.81E+00	3.6E+04		1.69E+01	95% Student's-t	9 of 9
cis-1,2-Dichloroethene	2.84E-02	2.84E-02	2.84E-02	7.3E+03	<	4.61E-04	median	1 of 9
Cobalt	6.70E+00	1.18E+01	3.32E+00	3.2E+04		8.66E+00	95% Student's-t	9 of 9
Copper	8.14E+00	1.68E+01	2.68E+00	2.1E+04		1.13E+01	95% Student's-t	9 of 9
Iron	1.65E+04	2.79E+04	7.44E+03			2.15E+04	95% Student's-t	9 of 9
Lead	9.59E+00	1.45E+01	5.34E+00	5.0E+02		1.18E+01	95% Student's-t	9 of 9
Lithium	2.14E+01	4.46E+01	7.29E+00	1.1E+04		3.03E+01	95% Student's-t	9 of 9
Manganese	3.31E+02	4.42E+02	2.12E+02	1.4E+04		3.86E+02	95% Student's-t	9 of 9
Mercury	1.76E-02	5.00E-02	6.50E-03	3.4E+01		3.68E-02	95% Chebyshev	9 of 9
Molybdenum	2.41E-01	3.50E-01	1.60E-01	1.8E+03		2.83E-01	95% Student's-t	9 of 9
Nickel	1.49E+01	2.73E+01	6.31E+00	1.4E+03		1.99E+01	95% Student's-t	9 of 9
Strontium	5.92E+01	8.74E+01	3.48E+01	1.5E+05		7.28E+01	95% Student's-t	9 of 9
Titanium	3.18E+01	5.45E+01	2.11E+01	1.0E+06		3.83E+01	95% Student's-t	9 of 9
Trichloroethene	1.59E-02	1.59E-02	1.59E-02	4.4E+03	<	6.47E-04	median	1 of 9
Vanadium	2.02E+01	3.42E+01	1.02E+01	3.3E+02		2.59E+01	95% Student's-t	9 of 9
Xylene	3.35E-03	3.35E-03	3.35E-03	1.5E+05	<	2.09E-03	median	1 of 9
Zinc	3.60E+01	5.41E+01	1.93E+01	7.6E+04		4.45E+01	95% Student's-t	9 of 9
								1

^{*} Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

⁽¹⁾ - From Tier 1 Sediment PCLs. TCEQ, March 31, 2006.

^{(2) -} Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A). When the compound was not detected in a given sample, one-half of the sample detection limit was used as the proxy concentration for that sample.

TABLE 8
EXPOSURE POINT CONCENTRATIONS (mg/kg)
NORTH AREA SURFACE SOIL*

Chemical of Interest ⁺	Average	Max Detection	Min Detection	TotSoilComb (1)	EPA Region 6 Soil Screening Criteria (2)		95% UCL	Statistic Used (3)	# of Detects/# of Samples
					Cinteria				
2-Methylnaphthalene 4.4'-DDE	1.46E-02 2.87E-03	5.30E-02	1.00E-02	2.48E+03 7.32E+01	7.80E+00	<	1.18E-02	median	3 of 18
.,		1.49E-02	2.16E-03			<	4.24E-04	median	2 of 18
4,4'-DDT	1.50E-03 2.86E-02	1.08E-02 1.57E-01	5.97E-04 2.10E-02	6.84E+01 3.72E+04	7.80E+00 3.30E+04	<	5.45E-04 1.10E-02	median	7 of 18
Acenaphthene	2.86E-02 5.55E-02	1.57E-01 5.55E-02	2.10E-02 5.55E-02		3.30E+04	<	1.10E-02 1.21E-02	median	2 of 18 1 of 18
Acenaphthylene				3.72E+04		<		median	
Aluminum	1.07E+04	1.68E+04	1.81E+03	5.70E+05	1.00E+05		1.22E+04	95% Student's-t	18 of 18
Anthracene	2.69E-02	2.64E-01	8.87E-03	1.86E+05	1.00E+05	<	1.21E-02	median	4 of 18
Antimony	2.52E+00	8.09E+00	1.66E+00	3.06E+02	4.50E+02		4.95E+00	97.5% KM (Chebyshev)	9 of 18
Aroclor-1254	1.22E-02	1.22E-02	1.22E-02	7.10E+00	8.30E-01	<	4.29E-03	median	1 of 18
Arsenic	2.53E+00	5.69E+00	5.40E-01	1.96E+02	1.80E+00		4.22E+00	97.5% KM (Chebyshev)	17 of 18
Barium	1.45E+02	4.76E+02	4.61E+01	8.90E+04	7.90E+04		2.64E+02	95% Chebyshev	18 of 18
Benzo(a)anthracene	1.18E+00	1.18E+00	1.18E+00	2.36E+01	2.30E+00	<	1.10E-02	median	1 of 18
Benzo(a)pyrene	1.19E-01	1.42E+00	1.35E-02	2.37E+00	2.30E-01	٧	1.16E-02	median	7 of 18
Benzo(b)fluoranthene	1.69E-01	1.62E+00	4.87E-02	2.36E+01	2.30E+00		3.73E-01	95% KM (BCA)	8 of 18
Benzo(g,h,i)perylene	1.40E-01	1.02E+00 1.28E+00	2.37E-02	1.86E+04	2.50LT00		5.92E-01	97.5% KM (Chebyshev)	10 of 18
Benzo(k)fluoranthene	1.13E-01	7.99E-01	1.10E-02	2.37E+02	2.30E+01	<	1.75E-02	median	4 of 18
Beryllium	7.11E-01	2.88E+00	6.60E-02	2.47E+02	2.20E+03		1.60E+00	97.5% KM (Chebyshev)	17 of 18
Bis(2-ethylhexyl)phthalate	4.45E-02	2.39E-01	1.22E-02	5.63E+02	1.40E+02	<	5.46E-02	median	6 of 18
Boron	8.74E+00	3.92E+01	3.15E+00	1.92E+05	1.00E+05		2.21E+01	97.5% KM (Chebyshev)	13 of 18
Butyl Benzyl Phthalate	1.51E-01	1.51E-01	1.51E-01	1.00E+04	2.40E+02	<	1.36E-02	median	1 of 18
Cadmium	3.58E-01	8.00E-01	2.80E-01	8.52E+02	5.60E+02		5.72E-01	97.5% KM (Chebyshev)	8 of 18
Carbazole	2.00E-02	1.28E-01	1.30E-02	9.54E+02	9.60E+01	<	1.11E-02	median	4 of 18
Chromium	2.03E+01	1.28E+02	7.90E+00	5.71E+04	5.00E+02		4.86E+01	95% Chebyshev	18 of 18
Chrysene	1.05E-01	1.30E+00	1.10E-02	2.36E+03	2.30E+02	<	1.03E-02	median	7 of 18
Cobalt	5.79E+00	7.87E+00	2.81E+00	2.70E+02	2.10E+03		6.41E+00	95% Student's-t	18 of 18
Copper	2.41E+01	2.00E+02	5.90E+00	3.69E+04	4.20E+04		7.00E+01	95% Chebyshev	18 of 18
Dibenz(a,h)anthracene	7.69E-02	4.04E-01	4.50E-02	2.37E+00	2.30E-01	<	1.10E-02	median	4 of 18
Dibenzofuran	8.62E-02	8.62E-02	8.62E-02	2.73E+03	1.70E+03	<	1.52E-02	median	1 of 18
Dieldrin	5.45E-03	5.45E-03	5.45E-03	1.14E+00	1.20E-01	<	1.83E-04	median	1 of 18
Diethyl Phthalate	1.10E-02	1.10E-02	1.10E-02	2.04E+03	1.00E+05	<	1.85E-02	median	1 of 18
Di-n-butyl Phthalate	1.00E-02	1.00E-02	1.00E-02	1.62E+04	6.80E+04	<	3.10E-02	median	1 of 18
Di-n-octyl Phthalate	2.14E-02	1.23E-01	1.54E-02	1.30E+04	2.70E+04	<	9.50E-03	median	2 of 18
Endrin	1.49E-03	1.49E-03	1.49E-03	1.27E+02	2.10E+02	<	2.22E-04	median	1 of 18
Endrin Ketone	9.66E-03	9.66E-03	9.66E-03	1.77E+02		<	5.48E-04	median	1 of 18
Fluoranthene	1.68E-01	2.19E+00	2.14E-02	2.48E+04	2.40E+04	<	1.28E-02	median	6 of 18
Fluorene	2.50E-02	1.41E-01	1.70E-02	2.48E+04	2.60E+04	<	1.09E-02	median	3 of 18
Indeno(1,2,3-cd)pyrene	1.55E-01	1.51E+00	2.00E-02	2.37E+01	2.30E+00		6.82E-01	97.5% KM (Chebyshev)	9 of 18
Iron	1.95E+04	1.02E+05	8.45E+03		1.00E+05		4.11E+04	95% Chebyshev	18 of 18
Lead	5.77E+01	4.71E+02	8.22E+00	1.60E+03	8.00E+02		3.18E+02	99% Chebyshev	18 of 18
Lithium	1.66E+01	2.66E+01	2.59E+00	1.90E+03	2.30E+04		1.87E+01	95% Student's-t	18 of 18
Manganese	3.70E+02	1.21E+03	8.23E+01	2.41E+04	3.50E+04		7.34E+02	97.5% KM (Chebyshev)	18 of 18
Mercury	1.38E-02	6.40E-02	6.00E-03	3.26E+00	3.40E+02		3.75E-02	97.5% KM (Chebyshev)	8 of 18
Molybdenum	9.66E-01	1.07E+01	8.50E-02	4.51E+03	5.70E+03		4.71E+00	97.5% KM (Chebyshev)	11 of 18
Nickel	1.70E+01	5.17E+01	1.17E+01	7.94E+03	2.30E+04		2.08E+01	95% Student's-t	18 of 18
Phenanthrene	1.15E-01	1.34E+00	1.80E-02	1.86E+04		<	1.42E-02	median	7 of 18
Pyrene	3.86E-01	1.87E+00	1.49E-02	1.86E+04	3.20E+04		2.03E+00	97.5% KM (Chebyshev)	8 of 18
Silver	1.10E-01	4.10E-01	9.20E-02	1.71E+03	5.70E+03	٧	6.00E-02	median	2 of 18
Strontium	5.73E+01	9.36E+01	2.66E+01	4.91E+05	1.00E+05		6.54E+01	95% Student's-t	18 of 18
Thallium	6.30E-01	6.30E-01	6.30E-01	7.80E+01		<	1.00E-01	median	1 of 18
Tin	7.06E-01	3.67E+00	6.80E-01	3.97E+05		<	5.90E-01	median	4 of 18
Titanium	2.07E+01	5.59E+01	3.41E+00	1.00E+06			3.78E+01	97.5% KM (Chebyshev)	18 of 18
Vanadium	1.97E+01	4.58E+01	7.85E+00	2.29E+03	1.10E+03		2.34E+01	95% Student's-t	18 of 18
Zinc	4.18E+02	5.64E+03	2.95E+01	2.45E+05	1.00E+05		3.49E+03	99% Chebyshev	18 of 18

Notes:

* Surface soil was collected from 0 to 0.5 ft. below ground surface.

* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) = Tot Soil Comb PCL = TCEQ Protective Concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).

(2) = EPA's *Renion 6 Human Health Medium-Specific Screening Levels 2004-2005". Industrial Outdoor Worker.

TABLE 9 EXPOSURE POINT CONCENTRATIONS (mg/kg) NORTH AREA SOIL+

Chemical of Interest** 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 2-Butanone	Average	Max			EPA Region 6 Soil				
1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane				_	•			(0)	# of Detects/# of
1,1-Dichloroethene 1,2-Dichloroethane		Detection	Min Detection	TotSoil _{Comb} (1)	Screening Criteria ⁽²⁾		95% UCL	Statistic Used (3)	Samples
1,2-Dichloroethane	2.67E-02	5.18E-01	1.61E-03	4.30E+03	2.30E+03	<	1.75E-04	median	3 of 19
	1.73E-02	3.13E-01	1.78E-03	3.50E+03	4.70E+02	<	3.95E-04	median	2 of 19 4 of 19
	1.95E-02 1.32E-02	1.77E-01 2.08E-01	2.31E-03 1.70E-03	1.15E+01 7.26E+04	8.40E-01 3.40E+04	<	1.27E-04 7.87E-02	median 97.5% KM (Chebyshev)	4 Of 19
2-Methylnaphthalene	4.05E-02	5.30E-02	1.00E-02	2.48E+03	J.40L+04 	<	1.19E-02	median	4 of 38
4,4'-DDE	2.50E-03	1.49E-02	2.16E-03	7.32E+01	7.80E+00	<	4.28E-04	median	2 of 38
4,4'-DDT	1.16E-02	1.08E-02	5.97E-04	6.84E+01	7.80E+00	<	7.94E-02	97.5% KM (Chebyshev)	7 of 38
Acenaphthene	1.99E-02	1.57E-01	2.10E-02	3.72E+04	3.30E+04	<	1.11E-02	median	4 of 38
Aluminum Anthracene	1.23E+04 2.90E-02	1.83E+04 2.64E-01	1.81E+03 8.87E-03	5.70E+05 1.86E+05	1.00E+05		1.33E+04 8.96E-02	95% Student's-t 97.5% KM (Chebyshev)	38 of 38 6 of 38
Antimony	1.45E+00	8.09E+00	1.66E+00	3.06E+02	1.00E+05 4.50E+02		2.45E+00	95% KM (Bootstrap)	16 of 38
Aroclor-1254	1.81E-01	9.38E-02	1.22E-02	7.10E+00	8.30E-01	<	4.30E-03	median	2 of 38
Arsenic	2.44E+00	5.69E+00	5.40E-01	1.96E+02	1.80E+00		3.82E+00	97.5% KM (Chebyshev)	32 of 38
Barium	1.41E+02	3.62E+02	4.61E+01	8.90E+04	7.90E+04		2.34E+02	97.5% Chebyshev	38 of 38
Benzene	2.92E-03	6.32E-03	1.38E-03	1.11E+02	1.60E+00		5.39E-03	97.5% KM (Chebyshev)	12 of 18
Benzo(a)anthracene	1.09E-01	1.18E+00	3.83E-02	2.36E+01	2.30E+00	<	1.11E-02	median	4 of 38
Benzo(a)pyrene	9.37E-02	1.42E+00	1.35E-02	2.37E+00	2.30E-01		3.78E-01	97.5% KM (Chebyshev)	10 of 38
Benzo(b)fluoranthene	1.44E-01	1.62E+00	4.87E-02	2.36E+01	2.30E+00		2.52E-01	95% KM (Bootstrap)	11 of 38
Benzo(g,h,i)perylene	1.03E-01	1.28E+00	2.37E-02	1.86E+04			3.42E-01	97.5% KM (Chebyshev)	14 of 38
Benzo(k)fluoranthene Beryllium	1.07E-01 7.15E-01	7.99E-01 2.88E+00	6.80E-02 6.60E-02	2.37E+02 2.47E+02	2.30E+01 2.20E+03	<	1.72E-02 1.18E+00	median 97.5% KM (Chebyshev)	6 of 38 35 of 38
Bis(2-ethylhexyl)phthalate	4.12E-02	2.39E-01	1.22E-02	5.63E+02	1.40E+02		9.96E-02	97.5% KM (Chebyshev)	11 of 38
Boron	7.64E+00	3.92E+01	3.14E+00	1.92E+05	1.00E+05		1.71E+01	97.5% KM (Chebyshev)	26 of 38
Bromoform	1.14E-02	1.80E-02	1.10E-02	6.04E+02	2.40E+02	<	1.86E-04	median	2 of 19
Butyl Benzyl Phthalate	5.66E-02	1.51E-01	5.40E-02	1.00E+04	2.40E+02	<	1.36E-02	median	2 of 38
Cadmium Carbazole	3.63E-01 1.74E-02	8.00E-01 1.28E-01	2.80E-01 1.08E-02	8.52E+02 9.54E+02	5.60E+02 9.60E+01	<	5.19E-01 1.10E-02	97.5% KM (Chebyshev) median	15 of 38 7 of 38
Carbon Disulfide	8.64E-03	2.84E-02	7.57E-03	7.19E+03	7.20E+02	<	1.10E-02 1.19E-04	median	3 of 19
Chromium	1.83E+01	1.28E+02	7.76E+00	5.70E+04	5.00E+02		3,21E+01	95% Chebyshev	38 of 38
Chrysene	1.03E-01	1.30E+00	1.04E-02	2.40E+03	2.30E+02		3.84E-01	97.5% KM (Chebyshev)	11 of 38
cis-1,2-Dichloroethene	6.61E-02	9.99E-01	1.95E-02	4.70E+03	1.60E+02	<	1.38E-04	median	2 of 19
Cobalt	6.52E+00	1.03E+01	2.81E+00	2.70E+02	2.10E+03		7.04E+00	95% Student's-t	38 of 38
Copper	6.56E+01 1.13E-03	2.00E+02 1.85E-03	4.59E+00 9.81E-04	3.70E+04 4.20E+04	4.20E+04 6.80E+03	<	5.12E+02 1.25E-03	99% Chebyshev median	38 of 38 5 of 19
Cyclohexane Dibenz(a,h)anthracene	6.88E-02	4.04E-01	4.50E-02	2.40E+04	2.30E-01	<	1.08E-03	median	7 of 38
Dibenzofuran	1.96E-02	8.62E-02	1.50E-02	2.70E+03	1.70E+04	·	1.50E-02	median	2 of 38
Diethyl Phthalate	1.01E-02	1.10E-02	9.92E-03	2.04E+03	1.00E+05	<	1.85E-02	median	2 of 38
Di-n-butyl Phthalate	1.05E-02	1.50E-02	1.00E-02	1.62E+04	6.80E+04	<	3.07E-02	median	2 of 38
Di-n-octyl Phthalate	1.90E-02	1.23E-01	1.54E-02	1.30E+04	2.70E+04	<	9.52E-03	median	3 of 38
Ethylbenzene Fluoranthene	2.69E-03 1.44E-01	5.02E-03 2.19E+00	1.14E-03 2.14E-02	1.00E+04 2.48E+04	2.30E+02 2.40E+04	<	1.14E-03 6.24E-01	median 97.5% KM (Chebyshev)	5 of 19 9 of 38
Fluorene	5.27E-02	1.41E-01	1.70E-02	2.48E+04	2.40E+04 2.60E+04	<	3.92E-04	median	4 of 38
Indeno(1,2,3-cd)pyrene	1.15E-01	1.51E+00	2.00E-02	2.37E+01	2.30E+00		3.96E-01	97.5% KM (Chebyshev)	13 of 38
Iron	2.09E+04	1.02E+05	7.12E+03		1.00E+05		3.69E+04	95% Chebyshev	38 of 38
Lead	5.30E+01	5.83E+00	6.30E+02	1.60E+03	8.00E+02		2.48E+02	99% Chebyshev	34 of 38
Lithium	1.92E+01	3.22E+01	2.59E+00	1.90E+03	2.30E+04		2.08E+01	95% Student's-t	36 of 38
m,p-xylene	1.32E-03	1.39E-03	1.32E-03	6.50E+03	2.10E+02	<	4.22E-04	median	2 of 19
Manganese	3.87E+02	1.21E+03	8.23E+01	2.41E+04	3.50E+04		6.39E+02	97.5% Chebyshev	38 of 38
Mercury Methylcyclohexane	1.43E-02 1.76E-03	1.70E-01 2.78E-03	3.40E-03 1.50E-03	3.26E+00 3.29E+04	3.40E+02 1.40E+02	<	4.38E-02 1.54E-03	97.5% KM (Chebyshev) median	15 of 38 6 of 19
Molybdenum	1.40E-03	1.07E+01	8.50E-02	4.51E+03	5.70E+03	,	2.49E+00	97.5% KM (Chebyshev)	21 of 38
Naphthalene	3.24E+00	1.48E-01	1.30E-03	1.90E+02	2.10E+02	<	3.70E-03	median	6 of 19
Nickel	1.80E+01	5.17E+01	9.74E+00	7.94E+03	2.30E+04		2.01E+01	95% Student's-t	38 of 38
Phenanthrene Pyrene	1.50E-01 2.62E-01	1.83E+00 4.64E+00	1.80E-02 1.49E-02	1.86E+04 1.86E+04	3.20E+04		5.70E-01 1.12E+00	97.5% KM (Chebyshev) 97.5% KM (Chebyshev)	12 of 38 14 of 38
Silver	1.05E-01	4.64E+00 4.10E-01	9.20E-02	1.86E+04 1.71E+03	5.70E+03	<	5.90E-02	median	3 of 38
Strontium	5.64E+01	9.62E+01	2.21E+01	4.91E+05	1.00E+05	_	6.20E+01	95% Student's-t	38 of 38
Tetrachloroethene	1.26E-02	2.23E-01	1.35E-03	3.30E+02	1.70E+00	<	2.11E-04	median	3 of 19
Tin	5.34E+00	3.67E+00	6.80E-01	3.97E+05		<	5.70E-01	median	5 of 38
Titanium	2.33E+01	5.70E+01	3.41E+00	1.00E+06			4.03E+01	97.5% Chebyshev	38 of 38
Toluene	3.24E-03	1.22E-02	1.34E-03	2.90E+04	5.20E+02		8.15E-03	97.5% KM (Chebyshev)	8 of 19
Vanadium Xylene (total)	2.10E+01 1.78E-01	4.58E+01 1.76E+00	7.85E+00 1.39E-03	2.29E+03 6.50E+03	1.10E+03 2.10E+02		2.33E+01 8.58E-01	95% Student's-t 97.5% KM (Chebyshev)	38 of 38 8 of 19
Zinc	2.83E+02	5.64E+03	2.11E+01	2.45E+05	1.00E+05		1.78E+03	99% Chebyshev	38 of 38

Notes:
+ Soil was collected from 0 to 4 ft. below ground surface.

** Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) __Tot_Soil_Comb PCL = TCEQ Protective Concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).

^{(2) -} From EPA's "Region 6 Human Health Medium-Specific Screening Levels 2004-2005". Industrial Outdoor Worker.
(3) - Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

TABLE 10 EXPOSURE POINT CONCENTATIONS (mg/L) NORTH AREA ZONE A GROUNDWATER

		RME		# of Detects/#
Chemical of Interest*	Average	EPC (1)	Notes:	of Samples
1,1,1-Trichloroethane	1.48E+01	1.56E+02	RME EPC is max detect	5 of 16
1,1-Dichloroethane	2.80E+00	3.15E+01	RME EPC is max detect	5 of 12
1,1-Dichloroethene	3.46E+00	2.92E+01 4.43E+01	RME EPC is max detect	6 of 16
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	6.17E+00 3.80E-02	4.43E+01 4.20E-02	RME EPC is max detect RME EPC is max detect	5 of 16 1 of 12
1.2-Dichloroethane	2.42E+01	3.28E+02	RME EPC is max detect	6 of 16
1,2-Dichloropropane	4.90E-01	3.45E+00	RME EPC is max detect	4 of 16
2-Methylnaphthalene	2.70E-03	1.60E-02	RME EPC is max detect	2 of 12
4,4'-DDD	2.48E-06	1.90E-05	RME EPC is max detect	1 of 12
4,4'-DDE	2.14E-05	2.70E-04	RME EPC is max detect	2 of 12
4-Chloroaniline	1.50E-03	1.30E-02	RME EPC is max detect	1 of 12
4-Isopropyltoluene	2.30E-02	2.00E-03	RME EPC is max detect*	1 of 12
Acenaphthene	9.00E-04	8.60E-03	RME EPC is max detect	1 of 12
Acetone	2.81E-01 6.80E-03	1.15E-01	RME EPC is max detect* RME EPC is max detect	1 of 12 1 of 12
Acetophenone alpha-BHC	1.96E-05	7.40E-02 2.00E-04	RME EPC is max detect	1 of 12
Aluminum	8.18E-02	2.60E-01	RME EPC is max detect	5 of 12
Aniline	1.30E-03	1.10E-02	RME EPC is max detect	1 of 12
Anthracene	4.30E-04	1.40E-03	RME EPC is max detect	2 of 12
Antimony	1.98E-02	4.30E-02	RME EPC is max detect	11 of 12
Arsenic	1.13E-02	2.80E-02	RME EPC is max detect	2 of 12
Barium	1.64E-01	1.38E+00	RME EPC is max detect	12 of 12
Benzene	1.02E+00	8.24E+00	RME EPC is max detect	7 of 16
Benzo(b)fluoranthene	3.23E-04	1.40E-03	RME EPC is max detect	1 of 12
Benzo(g,h,i)perylene	2.89E-04	1.50E-03	RME EPC is max detect	1 of 12
Benzoic Acid	1.10E-03	1.40E-03	RME EPC is max detect	5 of 12
beta-BHC	1.09E-05	8.30E-05	RME EPC is max detect	2 of 12
Bis(2-ethylhexyl)Phthalate Boron	3.70E-03 2.20E+00	6.00E-04 3.44E+00	RME EPC is max detect RME EPC is max detect	1 of 12 12 of 12
Carbazole	2.20E+00 2.20E-03	7.70E-03	RME EPC is max detect	3 of 12
Carbon Tetrachloride	5.60E-01	7.58E+00	RME EPC is max detect	1 of 16
Chromium	9.10E-02	1.60E-01	RME EPC is max detect	12 of 12
cis-1,2-Dichloroethene	8.96E+00	1.24E+02	RME EPC is max detect	6 of 16
Cobalt	2.60E-03	1.60E-02	RME EPC is max detect	3 of 12
delta-BHC	5.97E-06	4.10E-05	RME EPC is max detect	2 of 12
Dibenz(a,h)anthracene	4.87E-04	2.90E-03	RME EPC is max detect	1 of 12
Dibenzofuran	6.01E-04	4.90E-03	RME EPC is max detect	1 of 12
Dieldrin	5.01E-06	2.64E-05	RME EPC is max detect	1 of 16
Endosulfan II	1.29E-05	1.20E-04	RME EPC is max detect	6 of 17
Endosulfan Sulfate	2.46E-06 1.31E-05	1.56E-05 1.30E-04	RME EPC is max detect	1 of 12 1 of 12
Endrin Aldehyde Ethylbenzene	9.69E-02	7.40E-01	RME EPC is max detect RME EPC is max detect	1 of 13
Fluorene	8.51E-04	6.10E-03	RME EPC is max detect	3 of 12
gamma-BHC (Lindane)	1.25E-04	1.50E-03	RME EPC is max detect	3 of 16
Heptachlor Epoxide	5.44E-06	2.50E-05	RME EPC is max detect	1 of 12
Indeno(1,2,3-cd)pyrene	4.73E-04	3.30E-03	RME EPC is max detect	1 of 12
Iron	1.31E+01	3.66E+01	RME EPC is max detect	12 of 12
Isopropylbenzene (Cumene)	2.80E-02	3.80E-02	RME EPC is max detect*	2 of 12
Lithium	3.19E-01	6.70E-01	RME EPC is max detect	12 of 12
m,p-Cresol	2.78E-03	1.20E-02	RME EPC is max detect	3 of 12
m,p-Xylene Manganese	6.85E-02	1.68E-01	RME EPC is max detect RME EPC is max detect	1 of 12
Manganese Methylene Chloride	7.74E+00 9.57E+01	2.69E+01 1.23E+03	RME EPC is max detect	12 of 12 4 of 16
Molybdenum	7.20E-03	5.50E-02	RME EPC is max detect	1 of 12
Naphthalene	7.83E-02	3.22E-01	RME EPC is max detect	1 of 13
Nickel	1.99E-02	1.40E-01	RME EPC is max detect	7 of 14
n-Propylbenzene	3.60E-02	3.10E-02	RME EPC is max detect*	1 of 12
o-Cresol	1.40E-03	8.10E-03	RME EPC is max detect	2 of 12
o-Xylene	4.62E-02	4.40E-02	RME EPC is max detect*	1 of 12
Phenanthrene	8.31E-04	6.40E-03	RME EPC is max detect	2 of 13
Pyrene	2.23E-04	5.00E-04	RME EPC is max detect	1 of 13
Silver	9.14E-03	1.70E-02	RME EPC is max detect	12 of 12
Strontium	1.10E+01	1.88E+01	RME EPC is max detect	12 of 12
Styrene Tetrachloroethene	2.60E-02 1.95E+00	2.50E-03 2.05E+01	RME EPC is max detect* RME EPC is max detect	1 of 12 4 of 16
Thallium	4.60E-03	3.00E-02	RME EPC is max detect	2 of 12
Titanium	1.20E-03	3.30E-02	RME EPC is max detect	3 of 12
Toluene	3.35E-01	4.05E+00	RME EPC is max detect	4 of 16
Trichloroethene	1.15E+01	8.40E+01	RME EPC is max detect	7 of 16
Vanadium	8.40E-03	2.40E-02	RME EPC is max detect	6 of 12
Vinyl Chloride	5.02E-01	5.09E+00	RME EPC is max detect	3 of 16
Xylene (total)	1.15E-01	2.12E-01	RME EPC is max detect	1 of 12

[&]quot;The maximum detected value is sometimes lower than the average since 1/2 of the reporting limit was used as a proxy value when it was not detected and because J flag data were used in the risk assessment.

Chemicals of interest are any chemical measured in at least one sample.
 (1) RME EPC is the reasonable maximim exposure exposure point concentration.

TABLE 11 EXPOSURE POINT CONCENTATIONS (mg/L) WETLAND SURFACE WATER (TOTAL)

Chemical of Interest ⁺	Average	Max Detection	Min Detection	TotRW _{Comb} (1)	^{SW} RBELs Saltwater Fish Only ⁽¹⁾	RME EPC (2)	Statistic Used	# of Detects/# of Samples
1,2-Dichloroethane	2.30E-03	3.85E-03	2.55E-03	1.96E-01	4.93E-02	3.85E-03	RME EPC is max detect	3 of 4
Acrolein	1.21E-02	9.29E-03	9.29E-03	4.26E-01	2.90E-01	9.30E-03	RME EPC is max detect*	1 of 4
Aluminum	5.08E-01	8.00E-01	1.70E-01	4.03E+02		8.00E-01	RME EPC is max detect	4 of 4
Barium	2.20E-01	3.70E-01	1.50E-01	6.49E+01		3.70E-01	RME EPC is max detect	4 of 4
Boron	1.96E+00	2.42E+00	8.30E-01	7.44E+01		2.42E+00	RME EPC is max detect	4 of 4
Chromium	1.49E-02	3.70E-02	2.00E-02	1.26E+02	2.20E+00	3.70E-02	RME EPC is max detect	2 of 4
Chromium VI	3.13E-03	8.00E-03	8.00E-03	2.43E-01		8.00E-03	RME EPC is max detect	1 of 4
Copper	6.38E-03	1.10E-02	9.50E-03	3.31E+01		1.10E-02	RME EPC is max detect	2 of 4
Iron	6.45E-01	1.08E+00	1.90E-01			1.08E+00	RME EPC is max detect	4 of 4
Lithium	1.89E-01	2.50E-01	5.70E-02	1.65E+01		2.50E-01	RME EPC is max detect	4 of 4
Manganese	1.37E-01	3.40E-01	1.80E-02	4.09E+01	1.00E-01	3.40E-01	RME EPC is max detect	4 of 4
Mercury	3.75E-05	7.00E-05	4.00E-05	9.73E-02	2.50E-05	7.00E-05	RME EPC is max detect	2 of 4
Molybdenum	9.30E-03	1.50E-02	5.60E-03	3.47E+00		1.50E-02	RME EPC is max detect	3 of 4
Nickel	1.10E-03	2.20E-03	1.20E-03	1.13E+00	4.60E+00	2.20E-03	RME EPC is max detect	2 of 4
Strontium	5.27E+00	6.64E+00	1.87E+00	3.38E+02		6.64E+00	RME EPC is max detect	4 of 4
Titanium	6.40E-03	9.80E-03	2.40E-03	8.67E+04		9.80E-03	RME EPC is max detect	4 of 4
Zinc	7.30E-03	2.20E-02	2.20E-02	2.01E+02	2.60E+00	2.20E-02	RME EPC is max detect	1 of 4

WETLAND SURFACE WATER (DISSOLVED METALS)

Chemicals of Interest ⁺	Average	Max Detection	Min Detection	TotRW _{Comb} (1)	^{SW} RBELs Saltwater Fish Only ⁽¹⁾	RME EPC (2)	Statistic Used	# of Detects/# of Samples
Barium	3.20E-04	3.50E-01	1.40E-01	6.49E+01		3.50E-01	RME EPC is max detect	4 of 4
Boron	2.70E-02	2.75E+00	8.50E-01	7.44E+01		2.75E+00	RME EPC is max detect	4 of 4
Chromium	1.20E-03	3.70E-02	1.90E-02	1.26E+02	2.20E+00	3.70E-02	RME EPC is max detect	2 of 4
Copper	2.50E-03	1.10E-02	5.30E-03	3.31E+01		1.10E-02	RME EPC is max detect	3 of 4
Lithium	3.50E-03	2.80E-01	5.70E-02	1.65E+01		2.80E-01	RME EPC is max detect	4 of 4
Manganese	6.00E-04	3.30E-01	2.50E-02	4.09E+01	1.00E-01	3.30E-01	RME EPC is max detect	4 of 4
Molybdenum	2.70E-03	1.70E-02	5.40E-03	3.47E+00		1.70E-02	RME EPC is max detect	3 of 4
Nickel	4.50E-04	1.30E-03	4.90E-04	1.13E+00	4.60E+00	1.30E-03	RME EPC is max detect	2 of 4
Strontium	9.40E-04	7.01E+00	1.89E+00	3.38E+02		7.01E+00	RME EPC is max detect	4 of 4

Notes:

*The maximum detected value is sometimes lower than the average since 1/2 of the reporting limit was used as a proxy value when it was not detected, and because J flag data were used in the risk assessment.

*Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) - TRRP 24. TCEQ, March 31, 2006.

(2) RME EPC is the reasonable maximim exposure exposure point concentration.

TABLE 12 EXPOSURE POINT CONCENTATIONS (mg/L) POND SURFACE WATER (TOTAL)

Chemical of Interest⁺	Average	Max Detection	Min Detection	TotRW _{Comb} (1)	^{SW} RBELs Saltwater Fish Only ⁽¹⁾	RME EPC (2)	Statistic Used	# of Detects/# of Samples
4-Chloroaniline	2.79E-04	8.23E-04	8.23E-04	2.14E+00	NA	8.00E-04	RME EPC is max detect	1 of 6
Aluminum	9.13E-01	2.22E+00	4.10E-01	4.03E+02	NA	2.22E+00	RME EPC is max detect	5 of 6
Antimony	3.82E-03	7.60E-03	3.00E-03	1.99E-01	6.40E+00	7.60E-03	RME EPC is max detect	3 of 6
Arsenic	5.40E-03	1.30E-02	1.20E-02	2.85E-02	1.40E-02	1.30E-02	RME EPC is max detect	2 of 6
Barium	1.45E-01	1.90E-01	1.30E-01	6.49E+01	NA	1.90E-01	RME EPC is max detect	6 of 6
Benzo(a)pyrene	1.12E-04	3.48E-04	3.48E-04		5.40E-03	3.00E-04	RME EPC is max detect	1 of 6
Benzo(b)fluoranthene	4.03E-04	1.81E-03	1.81E-03		1.80E-03	1.80E-03	RME EPC is max detect	1 of 6
Benzo(g,h,i)perylene	3.71E-04	1.73E-03	1.73E-03		NA	1.70E-03	RME EPC is max detect	1 of 6
Benzo(k)fluoranthene	2.06E-04	5.42E-04	5.42E-04		1.80E-03	5.00E-04	RME EPC is max detect	1 of 6
Bis(2-ethylhexyl)phthalate	1.92E-02	4.00E-02	2.90E-02		2.20E-01	4.00E-02	RME EPC is max detect	3 of 6
Boron	2.97E+00	3.52E+00	2.45E+00	7.44E+01	NA	3.52E+00	RME EPC is max detect	6 of 6
Chromium	8.50E-04	1.50E-03	1.50E-03	1.26E+02	2.20E+01	1.50E-03	RME EPC is max detect	1 of 6
Chromium VI	8.50E-03	1.60E-02	1.50E-02	2.43E-01	NA	1.60E-02	RME EPC is max detect	2 of 6
Chrysene	2.48E-04	7.10E-04	7.10E-04		5.40E-02	7.00E-04	RME EPC is max detect	1 of 6
Cobalt	9.12E-04	3.20E-03	5.20E-04	5.33E+01	NA	3.20E-03	RME EPC is max detect	2 of 6
Dibenz(a,h)anthracene	6.26E-04	3.04E-03	3.04E-03		1.80E-03	3.00E-03	RME EPC is max detect	1 of 6
Di-n-butyl Phthalate	3.12E-03	3.81E-03	1.07E-03	4.49E+00	4.50E+01	3.80E-03	RME EPC is max detect	5 of 6
Indeno(1,2,3-cd)pyrene	6.73E-04	3.44E-03	3.44E-03		1.80E-03	3.40E-03	RME EPC is max detect	1 of 6
Iron	2.27E+00	6.67E+00	5.20E-01		NA	6.67E+00	RME EPC is max detect	6 of 6
Lead	2.63E-03	1.10E-02	1.10E-02		1.69E-01	1.10E-02	RME EPC is max detect	1 of 6
Lithium	1.16E-01	1.60E-01	6.70E-02	1.65E+01	NA	1.60E-01	RME EPC is max detect	6 of 6
Manganese	6.37E-01	1.44E+00	8.50E-02	4.09E+01	1.00E+00	1.44E+00	RME EPC is max detect	6 of 6
Molybdenum	8.73E-03	1.80E-02	1.30E-02	3.47E+00	NA	1.80E-02	RME EPC is max detect	3 of 6
Nickel	4.60E-03	7.90E-03	3.00E-03	1.13E+01	4.60E+01	7.90E-03	RME EPC is max detect	6 of 6
Selenium	4.26E-03	9.80E-03	9.80E-03	4.13E+00	4.20E+01	9.80E-03	RME EPC is max detect	1 of 6
Silver	9.30E-03	1.50E-02	3.70E-03	1.57E+00	NA	1.50E-02	RME EPC is max detect	6 of 6
Strontium	4.47E+00	7.19E+00	1.77E+00	3.38E+02	NA	7.19E+00	RME EPC is max detect	6 of 6
Thallium	2.86E-03	7.70E-03	6.20E-03	6.61E-02	4.70E-03	7.70E-03	RME EPC is max detect	2 of 6
Titanium	1.90E-02	4.40E-02	2.10E-03	8.67E+04	NA	4.40E-02	RME EPC is max detect	6 of 6
Vanadium	3.20E-03	8.40E-03	4.30E-03	1.08E+00	NA	8.40E-03	RME EPC is max detect	3 of 6
Zinc	1.20E-01	6.30E-01	2.70E-02	2.01E+02	2.60E+02	6.30E-01	RME EPC is max detect	3 of 6

POND SURFACE WATER (DISSOLVED METALS)

Chemicals of Interest ⁺	Average	Max Detection	Min Detection	TotRW _{Comb} (1)	^{SW} RBELs Saltwater Fish Only ⁽¹⁾	RME EPC	Statistic Used	# of Detects/# of Samples
Antimony	3.50E-03	6.30E-03	3.10E-03	1.99E-01	6.40E+00	6.30E-03	RME EPC is max detect	3 of 6
Barium	1.25E-01	1.30E-01	1.20E-01	6.49E+01	NA	1.30E-01	RME EPC is max detect	6 of 6
Boron	2.79E+00	3.33E+00	2.36E+00	7.44E+01		3.33E+00	RME EPC is max detect	6 of 6
Lithium	1.45E-01	2.20E-01	8.00E-02	1.65E+01	NA	2.20E-01	RME EPC is max detect	6 of 6
Manganese	4.65E-01	1.06E+00	6.60E-02	4.09E+01	1.00E+00	1.06E+00	RME EPC is max detect	6 of 6
Molybdenum	1.01E-02	1.90E-02	1.80E-02	3.47E+00	NA	1.90E-02	RME EPC is max detect	3 of 6
Nickel	1.43E-03	2.60E-03	1.90E-03	1.13E+01	4.60E+01	2.60E-03	RME EPC is max detect	3 of 6
Silver	1.83E-03	2.90E-03	9.40E-04	1.57E+00	NA	2.90E-03	RME EPC is max detect	6 of 6
Strontium	4.32E+00	6.97E+00	1.78E+00	3.38E+02	NA	6.97E+00	RME EPC is max detect	6 of 6
Thallium	1.53E-03	3.20E-03	1.40E-03	6.61E-02	4.70E-03	3.20E-03	RME EPC is max detect	3 of 6
Vanadium	7.58E-04	2.10E-03	2.10E-03	1.08E+00	NA	2.10E-03	RME EPC is max detect	1 of 6

Notes:

*The maximum detected value is sometimes lower than the average since 1/2 of the reporting limit was used as a proxy value when it was not detected, and because J flag data were used in the risk assessment.

*Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) -TRRP 24. TCEQ, March 31, 2006.

(2) RME EPC is the reasonable maximim exposure exposure point concentration.

TABLE 13 EXPOSURE POINT CONCENTATIONS (mg/kg) WETLAND SEDIMENT

		Max					-	# of Detects/#
Chemical of Interest ⁺	Average	Detection	Min Detection	TotSed _{Comb} (1)		95% UCL	Statistic Used (2)	of Samples
1,2-Dichloroethane	1.85E-03	2.40E-03	1.83E-03	6.0E+02	<	1.50E-04	median	3 of 48
2-Methylnaphthalene	2.25E-02	4.30E-01	1.22E-02	4.9E+02	<	1.20E-02	median	4 of 48
4,4'-DDT	1.39E-03	9.22E-03	9.29E-04	8.7E+01		2.52E-03	97.5% KM (Chebyshev)	16 of 55
Acenaphthene	2.13E-02	1.33E-01	1.60E-02	7.4E+03	<	1.11E-02	median	4 of 48
Acenaphthylene	4.88E-02	5.45E-01	2.91E-02	7.4E+03	٧	1.27E-02	median	4 of 48
Aluminum	1.32E+04	1.82E+04	3.40E+03	1.5E+05		1.40E+04	95% Student's-t	48 of 48
Anthracene	2.99E-02	3.34E-01	8.38E-03	3.7E+04		9.70E-02	97.5% KM (Chebyshev)	8 of 48
Antimony ⁽³⁾	1.24E+00	4.24E+00	4.60E-01	8.3E+01		1.80E+00	97.5% KM (Chebyshev)	40 of 48
Arsenic	2.78E+00	1.28E+01	1.00E+00	1.1E+02		4.81E+00	97.5% KM (Chebyshev)	35 of 48
Barium	1.52E+02	8.20E+02	3.60E+01	2.3E+04		2.38E+02	95% Chebyshev	48 of 48
Benzo(a)anthracene	9.20E-02	9.93E-01	5.46E-02	1.6E+01	<	1.14E-02	median	5 of 48
Benzo(a)pyrene	1.10E-01	1.30E+00	1.76E-02	1.6E+00		3.47E-01	97.5% KM (Chebyshev)	15 of 48
Benzo(b)fluoranthene	9.23E-02	1.36E+00	1.62E-02	1.6E+01		1.59E-01	95% KM (BCA)	19 of 48
Benzo(a.h.i)pervlene	2.06E-01	1.94E+00	4.40E-02	3.7E+03		4.49E-01	95% KM (Chebyshev)	24 of 48
Benzo(k)fluoranthene	1.01E-01	7.30E-01	6.92E-02	1.6E+02		1.31E-01	95% KM (Bootstrap)	14 of 48
Beryllium	8.94E-01	1.37E+00	2.80E-01	2.7E+01		9.43E-01	95% Student's-t	48 of 48
Boron ⁽³⁾	1.53E+01	4.62E+01	5.17E+00	1.1E+05		2.61E+01	97.5% KM (Chebyshev)	24 of 48
Cadmium	1.16E-01	4.80E-01	3.30E-02	1.1E+03		2.42E-01	97.5% KM (Chebyshev)	20 of 48
Carbazole	2.12E-02	1.41E-01	1.58E-02	7.1E+02	<	1.10E-02	median	5 of 48
Carbon Disulfide	3.48E-03	6.99E-03	3.34E-03	7.3E+04	<	1.40E-04	median	4 of 48
Chromium	1.51E+01	4.46E+01	8.96E+00	3.6E+04		1.64E+01	95% Student's-t	48 of 48
Chromium VI	1.63E+00	4.04E+00	1.30E+00	1.4E+02	<	5.67E-01	median	6 of 25
Chrysene	2.15E-01	4.05E+00	1.10E-02	1.6E+03		8.71E-01	97.5% KM (Chebyshev)	19 of 48
Cobalt	6.98E+00	9.89E+00	3.00E+00	3.2E+04		7.32E+00	95% Student's-t	48 of 48
Copper	1.45E+01	4.90E+01	5.44E+00	2.1E+04		2.21E+01	97.5% KM (Chebyshev)	48 of 48
Dibenz(a,h)anthracene	2.87E-01	2.91E+00	1.29E-01	1.6E+00	٧	3.75E-02	median	6 of 48
Dibenzofuran	1.29E-02	8.00E-02	1.00E-02	6.1E+02	<	1.56E-02	median	3 of 48
Endosulfan Sulfate	8.46E-03	6.00E-02	7.31E-03	9.2E+02	<	4.40E-04	median	3 of 48
Endrin Aldehyde	1.28E-03	1.00E-02	5.66E-04	4.6E+01		3.32E-03	97.5% KM (Chebyshev)	9 of 48
Endrin Ketone	3.55E-03	1.30E-02	3.29E-03	4.6E+01	<	5.50E-04	median	3 of 48
Fluoranthene	1.04E-01	2.17E+00	1.20E-02	4.9E+03		4.46E-01	97.5% KM (Chebyshev)	13 of 48
Fluorene	2.17E-02	1.39E-01	1.50E-02	4.9E+03	<	1.10E-02	median	4 of 48
gamma-Chlordane	8.77E-04	3.60E-03	7.69E-04	4.1E+01	<	4.40E-04	median	4 of 48
Indeno(1,2,3-cd)pyrene	2.20E-01	1.94E+00	6.28E-02	1.6E+01		3.17E-01	95% KM (BCA)	23 of 48
Iron	1.72E+04	6.09E+04	1.11E+04			1.88E+04	95% Student's-t	48 of 48
Lead	2.54E+01	2.37E+02	9.40E+00	5.0E+02		4.68E+01	95% Chebyshev	48 of 48
Lithium	1.87E+01	2.76E+01	5.43E+00	1.1E+04		1.96E+01	95% Student's-t	48 of 48
Manganese	3.32E+02	1.01E+03	8.76E+01	1.4E+04		5.17E+02	97.5% Chebyshev	48 of 48
Mercury	2.04E-02	8.10E-02	6.10E-03	3.4E+01		3.80E-02	97.5% KM (Chebyshev)	26 of 48
Molybdenum	5.99E-01	3.24E+00	1.30E-01	1.8E+03		1.20E+00	97.5% KM (Chebyshev)	38 of 48
Nickel	1.73E+01	2.77E+01	1.09E+01	1.4E+03		1.81E+01	95% Student's-t	48 of 48
Phenanthrene	8.46E-02	1.30E+00	2.30E-02	3.7E+03		1.56E-01	95% KM (BCA)	12 of 48
Pyrene	1.52E-01	1.64E+00	1.59E-02	3.7E+03		4.77E-01	97.5% KM (Chebyshev)	19 of 48
Strontium	6.70E+01	3.30E+02	1.88E+01	1.5E+05		1.15E+02	97.5% KM (Chebyshev)	48 of 48
Tin ⁽³⁾	6.38E-01	4.61E+00	3.45E+00	9.2E+04		1.26E+00	95% Chebyshev	4 of 48
Titanium	2.91E+01	6.87E+01	8.15E+00	1.0E+06		4.17E+01	97.5% Chebyshev	48 of 48
Toluene	1.58E-03	2.14E-03	1.57E-03	5.9E+04	<	7.30E-04	median	3 of 48
Vanadium	2.17E+01	3.20E+01	9.02E+00	3.3E+02		2.28E+01	95% Student's-t	48 of 48
Zinc	1.39E+02	9.03E+02	3.15E+01	7.6E+04		2.36E+02	95% Chebyshev	53 of 53

[†] Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

^{(1) -} TotSed_{Comb} PCL = TCEQ Protective Concentration Level for total sediment combined pathway (includes inhalation; ingestion; dermal pathways).

^{(2) -} Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

⁽a) Samples 2WSED8, SWSED10, 4WSED2, and 4WSED3 were re-analyzed for antimony, boron, and tin because theinitial data indicated concentrations much higher than data for the rest of the samples although QA/QC indicated that they were acceptable. The re-analysis was run twice with good concurrence between the two re-analyses but with very different values from the original so the first re-analyzed value was used in the UCL calculation.

TABLE 14
EXPOSURE POINT CONCENTATIONS (mg/kg)
POND SEDIMENT

Chemical of Interest ⁺	Average	Max Detection	Min Detection	TotSed _{Comb} (1)		RME EPC	Statistic Used (2)	# of Detects/# of Samples
2,4,6-Trichlorophenol	4.29E-02	4.29E-02	4.29E-02	1.3E+03	<	2.69E-02	median	1 of 8
4,4'-DDD	6.76E-04	6.76E-04	6.76E-04	1.2E+02	<	2.00E-02	median	1 of 8
4,4'-DDT	1.27E-03	1.57E-03	1.11E-03	8.7E+01	<	1.10E-02	median	3 of 8
Acetone	7.98E-02	7.98E-02	7.98E-02	6.6E+05	<	4.25E-02	median	1 of 8
Aluminum	1.17E+04	1.63E+04	7.99E+03	1.5E+05		1.40E+04	95% Student's-t	8 of 8
Antimony	1.41E+00	1.85E+00	3.30E-01	8.3E+01	<	4.40E-01	median	8 of 8
Arsenic	3.76E+00	5.01E+00	3.39E+00	1.1E+02	<	3.35E-01	median	3 of 8
Barium	1.99E+02	4.17E+02	1.08E+02	2.3E+04		3.83E+02	95% Chebyshev	8 of 8
Benzo(b)fluoranthene	5.37E-02	1.06E-01	2.93E-02	1.6E+01	<	3.38E-02	median	6 of 8
Benzo(g,h,i)perylene	1.35E-01	1.35E-01	1.35E-01	3.7E+03	<	1.59E-02	median	1 of 8
Benzo(k)fluoranthene	1.14E-01	1.30E-01	1.10E-01	1.6E+02	<	2.75E-02	median	3 of 8
Beryllium	8.34E-01	1.13E+00	5.80E-01	2.7E+01		9.72E-01	95% Student's-t	8 of 8
beta-BHC	6.99E-04	6.99E-04	6.99E-04	1.4E+01	<	2.30E-02	median	1 of 8
Boron	1.73E+01	2.84E+01	1.10E+01	1.1E+05	<	1.24E+01	median	5 of 8
Bromomethane	1.61E-02	3.10E-02	1.40E-02	1.0E+03	<	1.35E-02	median	2 of 8
Cadmium	2.13E-01	2.70E-01	1.90E-01	1.1E+03	<	1.90E-01	median	5 of 8
Carbon Disulfide	7.71E-03	7.71E-03	7.71E-03	7.3E+04	<	9.60E-04	median	1 of 8
Chromium	1.29E+01	2.01E+01	8.29E+00	3.6E+04		1.60E+01	95% Student's-t	8 of 8
Chrysene	2.57E-02	2.57E-02	2.57E-02	1.6E+03	<	1.40E-02	median	1 of 8
Cobalt	6.94E+00	8.99E+00	5.19E+00	3.2E+04		7.86E+00	95% Student's-t	8 of 8
Copper	1.52E+01	2.68E+01	8.33E+00	2.1E+04		2.02E+01	95% Student's-t	8 of 8
Iron	1.53E+04	2.01E+04	1.13E+04			1.74E+04	95% Student's-t	8 of 8
Lead	1.75E+01	3.05E+01	1.06E+01	5.0E+02		2.23E+01	95% Student's-t	8 of 8
Lithium	1.85E+01	2.37E+01	1.35E+01	1.1E+04		2.12E+01	95% Student's-t	8 of 8
m,p-Cresol	3.75E-02	3.75E-02	3.75E-02		<	2.34E-02	median	1 of 8
Manganese	4.88E+02	7.11E+02	3.52E+02	1.4E+04		5.71E+02	95% Student's-t	8 of 8
Methyl lodide	4.10E-02	4.10E-02	4.10E-02	1.0E+03	<	7.84E-03	median	1 of 8
Molybdenum	2.59E-01	6.00E-01	2.10E-01	1.8E+03	<	1.20E-01	median	2 of 8
Nickel	1.63E+01	2.06E+01	1.23E+01	1.4E+03		1.84E+01	95% Student's-t	8 of 8
Pyrene	2.13E-02	2.65E-02	2.01E-02	3.7E+03	<	1.96E-02	median	3 of 8
Strontium	1.04E+02	1.81E+02	6.33E+01	1.5E+05		1.32E+02	95% Student's-t	8 of 8
Titanium	3.00E+01	4.05E+01	1.91E+01	1.0E+06		3.54E+01	95% Student's-t	8 of 8
Vanadium	2.18E+01	2.74E+01	1.68E+01	3.3E+02		2.46E+01	95% Student's-t	8 of 8
Zinc	3.32E+02	9.99E+02	3.82E+01	7.6E+04		9.61E+02	95% Chebyshev	8 of 8

Notes:

* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) _Tot_Sed_Comb PCL = TCEQ Protective Concentration Level for total sediment combined pathway (includes inhalation; ingestion; dermal pathways).

^{(2) -} Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

TABLE 15 EXPOSURE POINT CONCENTRATIONS (mg/kg) BACKGROUND SOIL+

Chemical of Interest**	Average	Max Detection	Min Detection	TotSoil _{Comb} (1)	EPA Region 6 Soil Screening Criteria ⁽²⁾		95% UCL	Statistic Used ⁽³⁾	# of Detects/# of Samples
Antimony	1.62E+00	2.19E+00	2.50E-01	3.06E+02	4.50E+02	<	8.90E-01	median	5 of 10
Arsenic	3.44E+00	5.90E+00	2.40E-01	1.96E+02	1.80E+00		4.48E+00	95% Winsor's-t	10 of 10
Barium	3.33E+02	1.13E+03	1.50E+02	8.90E+04	7.90E+04		9.02E+02	97.5% Chebyshev	10 of 10
Benzo(a)anthracene	8.20E-02	8.20E-02	8.20E-02	2.36E+01	2.30E+00	<	7.61E-03	median	1 of 10
Benzo(a)pyrene	7.60E-02	7.60E-02	7.60E-02	2.37E+00	2.30E-01	٧	1.00E-02	median	1 of 10
Benzo(b)fluoranthene	5.70E-02	5.70E-02	5.70E-02	2.36E+01	2.30E+00	<	8.22E-03	median	1 of 10
Benzo(g,h,i)perylene	8.30E-02	8.30E-02	8.30E-02	1.86E+04		<	3.50E-02	median	1 of 10
Benzo(k)fluoranthene	1.06E-01	1.06E-01	1.06E-01	2.37E+02	2.30E+01	<	1.15E-02	median	1 of 10
Cadmium	8.30E-02	1.10E-01	4.10E-02	8.52E+02	5.60E+02	<	1.90E-02	median	3 of 10
Carbazole	1.10E-02	1.10E-02	1.10E-02	9.54E+02	9.60E+01	<	8.86E-03	median	1 of 10
Chromium	1.52E+01	2.01E+01	1.07E+01	5.70E+04	5.00E+02		1.70E+01	95% Student's-t	10 of 10
Chrysene	8.30E-02	8.30E-02	8.30E-02	2.40E+03	2.30E+02	<	1.40E-02	median	1 of 10
Copper	1.21E+01	1.93E+01	7.68E+00	3.70E+04	4.20E+04		1.44E+01	95% Student's-t	10 of 10
Fluoranthene	1.56E-01	1.56E-01	1.56E-01	2.48E+04	2.40E+04	<	1.15E-02	median	1 of 10
Indeno(1,2,3-cd)pyrene	4.17E-01	4.17E-01	4.17E-01	2.37E+01	2.30E+00	٧	2.95E-02	median	1 of 10
Lead	1.34E+01	1.52E+01	1.10E+01	1.60E+03	8.00E+02		1.43E+01	95% Student's-t	10 of 10
Lithium	2.11E+01	3.25E+01	1.44E+01	1.90E+03	2.30E+04		2.41E+01	95% Student's-t	10 of 10
Manganese	3.77E+02	5.51E+02	2.84E+02	2.41E+04	3.50E+04		5.07E+02	95% Chebyshev	10 of 10
Mercury	2.13E-02	3.00E-02	1.50E-02	3.26E+00	3.40E+02		2.41E-02	95% Student's-t	10 of 10
Molybdenum	5.22E-01	6.80E-01	4.20E-01	4.51E+03	5.70E+03		5.65E-01	95% Student's-t	10 of 10
Phenanthrene	1.37E-01	1.37E-01	1.37E-01	1.86E+04		<	6.72E-03	median	1 of 10
Pyrene	1.27E-01	1.27E-01	1.27E-01	1.86E+04	3.20E+04	<	2.00E-02	median	1 of 10
Zinc	2.47E+02	9.69E+02	3.66E+01	2.45E+05	1.00E+05		7.50E+02	95% Chebyshev	10 of 10

Notes:
+ Soil was collected from 0 to 4 ft. below ground surface.

** Chemicals of interest are any chemical measured in at least one sample. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

^{(1) -} TotSoilComb PCL = TCEQ Protective Concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).
(2) - From EPA's "Region 6 Human Health Medium-Specific Screening Levels 2004-2005". Industrial Outdoor Worker.

^{(3) -} Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

TABLE 16 QUALITATIVE CURRENT OFF-SITE RESIDENTIAL RECEPTOR EVALUATION SOUTH AREA SOIL*

		Max					# of Detects/# of
Chemical of Interest ⁺	Average	Detection	Min Detection	AirSoil _{Inh-VP} (1)	95% UCL	Statistic Used (3)	Samples
1,3,5-Trimethylbenzene	9.89E-02	4.36E+00	2.67E-04	6.00E+01	5.56E-01	97.5% KM (Chebyshev)	9 of 83
2-Butanone	3.29E-03	2.26E-02	9.92E-04	5.90E+04	4.14E-03	95% KM (Bootstrap)	4 of 83
2-Hexanone	1.65E-03	2.07E-02	1.09E-03	5.70E+01	3.63E-02	97.5% KM (Chebyshev)	8 of 83
2-Methylnaphthalene	6.97E-02	7.21E+00	1.06E-02		1.60E-01	95% KM (BCA)	32 of 166
4,4'-DDD	7.76E-03	1.12E+00	3.69E-04		5.08E-02	97.5% KM (Chebyshev)	21 of 166
4,4'-DDE	1.58E-03	6.93E-02	4.28E-04	0.005.00	2.81E-03	95% KM (BCA)	22 of 166
4,4'-DDT Acenaphthene	3.75E-03 4.33E-02	1.13E-01 1.69E+00	2.81E-04 1.13E-02	6.20E+02	9.27E-03 1.16E-01	97.5% KM (Chebyshev) 97.5% KM (Chebyshev)	68 of 166 35 of 166
Acenaphthylene	4.84E-02	1.09E+00 1.20E+00	1.72E-02		7.19E-02	95% KM (BCA)	37 of 166
Acetone	3.70E-02	1.60E-01	3.10E-02	5.80E+03	5.41E-02	97.5% KM (Chebyshev)	10 of 83
Aluminum	6.45E+03	1.57E+04	4.14E+02	2.60E+06	8.20E+03	97.5% Chebyshev	166 of 166
Anthracene	8.89E-02	2.46E+00	1.12E-02		1.24E-01	95% KM (BCA)	65 of 166
Antimony	1.45E+00	5.51E+00	2.00E-01	2.50E+05	1.87E+00	97.5% KM (Chebyshev)	144 of 166
Aroclor-1254	2.16E-01	1.15E+01	3.34E-03	2.80E+00	7.73E-01	97.5% KM (Chebyshev)	25 of 170
Arsenic	3.33E+00	2.43E+01	2.30E-01	2.70E+03	4.92E+00	97.5% KM (Chebyshev)	139 of 166
Barium	2.37E+02	2.18E+03	1.86E+01	2.50E+05	3.30E+02	95% Chebyshev	166 of 166
Benzene	3.89E-03	2.21E-02	3.39E-04	8.40E+01	6.09E-03	97.5% KM (Chebyshev)	72 of 83
Benzo(a)anthracene	2.69E-01	5.02E+00	1.18E-02	1.90E+03	6.43E-01	97.5% KM (Chebyshev)	44 of 166
Benzo(a)pyrene	3.48E-01	4.88E+00	9.99E-03	4.40E+02	7.63E-01	97.5% KM (Chebyshev)	113 of 166
Benzo(b)fluoranthene	4.77E-01	5.97E+00	4.08E-02	3.20E+03	8.22E-01	95% KM (Chebyshev)	102 of 166
Benzo(g,h,i)perylene	2.17E-01	4.24E+00	9.89E-03		4.94E-01	97.5% KM (Chebyshev)	81 of 166
Benzo(k)fluoranthene	1.58E-01	4.25E+00	1.58E-02	7.80E+04	3.81E-01	97.5% KM (Chebyshev)	45 of 166
Beryllium	4.65E-01	4.60E+00	1.40E-02	4.80E+03	5.25E-01	95% KM (BCA)	165 of 166
Boron	5.68E+00	5.44E+01	2.43E+00	1.00E+07	6.51E+00	95% KM (Bootstrap)	72 of 166
Butyl Benzyl Phthalate	2.01E-02	6.17E-01	1.29E-02	1.30E+04	4.72E-02	97.5% KM (Chebyshev)	10 of 166
Cadmium	3.40E-01	9.71E+00	2.30E-02	6.50E+03	4.67E-01	95% KM (Bootstrap)	93 of 166
Carbazole Carbon Disulfide	4.64E-02 1.67E-03	1.54E+00 2.80E-02	1.04E-02 9.87E-04	5.50E+03	1.19E-01	97.5% KM (Chebyshev)	42 of 166 13 of 83
Chromium	1.35E+01	1.36E+02	2.03E+00	5.00E+04	3.92E-03 1.78E+01	97.5% KM (Chebyshev) 95% Chebyshev	166 of 166
Chrysene	3.28E-01	4.87E+00	9.01E-03	3.00E+05	7.12E-01	97.5% KM (Chebyshev)	93 of 166
Cobalt	4.11E+00	1.60E+01	4.90E-02	1.30E+03	4.35E+00	95% Winsor-t	165 of 166
Copper	2.43E+01	4.87E+02	1.30E-01	5.00E+05	4.01E+01	95% KM (Chebyshev)	164 of 166
Cyclohexane	2.65E-01	2.17E+01	6.26E-04	4.70E+04	1.91E+00	97.5% KM (Chebyshev)	47 of 83
Dibenz(a,h)anthracene	1.48E-01	1.64E+00	6.19E-02	1.00E+03	1.80E-01	95% KM (Bootstrap)	56 of 166
Dibenzofuran	3.34E-02	8.21E-01	1.67E-02		7.31E-02	97.5% KM (Chebyshev)	23 of 166
Dieldrin	8.89E-04	2.05E-02	2.43E-04	1.60E+01	2.11E-03	97.5% KM (Chebyshev)	33 of 166
Di-n-butyl Phthalate	4.18E-02	7.53E-01	3.11E-02	1.50E+04	7.65E-02	97.5% KM (Chebyshev)	11 of 166
Endosulfan Sulfate	1.27E-03	7.13E-02	7.13E-02		2.30E-03	95% KM (BCA)	21 of 166
Endrin Aldehyde	2.01E-03	7.38E-02	4.97E-04		3.54E-03	95% KM (BCA)	31 of 166
Endrin Ketone	1.35E-03	2.00E-02	4.69E-04	9.70E+02	2.53E-03	97.5% KM (Chebyshev)	25 of 166
Ethylbenzene	3.40E-03	1.05E-01	6.54E-04	7.90E+03	5.91E-03	95% KM (Bootstrap)	47 of 83
Fluoranthene	5.95E-01	1.42E+01	1.33E-02		1.41E+00	97.5% KM (Chebyshev)	96 of 166
Fluorene	4.44E-02	1.11E+00	9.45E-03	 	1.07E-01	97.5% KM (Chebyshev)	41 of 166
gamma-Chlordane	9.98E-04	1.56E-02	7.10E-04	5.00E+02 1.30E+04	1.84E-03	97.5% KM (Chebyshev)	12 of 166
Indeno(1,2,3-cd)pyrene	3.85E-01 1.43E+04	6.49E+00 7.71E+04	5.74E-02 2.41E+03	1.30E+04	6.58E-01	95% KM (Chebyshev)	104 of 166
Iron Isopropylbenzene (cumene)	8.31E-01	6.49E+01	2.41E+03 3.18E-04	4.80E+03	1.75E+04 5.85E+00	95% Chebyshev 97.5% KM (Chebyshev)	166 of 166 16 of 83
Lead	5.35E+01	7.02E+02	2.48E+00	4.00E+03	1.04E+02	97.5% KW (Chebyshev)	166 of 166
Lithium	1.00E+01	2.86E+01	6.50E-01		1.22E+01	95% Chebyshev	166 of 166
m,p-Xylene	3.43E-02	2.56E+00	5.58E-04	4.80E+03	1.69E-01	95% KM (Chebyshev)	53 of 83
Manganese	2.61E+02	8.92E+02	5.93E+01	2.50E+04	2.78E+02	95% Student's-t	166 of 166
Mercury	2.56E-02	8.50E-01	2.60E-03	2.40E+00	4.00E-02	95%KM (BCA)	73 of 166
Methylcyclohexane	3.66E-02	2.73E+00	2.23E-04	2.40E+04	1.80E-01	95% KM (Chebyshev)	57 of 83
Molybdenum	9.05E-01	1.04E+01	8.80E-02	2.50E+06	1.62E+00	97.5% KM (Chebyshev)	118 of 166
Naphthalene	3.26E-01	1.92E+01	4.82E-03	1.40E+02	2.65E-03	median	8 of 83
Nickel	1.17E+01	3.67E+01	2.70E+00	2.40E+04	1.24E+01	95% Student's-t	166 of 166
n-Propylbenzene	2.37E-02	1.80E+00	2.30E-04	3.30E+03	1.63E-01	97.5% KM (Chebyshev)	14 of 83
o-Xylene	1.30E-02	8.40E-01	2.23E-04	5.80E+03	7.75E-02	97.5% KM (Chebyshev)	32 of 83
Phenanthrene	4.02E-01	1.26E+01	1.36E-02		9.99E-01	97.5% KM (Chebyshev)	95 of 166
Pyrene	4.32E-01	8.47E+00	1.21E-02		9.71E-01	97.5% KM (Chebyshev)	98 of 166
Strontium	7.56E+01	5.91E+02	1.65E+01		1.01E+02	95% Chebyshev	166 of 166
Tin	8.11E-01	6.48E+00	5.20E-01	1.00E+07	1.20E+00	97.5% KM (Chebyshev)	40 of 166
Titanium	2.58E+01	6.45E+02	4.02E+00		3.22E+01	95% Student's-t	166 of 166
Toluene	3.99E-03	1.92E-02	7.21E-04	3.20E+04	6.04E-03	97.5% KM (Chebyshev)	69 of 83
		4.56E+01	4.73E+00	2.50E+04	1.73E+01	97.5% Chebyshev	166 of 166
Vanadium	1.44E+01						E0 -4 00
	1.44E+01 4.73E-02 4.34E+02	3.40E+00 7.65E+03	7.77E-04 6.17E+00	4.80E+03	3.04E-01 8.15E+02	97.5% KM (Chebyshev) 97.5% Chebyshev	53 of 83 166 of 166

^{*} Soil was collected from 0 to 4 ft. below ground surface.

* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent.

^{(1) -} Air Soil Inh-VP PCL = TCEQ protective concentration Level for 30 acre source area Residential soil-to-air pathway (inhalation of volatiles and particulates).

 $^{^{(2)}}$ - Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

TABLE 17 QUALITATIVE CURRENT OFF-SITE RESIDENTIAL RECEPTOR EVALUATION NORTH AREA SOIL*

2-Methylnaphthalene	# of Detects/# of Samples 3 of 19 2 of 19 4 of 19 11 of 19 4 of 38 2 of 38	median			Detection		Average	Chemical of Interest**
11-10-Informemen	2 of 19 4 of 19 11 of 19 4 of 38 2 of 38		1.75E-04					
11-Dichlorostehne	2 of 19 4 of 19 11 of 19 4 of 38 2 of 38			3.20E+03	1.61E-03	5.18E-01	2.67E-02	1.1-Dichloroethane
2-Butanone	11 of 19 4 of 38 2 of 38	median						1,1-Dichloroethene
2Methylnaphthalene	4 of 38 2 of 38							
4.4*DDE	2 of 38	97.5% KM (Chebyshev)	7.87E-02	5.90E+04	1.70E-03	2.08E-01	1.32E-02	2-Butanone
44-DDT		median	1.19E-02		1.00E-02	5.30E-02	4.05E-02	2-Methylnaphthalene
Aperagnhthene		median	4.28E-04		2.16E-03		2.50E-03	4,4'-DDE
Aluminum	7 of 38	97.5% KM (Chebyshev)	7.94E-02	6.20E+02	5.97E-04	1.08E-02	1.16E-02	4,4'-DDT
Anthracene	4 of 38	median	1.11E-02		2.10E-02	1.57E-01	1.99E-02	Acenaphthene
Antimony	38 of 38	95% Student's-t	1.33E+04	2.60E+06	1.81E+03	1.83E+04	1.23E+04	Aluminum
Aroslori 181E-01 9.38E-02 1.22E-02 2.90E+00 4.30E-03 median Aroslori 2.44E+00 5.69E+00 5.40E-01 2.70E+03 3.82E+02 97.59K (Mc(Chebyshev Barrum 1.41E+02 3.62E+02 4.61E+01 2.50E+05 2.34E+02 97.59K (Mc(Chebyshev 2.90E+03 1.38E-03 3.82E+002 97.59K (Mc(Chebyshev 2.90E+03 1.38E-03 3.80E+01 5.39E-03 97.59K (Mc(Chebyshev 2.90E+03 1.38E-03 3.80E+02 37.59K (Mc(Chebyshev 2.90E+03 1.30E+03 3.80E+02 37.59K (Mc(Chebyshev 3.70E+03 3.80E+02 3.70E+03 3.80E+02 3.70E+03 3.80E+02 3.70E+03 3.70E+0	6 of 38	97.5% KM (Chebyshev)	8.96E-02		8.87E-03	2.64E-01	2.90E-02	Anthracene
Arsenic 2.44E+00 5.69E+00 5.40E-01 2.70E+03 3.82E+00 97.5% KM (Chebyshev Barrum 1.41E+02 3.62E+02 4.61E+01 2.50E+05 2.34E+02 97.5% Chebyshev Benzo(a)purpne 2.92E-03 6.32E-03 1.38E-03 8.40E+01 5.39E-03 97.5% KM (Chebyshev Benzo(a)purpne 1.09E-01 1.18E+00 3.38E-02 1.90E+03 1.11E-02 median median 1.09E-01 1.42E+00 1.35E-02 4.40E+02 3.78E-01 97.5% KM (Chebyshev Benzo(b)fluoranthene 1.44E-01 1.62E+00 4.47E-02 3.78E-01 97.5% KM (Chebyshev Benzo(b)fluoranthene 1.44E-01 1.28E+00 2.37E-02 4.40E+02 3.78E-01 97.5% KM (Chebyshev Benzo(k)fluoranthene 1.07E-01 7.99E-01 6.80E-02 4.40E+02 3.78E-01 97.5% KM (Chebyshev Benzo(k)fluoranthene 1.07E-01 7.99E-01 6.80E-02 4.80E+03 1.18E+00 97.5% KM (Chebyshev Benzo(k)fluoranthene 1.77E-01 7.99E-01 6.80E-02 4.80E+03 1.18E+00 97.5% KM (Chebyshev Benzo(k)fluoranthene 1.75E-01 7.99E-01 6.80E-02 4.80E+03 1.18E+00 97.5% KM (Chebyshev Boron 7.64E+00 3.92E+01 3.14E+00 1.00E+07 1.71E+01 97.5% KM (Chebyshev Boron 7.64E+00 3.92E+01 3.14E+00 1.00E+07 1.71E+01 97.5% KM (Chebyshev Boron 7.64E+00 3.92E+01 3.14E+00 1.30E+04 1.36E-02 median 0.40E+02 1.80E-04 median 0.4	16 of 38	95% KM (Bootstrap)	2.45E+00	2.50E+05	1.66E+00	8.09E+00	1.45E+00	Antimony
Barlum	2 of 38		4.30E-03		1.22E-02	9.38E-02	1.81E-01	Aroclor-1254
Benzene	32 of 38	97.5% KM (Chebyshev)	3.82E+00	2.70E+03	5.40E-01	5.69E+00		Arsenic
Benzo(a)pryrene	38 of 38			2.50E+05	4.61E+01	3.62E+02		
Benzo(a)pyrene	12 of 18	97.5% KM (Chebyshev)						
Benzo(g)fluoranthene	4 of 38				3.83E-02			Benzo(a)anthracene
Benzo(k)filuoranthene	10 of 38	97.5% KM (Chebyshev)			1.35E-02		9.37E-02	Benzo(a)pyrene
Benzo(k)fluoranthene	11 of 38			3.20E+03				
Eeryllium	14 of 38	97.5% KM (Chebyshev)						
Bis(2-ethylhexyl)phthalate	6 of 38							
Bornol T.64E+00 3.92E+01 3.14E+00 1.00E+07 1.71E+01 97.5% KM (Chebyshev Bromoform 1.14E-02 1.80E-02 1.10E+02 4.30E+02 1.86E-04 median median Butyl Benzyl Phthalate 5.66E-02 1.51E-01 5.40E-02 1.30E+04 1.36E-02 median median 3.63E-01 8.00E-01 2.80E-01 6.50E+03 5.19E-01 97.5% KM (Chebyshev Carbazole 1.74E-02 1.28E-01 1.08E-02 1.10E-02 median median Carbon Disulfide 8.64E-03 2.84E-02 7.76E-00 5.00E+03 1.19E-04 median median Chromium 1.83E+01 1.28E+02 7.76E+00 5.00E+04 3.21E+01 95% Chebyshev Chrysene 1.03E-01 1.30E+00 1.04E-02 3.00E+05 3.84E-01 97.5% KM (Chebyshev Chrysene 6.61E-02 9.99E-01 1.95E-02 6.30E+03 1.38E-04 median median Cobalt 6.52E+00 1.03E+01 2.81E+00 1.30E+03 7.04E+00 95% Student's-t-Copper 6.56E+01 2.00E+02 4.59E+00 5.00E+05 5.12E+02 99% Chebyshev Cyclohexane 1.13E-03 1.85E-03 9.81E-04 4.70E+04 1.25E-03 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Di-n-octyl Phthalate 1.01E-02 1.10E-02 1.50E-02 1.50E-02 median Di-n-octyl Phthalate 1.05E-02 1.50E-02 1.50E-02 1.50E-02 median Di-n-octyl Phthalate 1.05E-02 1.50E-02 1.50E-02 1.50E-02 median Di-n-octyl Phthalate 1.90E-02 1.29E-03 1.4E-03 median Di-n-octyl Phthalate 1.90E-02 1.29E-03 1.4E-03 median Di-n-octyl Phthalate 1.90E-02 1.29E-03 1.4E-02 8.24E-01 97.5% KM (Chebyshev Di-n-octyl Phthalate 1.90E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-03 median Di-n-octyl Phthalate 1.90E-02 1.29E-03 1.4E-03 median Di-n-octyl Phthalate 1.90E-02 1.29E-03 1.4E-03 median Di-n-octyl Phthalate 1.90E-02 1.29E-03 1.4E-03 median Di-n-octyl Phthalate 1.90E-02 1.29E-04 1.29E-04 97.5% KM (Chebyshev Di-n-octyl Phthalate 1.90E-02 1.29E-04 1.29E-04 1.29E-04 97.5% KM (Chebyshev Di-n-octyl Ph	35 of 38	97.5% KM (Chebyshev)	1.18E+00	4.80E+03	6.60E-02			,
Bromoform	11 of 38	97.5% KM (Chebyshev)						
Butyl Benzyl Phthalate	26 of 38	97.5% KM (Chebyshev)						
Cadmium 3.63E-01 8.00E-01 2.80E-01 6.50E+03 5.19E-01 97.5% KM (Chebyshev Carbazole Carboa Disulfide 1.74E-02 1.28E-01 1.08E-02 1.10E-02 median Carbon Disulfide 8.64E-03 2.284E-02 7.57E-03 5.50E+04 3.21E+01 95% Chebyshev Chrysene 1.03E-01 1.30E+00 1.04E-02 3.00E+05 3.84E-01 97.5% KM (Chebyshev Chebyshev Chrysene 1.03E-01 1.30E+00 1.04E-02 3.00E+05 3.84E-01 97.5% KM (Chebyshev Chebyshev Chebys	2 of 19							
Carbazole 1.74E-02 1.28E-01 1.08E-02 1.10E-02 median Carbon Disulfide 8.64E-03 2.84E-02 7.57E-03 5.50E+03 1.19E-04 median Chromium 1.83E+01 1.28E+02 7.76E+00 5.00E+04 3.21E+01 95% Chebyshev Chrysene 1.03E-01 1.30E+00 1.04E-02 3.00E+05 3.84E-01 97.5% KM (Chebyshev Cis-1,2-Dichloroethene 6.61E-02 9.99E-01 1.95E-02 6.30E+03 1.38E-04 median Cobalt 6.52E+00 1.03E+01 2.81E+00 5.00E+05 5.12E+02 99% Chebyshev Cyclohexane 1.13E-03 1.85E-03 9.81E-04 4.70E+04 1.25E-03 median Dibenzofuran 1.96E-02 4.04E-01 4.50E-02 1.00E+03 1.08E-02 median Di-n-butyl Phthalate 1.01E-02 1.50E-02 1.50E-02 median Di-n-butyl Phthalate 1.05E-02 1.50E-02 1.50E+04 3.07E-02 median Di-n-butyl Phthalate <td< td=""><td>2 of 38</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2 of 38							
Carbon Disulfide 8.64E-03 2.84E-02 7.57E-03 5.50E+03 1.19E-04 median Chromium 1.83E+01 1.28E+02 7.76E+00 5.00E+04 3.21E+01 95% Chebyshev Chrysene 1.03E-01 1.03E-00 1.04E-02 3.00E+05 3.84E-01 97.5% KM (Chebyshev cis-1,2-Dichloroethene 6.61E-02 9.99E-01 1.95E-02 6.30E+03 1.38E-04 median Cobalt 6.52E+00 1.03E+01 2.81E+00 1.30E+03 7.04E+00 95% Student's-t Copper 6.56E+01 2.00E+02 4.59E+00 5.00E+05 5.12E+02 99% Chebyshev Cyclohexane 1.13E-03 1.85E-03 9.81E-04 4.70E+04 1.25E-03 median Dibenz(a,h)anthracene 6.88E-02 4.04E-01 4.50E-02 1.00E+03 1.08E-02 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Dien-butyl Phthalate 1.05E-02 1.50E-02 1.50E-02 median Di-n-butyl Phthalate	15 of 38	` '		6.50E+03				
Chromium 1.83E+01 1.28E+02 7.76E+00 5.00E+04 3.21E+01 95% Chebyshev Chrysene 1.03E-01 1.30E+00 1.04E-02 3.00E+05 3.84E-01 97.5% KM (Chebyshev cis-1,2-Dichloroethene 6.61E-02 9.99E-01 1.95E-02 6.30E+03 1.38E-04 median Cobalt 6.52E+00 1.03E+01 2.81E+00 1.30E+03 7.04E+00 95% Student's-t Copper 6.56E+01 2.00E+02 4.59E+00 5.00E+05 5.12E+02 99% Chebyshev Cyclohexane 1.13E-03 1.85E-03 9.81E-04 4.70E+04 1.25E-03 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-03 median Diehyl Phthalate 1.01E-02 1.10E-02 9.92E-03 1.85E-02 median Di-n-octyl Phthalate 1.09E-02 1.23E-01 1.56E-02 1.50E-02 9.52E-03 median Elmoratory Phthalate 1.90E-02 1.23E-01 1.54E-02 9.52E-03 <td>7 of 38</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	7 of 38							
Chrysene 1.03E-01 1.30E+00 1.04E-02 3.00E+05 3.84E-01 97.5% KM (Chebyshev cis-1,2-Dichloroethene Cobalt 6.61E-02 9.99E-01 1.95E-02 6.30E+03 1.38E-04 median Cobalt 6.52E+00 1.03E+01 2.90E+00 1.00E+03 7.04E+00 95% Student's-t Copper 6.56E+01 2.00E+02 4.59E+00 5.00E+05 5.12E+02 99% Chebyshev Cyclohexane 1.13E-03 1.85E-03 9.81E-04 4.70E+04 1.25E-03 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.00E+03 1.08E-02 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Diethyl Phthalate 1.01E-02 1.50E-02 1.50E-02 median median Di-n-octyl Phthalate 1.09E-02 1.23E-01 1.54E-02 1.85E-02 median Eluorene 2.69E-03 5.02E-03 1.14E-03 7.90E+03 1.14E-03 median	3 of 19							
cis-1,2-Dichloroethene 6.61E-02 9.99E-01 1.95E-02 6.30E+03 1.38E-04 median Cobalt 6.52E+00 1.03E+01 2.81E+00 1.30E+03 7.04E+00 95% Student's-t Copper 6.56E+01 2.00E+02 4.59E+00 5.00E+05 5.12E+02 99% Chebyshev Cyclohexane 1.13E-03 1.85E-03 9.81E-04 4.70E+04 1.25E-03 median Dibenz(a,h)anthracene 6.88E-02 4.04E-01 4.50E-02 1.00E+03 1.08E-02 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Diethyl Phthalate 1.01E-02 1.10E-02 1.50E-02 1.85E-02 median Di-n-octyl Phthalate 1.05E-02 1.50E-02 1.00E-02 1.50E+04 3.07E-02 median Ethylbenzene 2.69E-03 5.02E-03 1.14E-03 7.90E+03 1.14E-03 median Fluoranthene 1.44E-01 2.19E+00 2.14E-02 6.24E-01 97.5% KM (Chebys	38 of 38							
Cobalt 6.52E+00 1.03E+01 2.81E+00 1.30E+03 7.04E+00 95% Student's-t Copper 6.56E+01 2.00E+02 4.59E+00 5.00E+05 5.12E+02 99% Chebyshev Cyclohexane 1.13E-03 1.85E-03 9.81E-04 4.70E+04 1.25E-03 median Dibenzofuran 1.96E-02 4.04E-01 4.50E-02 1.00E+03 1.08E-02 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Dienzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Dienzofuran 1.96E-02 1.50E-02 1.50E-02 1.50E-02 median Di-n-butyl Phthalate 1.05E-02 1.50E-02 1.50E-02 1.50E-02 median Di-n-butyl Phthalate 1.90E-02 1.23E-01 1.54E-02 9.52E-03 median Di-n-butyl Phthalate 1.90E-02 1.23E-01 1.54E-02 9.52E-03 median Di-n-butyl Phthalat	11 of 38							
Copper 6.56E+01 2.00E+02 4.59E+00 5.00E+05 5.12E+02 99% Chebyshev Cyclohexane 1.13E-03 1.85E-03 9.81E-04 4.70E+04 1.25E-03 median Dibenzofuran 6.88E-02 4.04E-01 4.50E-02 1.00E+03 1.08E-02 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Dien-butyl Phthalate 1.01E-02 1.10E-02 9.92E-03 1.85E-02 median Di-n-butyl Phthalate 1.05E-02 1.50E-02 1.00E-02 1.50E+04 3.07E-02 median Di-n-butyl Phthalate 1.05E-02 1.50E-03 1.14E-03 3.0E-03 1.14E-03 <td< td=""><td>2 of 19</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2 of 19							
Cyclohexane 1.13E-03 1.85E-03 9.81E-04 4.70E+04 1.25E-03 median Dibenz(a,h)anthracene 6.88E-02 4.04E-01 4.50E-02 1.00E+03 1.08E-02 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Diethyl Phthalate 1.01E-02 1.90E-02 1.50E-02 1.85E-02 median Di-n-butyl Phthalate 1.05E-02 1.50E-02 1.00E-02 1.50E+04 3.07E-02 median Di-n-butyl Phthalate 1.90E-02 1.23E-01 1.54E-02 9.52E-03 median Di-n-butyl Phthalate 1.90E-02 1.23E-01 1.54E-02 9.52E-03 median Di-n-butyl Phthalate 1.90E-02 1.23E-03 1.14E-01 3.07E-02 median Di-n-butyl Phthalate 1.90E-02 1.23E-03 1.14E-01 1.0E-02 9.52E-03 median Di-n-butyl Phthalate 1.90E-02 1.23E-03 1.14E-01 1.76E-03 4.0E-0	38 of 38							
Dibenz(a,h)anthracene 6.88E-02 4.04E-01 4.50E-02 1.00E+03 1.08E-02 median Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Diethyl Phthalate 1.01E-02 1.10E-02 9.92E-03 1.85E-02 median Di-n-butyl Phthalate 1.05E-02 1.50E-02 1.00E-02 1.50E+04 3.07E-02 median Di-n-butyl Phthalate 1.90E-02 1.23E-01 1.54E-02 9.52E-03 median Ethylbenzene 2.69E-03 5.02E-03 1.14E-03 7.90E+03 1.14E-03 median Fluoranthene 1.44E-01 2.19E+00 2.14E-02 6.24E-01 97.5% KM (Chebyshev Fluorene 5.27E-02 1.41E-01 1.70E-02 3.92E-04 median Indeno(1,2,3-cd)pyrene 1.15E-01 1.51E+00 2.00E-02 1.30E+04 3.96E-01 97.5% KM (Chebyshev Lead 5.30E+01 5.83E+00 6.30E+02 2.48E+02 99% Chebyshe	38 of 38							
Dibenzofuran 1.96E-02 8.62E-02 1.50E-02 1.50E-02 median Dierbyl Phthalate 1.01E-02 1.10E-02 9.92E-03 1.85E-02 median Di-n-butyl Phthalate 1.05E-02 1.50E-02 1.00E-02 1.50E+04 3.07E-02 median Di-n-otyl Phthalate 1.90E-02 1.23E-01 1.54E-02 9.52E-03 median Ethylbenzene 2.69E-03 5.02E-03 1.14E-03 7.90E+03 1.14E-03 median Fluoranthene 1.44E-01 2.19E+00 2.14E-02 6.24E-01 97.5% KM (Chebyshev Fluorene 5.27E-02 1.41E-01 1.70E-02 3.92E-04 median Indeno(1,2,3-cd)pyrene 1.15E-01 1.51E+00 2.09E+04 1.02E+05 7.12E+03 3.69E+01 97.5% KM (Chebyshev Iron 2.09E+04 1.02E+05 7.12E+03 2.48E+02 99% Chebyshev Lithium 1.92E+01 3.82E+00 6.30E+02 2.48	5 of 19							
Diethyl Phthalate 1.01E-02 1.10E-02 9.92E-03 1.85E-02 median Di-n-butyl Phthalate 1.05E-02 1.50E-02 1.00E-02 1.50E+04 3.07E-02 median Di-n-octyl Phthalate 1.90E-02 1.23E-01 1.56E-02 9.52E-03 median Ethylbenzene 2.69E-03 5.02E-03 1.14E-03 median median Fluoranthene 1.44E-01 2.19E+00 2.14E-02 6.24E-01 97.5% KM (Chebyshev median Fluorene 5.27E-02 1.41E-01 1.70E-02 6.24E-01 97.5% KM (Chebyshev median Indeno(1,2,3-cd)pyrene 1.15E-01 1.51E+00 2.00E-02 1.30E+04 3.96E-01 97.5% KM (Chebyshev median Lead 5.30E+01 5.83E+00 6.30E+02 2.48E+02 99% Chebyshev Lithium 1.92E+01 3.22E+01 2.59E+00 2.08E+01 95% Student's-t mp-xylene 1.32E-03 1.39E-03 1.32E-03 4.80E+03 4.22E-04 median<	7 of 38							
Di-n-butyl Phthalate 1.05E-02 1.50E-02 1.00E-02 1.50E+04 3.07E-02 median Di-n-octyl Phthalate 1.90E-02 1.23E-01 1.54E-02 9.52E-03 median Ethylbenzene 2.69E-03 5.02E-03 1.14E-03 7.90E+03 1.14E-03 median Fluoranthene 1.44E-01 2.19E+00 2.14E-02 6.24E-01 97.5% KM (Chebyshev Fluorene 5.27E-02 1.41E-01 1.70E-02 3.92E-04 median Indeno(1,2,3-cd)pyrene 1.15E-01 1.51E+00 2.00E-02 1.30E+04 3.96E-01 97.5% KM (Chebyshev Lead 5.30E+01 5.83E+00 6.30E+02 3.69E+04 95% Chebyshev Lead 5.30E+01 5.83E+00 6.30E+02 2.48E+02 99% Chebyshev Lithium 1.92E+01 3.22E+01 2.59E+00 2.08E+01 95% Student's-t m,p-xylene 1.32E-03 1.39E-03 1.32E-03 4.80E+03 4.22E-04 median </td <td>2 of 38</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2 of 38							
Di-n-octyl Phthalate 1.90E-02 1.23E-01 1.54E-02 9.52E-03 median Ethylbenzene 2.69E-03 5.02E-03 1.14E-03 7.90E+03 1.14E-03 median Fluoranthene 1.44E-01 2.19E+00 2.14E-02 6.24E-01 97.5% KM (Chebyshev Fluorene 5.27E-02 1.41E-01 1.70E-02 3.92E-04 median Indeno(1,2,3-cd)pyrene 1.15E-01 1.51E+00 2.00E-02 1.30E+04 3.96E-01 97.5% KM (Chebyshev Iron 2.09E+04 1.02E+05 7.12E+03 3.69E+04 95% Chebyshev Lead 5.30E+01 5.83E+00 6.30E+02 2.48E+02 99% Chebyshev Lithium 1.92E+01 3.22E+01 2.59E+00 2.08E+01 95% Student's-t m,p-xylene 1.32E-03 1.39E-03 1.32E-03 4.80E+03 4.22E-04 median Manganese 3.87E+02 1.21E+03 8.23E+01 2.50E+04 6.39E+02 97.5% KM (Chebyshev	2 of 38							
Ethylbenzene 2.69E-03 5.02E-03 1.14E-03 7.90E+03 1.14E-03 median Fluoranthene 1.44E-01 2.19E+00 2.14E-02 6.24E-01 97.5% KM (Chebyshev Fluorene 5.27E-02 1.41E-01 1.70E-02 3.92E-04 median Indeno(1,2,3-cd)pyrene 1.15E-01 1.51E+00 2.00E-02 1.30E+04 3.96E-01 97.5% KM (Chebyshev Iron 2.09E+04 1.02E+05 7.12E+03 3.69E+04 95% Chebyshev Lead 5.30E+01 5.83E+00 6.30E+02 2.48E+02 99% Chebyshev Lithium 1.92E+01 3.22E+01 2.59E+00 2.08E+01 95% Student's-t m,p-xylene 1.32E-03 1.39E-03 1.32E-03 4.22E-04 median Manganese 3.87E+02 1.21E+03 8.23E+01 2.50E+04 6.39E+02 97.5% KM (Chebyshev Mercury 1.43E-02 1.70E-01 3.40E-03 2.40E+00 4.38E-02 97.5% KM (Chebyshev	2 of 38							,
Fluoranthene 1.44E-01 2.19E+00 2.14E-02 6.24E-01 97.5% KM (Chebyshev median Fluorene 5.27E-02 1.41E-01 1.70E-02 3.92E-04 median Indeno(1,2,3-cd)pyrene 1.15E-01 1.51E+00 2.00E-02 1.30E+04 3.96E-01 97.5% KM (Chebyshev Jev Jev Jev Jev Jev Jev Jev Jev Jev J	3 of 38							
Fluorene 5.27E-02 1.41E-01 1.70E-02 3.92E-04 median Indeno(1,2,3-cd)pyrene 1.15E-01 1.51E+00 2.00E-02 1.30E+04 3.96E-01 97.5% KM (Chebyshev Iron 2.09E+04 1.02E+05 7.12E+03 3.69E+04 95% Chebyshev Lead 5.30E+01 5.83E+00 6.30E+02 2.48E+02 99% Chebyshev Lithium 1.92E+01 3.22E+01 2.59E+00 2.08E+01 95% Student's-t m,p-xylene 1.32E-03 1.39E-03 1.32E-03 4.80E+03 4.22E-04 median Manganese 3.87E+02 1.21E+03 8.23E+01 2.50E+04 6.39E+02 97.5% Chebyshev Mercury 1.43E-02 1.70E-01 3.40E-03 2.40E+00 4.38E-02 97.5% KM (Chebyshev Methylcyclohexane 1.76E-03 2.78E-03 1.50E-03 2.40E+04 1.54E-03 median Molybdenum 1.40E-01 1.07E+01 8.50E-02 2.50E+06 2.49E+00 97.5% KM (Chebyshev<	5 of 19							
Indeno(1,2,3-cd)pyrene 1.15E-01 1.51E+00 2.00E-02 1.30E+04 3.96E-01 97.5% KM (Chebyshev Iron Lead 2.09E+04 1.02E+05 7.12E+03 3.69E+04 95% Chebyshev Pshev	9 of 38							
Iron 2.09E+04 1.02E+05 7.12E+03 3.69E+04 95% Chebyshev Lead 5.30E+01 5.83E+00 6.30E+02 2.48E+02 99% Chebyshev Lithium 1.92E+01 3.22E+01 2.59E+00 2.08E+01 95% Student's-t m,p-xylene 1.32E-03 1.39E-03 1.32E-03 4.80E+03 4.22E-04 median Manganese 3.87E+02 1.21E+03 8.23E+01 2.50E+04 6.39E+02 97.5% Chebyshev Mercury 1.43E-02 1.70E-01 3.40E-03 2.40E+00 4.38E-02 97.5% KM (Chebyshev Methylcyclohexane 1.76E-03 2.78E-03 1.50E-03 2.40E+04 1.54E-03 median Molyddenum 1.40E-01 1.07E+01 8.50E-02 2.50E+06 2.49E+00 97.5% KM (Chebyshev Naphthalene 3.24E+00 1.48E-01 1.30E-03 1.40E+02 3.70E-03 median Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t <td>4 of 38</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4 of 38							
Lead 5.30E+01 5.83E+00 6.30E+02 2.48E+02 99% Chebyshev Lithium 1.92E+01 3.22E+01 2.59E+00 2.08E+01 95% Student's-t m,p-xylene 1.32E-03 1.39E-03 1.32E+03 4.22E-04 median Manganese 3.87E+02 1.21E+03 8.23E+01 2.50E+04 6.39E+02 97.5% Chebyshev Mercury 1.43E-02 1.70E-01 3.40E-03 2.40E+00 4.38E-02 97.5% KM (Chebyshev Methylcyclohexane 1.76E-03 2.78E-03 1.50E-03 2.40E+04 1.54E-03 median Molybdenum 1.40E-01 1.07E+01 8.50E-02 2.50E+06 2.49E+00 97.5% KM (Chebyshev Naphthalene 3.24E+00 1.48E-01 1.30E-03 1.40E+02 3.70E-03 median Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t Pyrene 2.62E-01 4.64E+00 1.49E-02 5.70E-01 97.5% KM (Chebyshev	13 of 38							
Lithium 1.92E+01 3.22E+01 2.59E+00 2.08E+01 95% Student's-t m.p-xylene 1.32E-03 1.39E-03 1.32E-03 4.80E+03 4.22E-04 median Manganese 3.87E+02 1.21E+03 8.23E+01 2.50E+04 6.39E+02 97.5% Chebyshev Mercury 1.43E-02 1.70E-01 3.40E-03 2.40E+00 4.38E-02 97.5% KM (Chebyshev Methylcyclohexane 1.76E-03 2.78E-03 1.50E-03 2.40E+04 1.54E-03 median Molybdenum 1.40E-01 1.07E+01 8.50E-02 2.50E+06 2.49E+00 97.5% KM (Chebyshev Naphthalene 3.24E+00 1.48E-01 1.30E-03 1.40E+02 3.70E-03 median Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t Phenanthrene 1.50E-01 1.83E+00 1.80E-02 5.70E-01 97.5% KM (Chebyshev Pyrene 2.62E-01 4.64E+00 1.49E-02 1.12E+00 97.5% KM (38 of 38							
m,p-xylene 1.32E-03 1.39E-03 1.32E-03 4.80E+03 4.22E-04 median Manganese 3.87E+02 1.21E+03 8.23E+01 2.50E+04 6.39E+02 97.5% Chebyshev Mercury 1.43E-02 1.70E-01 3.40E-03 2.40E+00 4.38E-02 97.5% KM (Chebyshev Methylcyclohexane 1.76E-03 2.78E-03 1.50E-03 2.40E+04 1.54E-03 median Molybdenum 1.40E-01 1.07E+01 8.50E-02 2.50E+06 2.49E+00 97.5% KM (Chebyshev Naphthalene 3.24E+00 1.48E-01 1.30E-03 1.40E+02 3.70E-03 median Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t Phenanthrene 1.50E-01 1.83E+00 1.80E-02 5.70E-01 97.5% KM (Chebyshev Pyrene 2.62E-01 4.64E+00 1.49E-02 1.12E+00 97.5% KM (Chebyshev	34 of 38 36 of 38							
Manganese 3.87E+02 1.21E+03 8.23E+01 2.50E+04 6.39E+02 97.5% Chebyshev Mercury 1.43E-02 1.70E-01 3.40E-03 2.40E+00 4.38E-02 97.5% KM (Chebyshev Methylcyclohexane 1.76E-03 2.78E-03 1.50E-03 2.40E+04 1.54E-03 median Molybdenum 1.40E-01 1.07E+01 8.50E-02 2.50E+06 2.49E+00 97.5% KM (Chebyshev Naphthalene 3.24E+00 1.48E-01 1.30E-03 1.40E+02 3.70E-03 median Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t Phenanthrene 1.50E-01 1.83E+00 1.80E-02 5.70E-01 97.5% KM (Chebyshev Pyrene 2.62E-01 4.64E+00 1.49E-02 1.12E+00 97.5% KM (Chebyshev	2 of 19							
Mercury 1.43E-02 1.70E-01 3.40E-03 2.40E+00 4.38E-02 97.5% KM (Chebyshev Methylcyclohexane Methylcyclohexane 1.76E-03 2.78E-03 1.50E-03 2.40E+04 1.54E-03 median Molybdenum 1.40E-01 1.07E+01 8.50E-02 2.50E+06 2.49E+00 97.5% KM (Chebyshev Methyleshev Naphthalene 3.24E+00 1.48E-01 1.30E-02 3.70E-03 median Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t Phenanthrene 1.50E-01 1.83E+00 1.80E-02 5.70E-01 97.5% KM (Chebyshev Methyleshev	2 of 19 38 of 38							
Methylcyclohexane 1.76E-03 2.78E-03 1.50E-03 2.40E+04 1.54E-03 median Molybdenum 1.40E-01 1.07E+01 8.50E-02 2.50E+06 2.49E+00 97.5% KM (Chebyshev Naphthalene 3.24E+00 1.48E-01 1.30E-03 1.40E+02 3.70E-03 median Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t Phenanthrene 1.50E-01 1.83E+00 1.80E-02 5.70E-01 97.5% KM (Chebyshev Pyrene 2.62E-01 4.64E+00 1.49E-02 1.12E+00 97.5% KM (Chebyshev	38 or 38 15 of 38							
Molybdenum 1.40E-01 1.07E+01 8.50E-02 2.50E+06 2.49E+00 97.5% KM (Chebyshev Posters) Naphthalene 3.24E+00 1.48E-01 1.30E-03 1.40E+02 3.70E-03 median Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t Phenanthrene 1.50E-01 1.83E+00 1.80E-02 5.70E-01 97.5% KM (Chebyshev Posters) Pyrene 2.62E-01 4.64E+00 1.49E-02 1.12E+00 97.5% KM (Chebyshev Posters)	6 of 19	` '						,
Naphthalene 3.24E+00 1.48E-01 1.30E-03 1.40E+02 3.70E-03 median Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t Phenanthrene 1.50E-01 1.83E+00 1.80E-02 5.70E-01 97.5% KM (Chebyshev Pyrene 2.62E-01 4.64E+00 1.49E-02 1.12E+00 97.5% KM (Chebyshev	21 of 38							
Nickel 1.80E+01 5.17E+01 9.74E+00 2.40E+04 2.01E+01 95% Student's-t Phenanthrene 1.50E-01 1.83E+00 1.80E-02 5.70E-01 97.5% KM (Chebyshev Pyrene 2.62E-01 4.64E+00 1.49E-02 1.12E+00 97.5% KM (Chebyshev	6 of 19							
Phenanthrene 1.50E-01 1.83E+00 1.80E-02 5.70E-01 97.5% KM (Chebyshev Pyrene Pyrene 2.62E-01 4.64E+00 1.49E-02 1.12E+00 97.5% KM (Chebyshev Pyrene)	38 of 38							
Pyrene 2.62E-01 4.64E+00 1.49E-02 1.12E+00 97.5% KM (Chebyshev	12 of 38							
	14 of 38							
HOUVER I TUDE-UT 4 TUE-UT 9 ZUE-UZ 5 UUE-UZ 5 UUE-UZ 1 madish	3 of 38	median	5.90E-02	5.00E+03	9.20E-02	4.10E-01	1.05E-01	Silver
Strontium 5.64E+01 9.62E+01 2.21E+01 6.20E+01 95% Student's-t	38 of 38			J.00LT03				
Tetrachloroethene 1.26E-02 2.23E-01 1.35E-03 4.80E+02 2.11E-04 median	3 of 19			4 80F+02				
Tin 5.34E+00 3.67E+00 6.80E-01 1.00E+07 5.70E-01 median	5 of 38							
Titanium 2.33E+01 5.70E+01 3.41E+00 4.03E+01 97.5% Chebyshev	38 of 38			1.00LT01				
	8 of 19	97.5% KM (Chebyshev)		3 20F+04				
Vanadium 2.10E+01 4.58E+01 7.85E+00 2.50E+04 0.13E+01 95% Student's-t	38 of 38							
	8 of 19	97.5% KM (Chebyshev)						
Zinc 2.83E+02 5.64E+03 2.11E+01 1.78E+03 99% Chebyshev	38 of 38							, , ,
2102102 01012101 11102100 007/0 01103/316V		5575 C.I.ODYONOV	52.100		22.07	3.0 .2 .00		

⁺ Soil was collected from 0 to 4 ft. below ground surface.

** Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded the screening value.

(1) _Air Soil_Inh-VP PCL = TCEQ protective concentration Level for 30 acre source area Residential soil-to-air pathway (inhalation of volatiles and particulates).

^{(2) -} Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

TABLE 18
BACKGROUND COMPARISONS

HYPOTHESIS TESTED: ARE SITE DATA STATISTICALLY DIFFERENT THAN BACKGROUND DATA?(1) INTRACOASTAL **SOUTH AREA SURFACE SOUTH AREA** NORTH AREA SURFACE **NORTH AREA** WATERWAY SOIL SOIL SOIL SOIL **SEDIMENT** CHEMICAL OF INTEREST WETLANDS SEDIMENT | POND SEDIMENT NA Aluminum NA NA NA Yes* NA NA Antimony No Yes* No No No No No Arsenic No No No No Yes* No Yes* Barium No No Yes* Yes* No Yes* No Beryllium NA NA NA NA Yes* NA NA Boron NA NA NA NA Yes* NA NA Cadmium Yes Yes Yes No No Yes* NA Chromium No No No No No No NA Cobalt NA NA NA NA Yes* NA NA Copper Yes No No No No No No Iron NA NA NA NA NA No No Lead Yes No No No No No Yes Lithium Yes* Yes* Yes* No Yes* No No Yes Manganese Yes* Yes* No No No No Mercury No Yes* Yes* No NA No No Molybdenum Yes Yes* No No No No No Nickel NA NA NA NA NA No NA Strontium NA NA NA NA Yes* NA NA Titanium NA NA NA NA Yes* NA NA Vanadium NA NA NA NA Yes* NA NA Zinc Yes No No No No No No

⁽¹⁾ Detailed statistical procedures are outlined in Section 2.2.2 and calculations are provided in Appendix B.

^{*} Statistical difference is due to background being greater than site.

NA - No analysis was performed for compound in background.

TABLE 19 PCOCS IDENTIFIED AND QUANTITATIVELY EVALUATED IN THE BHHRA*

SOUTH AREA SOIL**	NORTH AREA SOIL**	INTRACOASTAL WATERWAY SURFACE WATER	INTRACOASTAL WATERWAY SEDIMENT	WETLANDS SURFACE WATER	WETLANDS SEDIMENT	POND SURFACE WATER	POND SEDIMENT
4,4'-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Naphthalene	1,2-Dichloroethane Aluminium Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Iron Tetrachloroethene	none+	Benzo(a)pyrene Dibenz(a,h)anthracene Iron		Aluminum Benzo(a)pyrene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Iron	none+	Aluminum Iron m,p-Cresol

^{*} Groundwater was not included in the table because all compounds measured in groundwater were evaluated quantitatively in the BHHRA.

^{**} Soil includes both surface and subsurface soil for the purposes of this table.
+ All COIs for surface water screened out, as discussed in Section 2.2.1.

TABLE 20 EVALUATION OF EXPOSURE PATHWAYS

PATHWAY NAME	POTENTIAL CONTAMINANTS OF CONCERN	SOURCE	POTENTIAL EXPOSURE MEDIA	POTENTIAL POINT OF EXPOSURE	POTENTIALLY EXPOSED POPULATION*	POTENTIAL ROUTE OF EXPOSURE	COMMENTS
	4,4'-DDD, Aluminum, Aroclor-1254, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene,		Soil	On-site	Industrial Worker, Construction Worker, Youth Trespasser	Incidental ingestion and dermal contact	Pathways quantitatively evaluated in BHHRA.
South Area Soil	Benzo(k)fluoranthene, Dibenz(a,h)anthracene, Dieldrin, Indeno(1,2,3-cd)pyrene, Iron, Isopropylbenzene (cumene), Lead,	Site Operations	Air	On-site	Industrial Worker, Construction Worker, Youth Trespasser	Inhalation of VOCs and particulates	Pathways quantitatively evaluated in BHHRA.
	Naphthalene		Air	Off-site	Off-Site Resident	Inhalation of VOCs and particulates	Pathway screened out as described in Section 2.2.
South Area Groundwater	VOCs	Site Operations	Soil Gas to Indoor Air	On-site	Industrial Worker (future only)	Inhalation of vapors intruding from groundwater	Pathway quantitatively evaluated in BHHRA.
	1,2-Dichloroethane, Aluminum, Aroclor- 1254. Benzo(a)anthracene,		Soil	On-site	Industrial Worker, Construction Worker, Youth Trespasser	Incidental ingestion and dermal contact	Pathways quantitatively evaluated in BHHRA.
North Area Soil	Benzo(a)pyrene, Benzo(b)fluoranthene, Dibenz(a,h)anthracene, Indeno(1,2,3- lcd)pyrene, Iron, Tetrachloroethene	Site Operations	Air	On-site and Off- site	Industrial Worker, Construction Worker, Youth Trespasser	Inhalation of VOCs and particulates	Pathways quantitatively evaluated in BHHRA.
	saypyrone, non, roudenersement		Air	Off-site	Off-Site Resident	Inhalation of VOCs and particulates	Pathway screened out as described in Section 2.2.
North Area Groundwater	VOCs	Surface Impoundment	Soil Gas to Indoor Air	On-site	Industrial Worker (future only)	Inhalation of vapors intruding from groundwater	Pathway quantitatively evaluated in BHHRA.
Intracoastal Waterway Sediment	Benzo(a)pyrene, Dibenz(a,h)anthracene, Iron	Runoff from Site	Sediment	Off-site	Contact Recreation	•	Pathways quantitatively evaluated in BHHRA.
			Fish Uptake	Off-site	Recreational Fisherman	Fish ingestion	Quantitatively evaluated in fish tissue risk assessment.
Intracoastal Waterway Surface Water	COIs screened out as described in Section 2.2.	Runoff from Site		Off-site	Contact Recreation	and dermal contact	Pathway screened out as described in Section 2.2. Quantitatively evaluated in
North Wetlands Sediment	Aluminum, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(1,2,3- cd)pyrene, Iron	Runoff from Site	Fish Uptake Sediment	On-site and Off- site	Recreational Fisherman Contact Recreation	Incidental ingestion	fish tissue risk assessment. Pathways quantitatively evaluated in BHHRA.
North Wetlands Surface Water	COIs screened out as described in Section 2.2.	Runoff from Site	Surface Water	On-site and Off- site	Contact Recreation		Pathway screened out as described in Section 2.2.
Pond Sediment	Aluminum, Iron, m,p-Cresol	Runoff from Site	Sediment	On-site	Contact Recreation	Incidental ingestion and dermal contact	Pathways quantitatively evaluated in BHHRA.
Pond Surface Water	COIs screened out as described in Section 2.2.	Runoff from Site	Surface Water	On-site	Contact Recreation		Pathway screened out as described in Section 2.2.

Notes:

Unless otherwise noted, the timeframe considered was current and future exposure.

TABLE 21 EXPOSURE SCENARIOS BY MEDIA

MEDIA	Future On-Site Industrial Worker Receptor	Future On-Site Construction Worker Receptor	Potential Current Youth Trespasser	Potential Current Contact Recreation	Potential Current Off- Site Residential Receptor
South Area Surface Soil	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾		X ⁽²⁾
South Area Soil	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾		X (3)
South Area Groundwater	X ⁽⁶⁾				
Intracoastal Waterway Surface Water				X ⁽⁴⁾	
Intracoastal Waterway Sediment				X ⁽⁵⁾	
Intracoastal Waterway Fish					X*
North Area Surface Soil	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾		
North Area Soil	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾		
North Area Groundwater	X ⁽⁷⁾				
North Area Wetlands Surface Water		X ⁺	X ⁽¹²⁾	X ⁽⁸⁾	
North Area Wetlands Sediment		X ⁺	X ⁽¹²⁾	X ⁽⁹⁾	
North Area Ponds Surface Water		X ⁺	X ⁽¹²⁾	X ⁽¹⁰⁾	
North Area Ponds Sediment		X ⁺	X ⁽¹²⁾	X ⁽¹¹⁾	

^{*} EPA-approved fish ingestion pathway risk assessment (PBW, 2007) concluded that this pathway does not pose a human health threat.

^{*} Exposure for this receptor was not quantified since exposure would be approximately four times less than the acceptable risk calculated for the contact recreation receptor. due to the less exposure incurred for the worker given the differences in exposure frequency and duration.

⁽¹⁾ Risks presented in Table 23.

⁽²⁾ Risks presented in Table 24.

⁽³⁾ Risks presented in Table 25.

⁽⁴⁾ Screening evaluation presented in Table 4.

⁽⁵⁾ Screening evaluation presented in Table 6.

⁽⁶⁾ Risks presented in Table 26.

⁽⁷⁾ Risks presented in Table 27.

⁽⁸⁾ Screening evaluation presented in Table 11.

⁽⁹⁾ Screening evaluation presented in Table 13.

⁽¹⁰⁾ Screening evaluation presented in Table 12.

⁽¹¹⁾ Screening evaluation presented in Table 14.

⁽¹²⁾ Trespasser risks were assumed to be equivalent to the contact recreation receptor.

TABLE 22
EXPOSURE ASSUMPTIONS FOR THE INDUSTRIAL WORKER SCENARIO

PARAMETER	DEFINITION	AVERAGE VALUE	REFERENCE	RME VALUE	REFERENCE
PEF	Particulate Emission Factor (m^3/kg)	1.00E+09	EPA, 2004a	1.00E+09	EPA, 2004a
IR	Ingestion rate of soil (mg/day)	50	EPA, 2004a	50	EPA, 2004a
SA	Skin surface area (cm2)	3300	EPA, 2004a	3300	EPA, 2004a
AF	Soil to skin adherence factor (mg/cm2)	0.021	EPA, 2001a	0.2	EPA, 2004a
EF	Exposure frequency (day/yr)	250	EPA, 2004a	250	EPA, 2004a
ED	Exposure duration (yr)	25	EPA, 2004a	25	EPA, 2004a
BW	Body weight (kg)	70	EPA, 1989	70	EPA, 1989
ATc	Averaging time for carcinogens (days)	25550	EPA, 1989	25550	EPA, 1989
ATnc	Averaging time for noncarcinogens (days)	9125	EPA, 1989	9125	EPA, 1989

TABLE 23
EXPOSURE ASSUMPTIONS FOR THE CONSTRUCTION WORKER SCENARIO

PARAMETER	DEFINITION	AVERAGE VALUE	REFERENCE	RME VALUE	REFERENCE
PEF	Porticulate Emission Factor (mA2/kg)	1.00E+09	EPA, 2004a	1.005.00	EPA, 2004a
	Particulate Emission Factor (m^3/kg)		*		•
IR	Ingestion rate of soil (mg/day)	165	professional judgment	330	EPA, 2001
SA	Skin surface area (cm2)	3300	EPA, 2004a	3300	EPA, 2004a
AF	Soil to skin adherence factor (mg/cm2)	0.14	EPA, 2004b	0.3	EPA, 2004b
EF	Exposure frequency (day/yr)	90	professional judgment	250	professional judgment
ED	Exposure duration (yr)	1	professional judgment	1	professional judgment
BW	Body weight (kg)	70	EPA, 1989	70	EPA, 1989
ATc	Averaging time for carcinogens (days)	25550	EPA, 1989	25550	EPA, 1989
ATnc	Averaging time for noncarcinogens (days)	365	EPA, 1989	365	EPA, 1989

TABLE 24
EXPOSURE ASSUMPTIONS FOR THE YOUTH TRESPASSER SCENARIO

PARAMETER	DEFINITION	AVERAGE VALUE		RME VALUE	REFERENCE
. , ,		***************************************		77.202	
PEF	Particulate Emission Factor (m^3/kg)	1.00E+09	EPA, 2004a	1.00E+09	EPA, 2004a
IR	Ingestion rate of soil (mg/day)	100	TNRCC, 1998	100	TNRCC, 1998
SA	Skin surface area (cm2)	3500	TNRCC, 1998	3500	TNRCC, 1998
AF	Soil to skin adherence factor (mg/cm2)	0.1	TNRCC, 1998	0.1	TNRCC, 1998
EF	Exposure frequency (day/yr)	25	professional judgment	50	TNRCC, 1998
ED	Exposure duration (yr)	6	professional judgment	12	TNRCC, 1998
3W	Body weight (kg)	40	EPA, 1991a	40	EPA, 1991a
ATc	Averaging time for carcinogens (days)	25550	EPA, 1989	25550	EPA, 1989
ATnc	Averaging time for noncarcinogens (days)	9125	EPA, 1989	9125	EPA, 1989

TABLE 25
EXPOSURE ASSUMPTIONS FOR THE CONTACT RECREATION SCENARIO

		AVERAGE		RME	
PARAMETER	DEFINITION	VALUE	REFERENCE	VALUE	REFERENCE
IR	Ingestion rate of soil or sediment (mg/day)	100	TCEQ, 2002	100	TCEQ, 2002
SA	Skin surface area (cm2)	4400	TCEQ, 2002	4400	TCEQ, 2002
AF	Sediment to skin adherence factor (mg/cm2)	0.3	TCEQ, 2002	0.3	TCEQ, 2002
EF	Exposure frequency (day/yr)	19	professional judgment	39	TCEQ, 2002
ED	Exposure duration (yr)	13	professional judgment	25	EPA, 1989
BW	Body weight (kg)	70	EPA, 1989	70	EPA, 1989
ATc	Averaging time for carcinogens (days)	25550	EPA, 1989	25550	EPA, 1989
ATnc	Averaging time for noncarcinogens (days)	9125	EPA, 1989	9125	EPA, 1989

TABLE 26 JOHNSON AND ETTINGER VAPOR INTRUSTION MODEL OUTPUT FOR SOUTH AREA GROUNDWATER

	Incremental risk from	Hazard quotient	Incremental risk from	Hazard quotient
	vapor	from vapor	vapor	from vapor
	intrusion to	intrusion to	intrusion to	intrusion to
	indoor air,	indoor air,	indoor air,	indoor air,
	carcinogen	noncarcinogen	carcinogen	noncarcinogen
	(unitless)	(unitless)	(unitless)	(unitless)
Potential Chemical of				

Potential Chemical of						
Concern*	Average			RME EPC (1)		
1,1,1-Trichloroethane	1.85E-04	NA	3.55E-06	1.40E-03	NA	2.68E-05
1,1-Dichloroethane	2.10E-03	NA	6.23E-05	1.50E-02	NA	4.45E-04
2-Butanone	4.30E-04	NA	1.38E-07	3.00E-03	NA	9.59E-07
2-Methylnaphthalene	7.76E-04	NA	2.73E-05	8.80E-03	NA	3.09E-04
4,4'-DDE	3.34E-06	5.18E-11	NA	1.00E-05	1.55E-10	NA
Acetophenone	3.72E-03	NA	5.91E-06	4.60E-02	NA	7.31E-05
Benzene	4.25E-04	2.38E-08	2.38E-04	4.20E-03	2.36E-07	2.35E-03
Benzo(b)fluoranthene	3.26E-04	2.95E-08	NA	2.80E-03	1.36E-07	NA
Carbon Disulfide	6.50E-05	NA	8.94E-06	3.00E-04	NA	4.13E-05
Chrysene	1.93E-04	1.83E-10	NA	6.00E-04	5.69E-10	NA
cis-1,2-Dichloroethene	3.27E-03	NA	1.07E-03	3.00E-02	NA	9.86E-03
Fluorene	1.84E-04	NA	1.56E-06	1.00E-03	NA	8.48E-06
gamma-BHC (Lindane)	7.66E-06	3.61E-10	2.16E-06	4.20E-05	1.98E-09	1.18E-05
Isopropylbenzene (Cumene)	1.78E-04	NA	1.34E-05	1.60E-03	NA	1.21E-04
Vinyl Chloride	1.85E-04	6.15E-08	1.63E-04	1.90E-03	6.31E-07	1.67E-03
	TOTAL	1.15E-07	1.60E-03	TOTAL	1.01E-06	1.49E-02

^{*} Only volatile compounds were assesses for this pathway.

⁽¹⁾ RME EPC is the reasonable maximim exposure exposure point concentration.

TABLE 27 JOHNSON AND ETTINGER VAPOR INTRUSTION MODEL OUTPUT FOR **NORTH AREA GROUNDWATER**

Hazard

quotient

Incremental

risk from

Incremental

risk from

Hazard

quotient

		vapor intrusion to indoor air, carcinogen (unitless)	from vapor intrusion to indoor air, noncarcinogen (unitless)		vapor intrusion to indoor air, carcinogen (unitless)	from vapor intrusion to indoor air, noncarcinogen (unitless)
Potential Chemical of	_			(1)		
Concern*+	Average			RME EPC (1)		
1,1,1-Trichloroethane	1.48E+01	NA	2.84E-01	1.56E+02	NA	2.99E+00
1,1-Dichloroethane	2.80E+00	NA	8.31E-02	3.15E+01	NA	9.34E-01
1,1-Dichloroethene	3.46E+00	NA	1.26E+00	2.92E+01	NA	1.06E+01
1,2,3-Trichloropropane	6.17E+00	3.83E-03	3.19E+00	4.43E+01	2.75E-02	2.29E+01
1,2,4-Trimethylbenzene	3.80E-02	NA	8.29E-02	4.20E-02	NA	9.16E-02
1,2-Dichloroethane	2.42E+01	1.39E-03	NA	3.28E+02	1.89E-02	NA
1,2-Dichloropropane	4.90E-01	3.46E-05	1.04E+00	3.45E+00	2.43E-04	7.32E+00
2-Methylnaphthalene	2.70E-03	NA	9.49E-05	1.60E-02	NA	5.62E-04
4,4'-DDE	2.14E-05	3.32E-10	NA	2.70E-04	4.19E-09	NA
Acenaphthene	9.00E-04	NA	6.96E-06	8.60E-03	NA	6.65E-05
Acetone	2.81E-01	NA	1.33E-03	1.15E-01	NA	5.45E-04
Acetophenone	6.80E-03	NA	1.08E-05	7.40E-02	NA	1.18E-04
alpha-BHC	1.96E-05	3.66E-09	NA	2.00E-04	3.74E-08	NA
Benzene	1.02E+00	5.72E-05	5.70E-01	8.24E+00	4.62E-04	4.61E+00
Benzo(b)fluoranthene	3.23E-04	2.92E-08	NA	1.40E-03	1.27E-07	NA
Carbon Tetrachloride	5.60E-01	2.63E-04	NA	7.58E+00	3.56E-03	NA
cis-1,2-Dichloroethene	8.96E+00	NA	2.94E+00	1.24E+02	NA	4.08E+01
Dibenzofuran	6.01E-04	NA	1.51E-05	4.90E-03	NA	1.23E-04
Dieldrin	5.01E-06	2.52E-09	7.30E-06	2.64E-05	1.33E-08	3.85E-05
Ethylbenzene	9.69E-02	NA	1.89E-03	7.40E-01	NA	1.44E-02
Fluorene	8.51E-04	NA	7.22E-06	6.10E-03	NA	5.18E-05
gamma-BHC (Lindane)	1.25E-04	5.89E-09	3.53E-05	1.50E-03	7.06E-08	4.23E-04
m,p-Xylene	6.85E-02	NA	1.34E-02	1.68E-01	NA	3.28E-02
Methylene Chloride	9.57E+01	1.77E-04	2.91E-01	1.23E+03	2.27E-03	3.74E+00
Naphthalene	7.83E-02	NA	6.40E-02	3.22E-01	NA	2.63E-01
o-Xylene	4.62E-02	NA	7.26E-03	4.40E-02	NA	6.92E-03
Pyrene	2.23E-04	NA	7.70E-07	5.00E-04	NA	1.73E-06
Styrene	2.60E-02	NA	1.98E-04	2.50E-03	NA	1.91E-05
Tetrachloroethene	1.95E+00	2.05E-04	1.35E-01	2.05E+01	2.15E-03	1.42E+00
Toluene	3.35E-01	NA	1.61E-02	4.05E+00	NA	1.94E-01
Trichloroethene	1.15E+01	1.43E-02	7.59E+00	8.40E+01	1.05E-01	5.54E+01
Vinyl Chloride	5.02E-01	1.67E-04	4.42E-01	5.09E+00	1.69E-03	4.49E+00
-	TOTAL	2.04E-02	1.80E+01	TOTAL	1.61E-01	1.56E+02

^{*} Only volatile compounds were assesses for this pathway.

⁺ Compounds with a cancer risk greater than 1 x 10^{-5} or a hazard index greater than 1 have been bolded. (1) RME EPC is the reasonable maximim exposure exposure point concentration.

 ${\sf TABLE~28}\\ {\sf SUMMARY~OF~HAZARD~INDICES~AND~CANCER~RISK~ESTIMATES~FOR~SOIL~AND~SEDIMENT~EXPOSURE}\\$

SOUTH AREA

HYPOTHETICAL ON-SITE RECEPTORS	CARCINOGENIC RISK	NONCARCINOGENIC HAZARD INDEX
Average Youth Trespasser (soil)	9.85E-08	1.79E-03
RME Youth Trespasser (soil)	1.09E-06	1.46E-02
Average Construction Worker (soil)	5.22E-08	2.46E-02
RME Construction Worker (soil)	8.19E-07	2.77E-01
Average Industrial Worker (soil)	9.50E-07	2.01E-02
RME Industrial Worker (soil)	6.08E-06	7.04E-02
Average Industrial Worker (vapor intrusion)	1.15E-07	1.60E-03
RME Industrial Worker (vapor intrusion)	1.01E-06	1.49E-02
TOTAL Average Industrial Worker (soil + vapor intrusion)	1.06E-06	2.17E-02
TOTAL RME Industrial Worker (soil + vapor intrusion)	7.09E-06	8.53E-02
Average Contact Recreation (Intracoastal Waterway Sediment)	4.54E-08	8.35E-04
RME Contact Recreation (Intracoastal Waterway Sediment)	3.40E-08	5.43E-03

NORTH AREA

HYPOTHETICAL ON-SITE RECEPTORS	CARCINOGENIC RISK	NONCARCINOGENIC HAZARD INDEX
Average Youth Trespasser (soil)	2.57E-08	6.21E-03
RME Youth Trespasser (soil)	5.71E-07	2.80E-02
Average Construction Worker (soil)	1.37E-08	8.72E-02
RME Construction Worker (soil)	4.27E-07	5.45E-01
Average Industrial Worker (soil)	2.54E-07	7.34E-02
RME Industrial Worker (soil)	3.20E-06	9.28E-02
Average Industrial Worker (vapor intrusion)	2.04E-02	1.80E+01
RME Industrial Worker (vapor intrusion)	1.61E-01	1.56E+02
TOTAL Average Industrial Worker (soil + vapor intrusion)	2.04E-02	1.81E+01
TOTAL RME Industrial Worker (soil + vapor intrusion)	1.61E-01	1.56E+02
Average Contact Recreation (Wetlands Sediment)	1.09E-07	1.07E-03
RME Contact Recreation (Wetlands Sediment)	4.16E-07	4.65E-03
Average Contact Recreation (Pond Sediment)	*	6.10E-03
RME Contact Recreation (Pond Sediment)	*	2.85E-02

^{*} None of the COPCs for this media are considered carcinogenic by EPA.

APPENDIX A
PRO UCL OUTPUT

APPENDIX A-1

SOUTH OF MARLIN SURFACE SOIL

Nonparametric UCL Statistics for Data Sets with Non-Detects

User Selected Options	
From File	C:\Users\Michael\\ProUCL data analysis\S of Marlin-SURFACE soil\S of Marlin-SURFACE soil_ProUCL input.
Full Precision	OFF
Confidence Coefficien	05%

Confidence Coefficient 95% Number of Bootstrap Operations 2000

2-Methylnaphthalene

Total Number of Data	83
Number of Non-Detect Data	61
Number of Detected Data	22
Minimum Detected	0.0106
Maximum Detected	0.501
Percent Non-Detects	73.49%
Minimum Non-detect	0.00946
Maximum Non-detect	0.106
Mean of Detected Data	0.0806
Median of Detected Data	0.0349
Variance of Detected Data	0.0156
SD of Detected Data	0.125
CV of Detected Data	1.552
Skewness of Detected Data	2.773
Mean of Detected log data	-3.184
SD of Detected Log data	1.075

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

79 Number treated as Non-Detect Number treated as Detected Single DL Percent Detection 95.18%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

N/A Winsorization Method

Kaplan Meier (KM) Method Mean SD Standard Error of Mean

0.0701 0.00789 95% KM (t) UCL 0.0428 95% KM (z) UCL 0.0427 95% KM (BCA) UCL 0.0465 95% KM (Percentile Bootstrap) UCL 0.0436 95% KM (Chebyshev) UCL 0.0641 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 0.108

Data appear Lognormal (0.05) May want to try Lognormal UCLs

0.0297

4,4'-DDD

Total Number of Data 83 Number of Non-Detect Data 78 **Number of Detected Data** 5

Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	0.00264 0.0243 93.98% 2.35E-04 0.00276
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.0097 0.00401 8.64E-05 0.0093 0.959 1.266 -5.005 0.95

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 79
Number treated as Detected 4
Single DL Percent Detection 95.18%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00307
SD	0.00264
Standard Error of Mean	3.24E-04
95% KM (t) UCL	0.0036
95% KM (z) UCL	0.0036
95% KM (BCA) UCL	0.0138
95% KM (Percentile Bootstrap) UCL	0.00485
95% KM (Chebyshev) UCL	0.00448
97.5% KM (Chebyshev) UCL	0.00509
99% KM (Chebyshev) ÚCL	0.00629

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.00027

[per recommendation in ProUCL User Guide]

4,4'-DDE

Total Number of Data	83
Number of Non-Detect Data	66
Number of Detected Data	17
Minimum Detected	4.28E-04
Maximum Detected	0.0693
Percent Non-Detects	79.52%
Minimum Non-detect	3.26E-04

Maximum Non-detect	0.0163	
Mean of Detected Data	0.00765	
Median of Detected Data	0.0022	
Variance of Detected Data	2.81E-04	
SD of Detected Data	0.0168	
CV of Detected Data	2.193	
Skewness of Detected Data	3.524	
Mean of Detected log data	-6.02	
SD of Detected Log data	1.385	
Note: Data have multiple DLs - Use of KM Met For all methods (except KM, DL/2, and ROS Metl Observations < Largest DL are treated as NDs		9 -
Number treated as Non-Detect	81	
Number treated as Detected	2	
Single DL Percent Detection	97.59%	
Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.00192	
SD	0.00792	
Standard Error of Mean	8.96E-04	
95% KM (t) UCL	0.00341	
95% KM (z) UCL	0.00339	
95% KM (BCA) UCL	0.00382	
95% KM (Percentile Bootstrap) UCL	0.00365	
95% KM (Chebyshev) UCL	0.00583	
97.5% KM (Chebyshev) UCL	0.00752	
99% KM (Chebyshev) UCL	0.0108	
Data appear Lognormal (0.05)		
May want to try Lognormal UCLs		
4,4'-DDT		
Total Number of Data	83	
Number of Non-Detect Data	46	
Number of Detected Data	37	
Minimum Detected	2.81E-04	
Maximum Detected	0.0625	
Percent Non-Detects	55.42%	
Minimum Non-detect	1.25E-04	
Maximum Non-detect	0.00626	
Mean of Detected Data	0.00835	
Median of Detected Data	0.00304	
Variance of Detected Data	1.58E-04	
CD of Detected Data	0.0126	

0.0126 1.506

2.7 -5.808

1.551

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

SD of Detected Data

CV of Detected Data Skewness of Detected Data

Mean of Detected log data SD of Detected Log data

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 70
Number treated as Detected 13
Single DL Percent Detection 84.34%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

Mean	0.00389
SD	0.0092
Standard Error of Mean	0.00102
95% KM (t) UCL	0.00559
95% KM (z) UCL	0.00558
95% KM (BCA) UCL	0.00567
95% KM (Percentile Bootstrap) UCL	0.0057
95% KM (Chebyshev) UCL	0.00836
97.5% KM (Chebyshev) UCL	0.0103
99% KM (Chebyshev) UCL	0.0141

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

Acenaphthene

Total Number of Data	83
Number of Non-Detect Data	57
Number of Detected Data	26
Minimum Detected	0.0113
Maximum Detected	1.69
Percent Non-Detects	68.67%
Minimum Non-detect	0.0087
Maximum Non-detect	0.0975
Mean of Detected Data	0.168
Median of Detected Data	0.072
Variance of Detected Data	0.114
SD of Detected Data	0.337
CV of Detected Data	2.009
Skewness of Detected Data	4.078
Mean of Detected log data	-2.641
SD of Detected Log data	1.211

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 73 Number treated as Detected 10 Single DL Percent Detection 87.95%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

 Mean
 0.0608

 SD
 0.199

Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Lognormal (0.05) May want to try Lognormal UCLs	0.0222 0.0978 0.0974 0.11 0.102 0.158 0.2 0.282	
Acenaphthylene		
Total Number of Date	83	
Total Number of Data Number of Non-Detect Data	64	
	19	
Number of Detected Data		
Minimum Detected	0.0184	
Maximum Detected	0.935	
Percent Non-Detects	77.11%	
Minimum Non-detect	0.00986	
Maximum Non-detect	0.11	
Mean of Detected Data	0.135	
Median of Detected Data	0.072	
Variance of Detected Data	0.0414	
SD of Detected Data	0.204	
CV of Detected Data	1.503	
Skewness of Detected Data	3.708	
Mean of Detected log data	-2.521	
SD of Detected Log data	0.954	
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection		
Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significant	nce Level	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0455.	
SD	0.107	
Standard Error of Mean	0.012	
95% KM (t) UCL	0.0655	
95% KM (z) UCL	0.0653	
95% KM (BCA) UCL	0.082	
95% KM (Percentile Bootstrap) UCL	0.0704	
95% KM (Chebyshev) UCL	0.098	
97.5% KM (Chebyshev) UCL	0.098 0.121	
99% KM (Chebyshev) UCL	0.165	
Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs		
•		

Aluminum

Number of Valid Observations	83
Number of Distinct Observations	79
Minimum	414
Maximum	15200
Mean	5335
Median	4650
SD	3345
Variance	11191315
Coefficient of Variation	0.627
Skewness	0.744
Mean of log data	8.345
SD of log data	0.757

95% Useful UCLs Student's-t UCL	5946
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	5971
95% Modified-t UCL	5951
Non-Parametric UCLs	
95% CLT UCL	5939
95% Jackknife UCL	5946
95% Standard Bootstrap UCL	5943
95% Bootstrap-t UCL	6001
95% Hall's Bootstrap UCL	5973
95% Percentile Bootstrap UCL	5960
95% BCA Bootstrap UCL	6000
95% Chebyshev(Mean, Sd) UCL	6936
97.5% Chebyshev(Mean, Sd) UCL	7628
99% Chebyshev(Mean, Sd) UCL	8989

Data appear Normal (0.05)

May want to try Normal UCLs

Anthracene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 46 37 0.0112 2.46 55.42% 0.00982 0.107
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.203 0.0886 0.175 0.418 2.06 4.761 -2.479

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

Number treated as Non-Detect	65
Number treated as Detected	18
Single DL Percent Detection	78.31%

Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0971
SD	0.291
Standard Error of Mean	0.0324
95% KM (t) UCL	0.151
95% KM (z) UCL	0.15
95% KM (BCA) UCL	0.158
95% KM (Percentile Bootstrap) UCL	0.156
95% KM (Chebyshev) UCL	0.238
97.5% KM (Chebyshev) UCL	0.299
99% KM (Chebyshev) UCL	0.419

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

Antimony

Total Number of Data	83
Number of Non-Detect Data	48
Number of Detected Data	35
Minimum Detected	1.13
Maximum Detected	5.14
Percent Non-Detects	57.83%
Minimum Non-detect	0.19
Maximum Non-detect	0.43
Mean of Detected Data	2.372
Median of Detected Data	2.17
Variance of Detected Data	0.831
SD of Detected Data	0.912
CV of Detected Data	0.384
Skewness of Detected Data	1.014
Mean of Detected log data	0.796
SD of Detected Log data	0.372

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	1.654
SD	0.847
Standard Error of Mean	0.0943
95% KM (t) UCL	1.811
95% KM (z) UCL	1.809
95% KM (BCA) UCL	1.872

95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	1.845 2.065 2.242 2.592	
Data appear Gamma Distributed (0.05) May want to try Gamma UCLs		
Aroclor-1254		
Total Number of Data	85	
Number of Non-Detect Data	73	
Number of Detected Data Minimum Detected	12 0.0109	
Maximum Detected	7.98	
Percent Non-Detects	85.88%	
Minimum Non-detect	0.00325	
Maximum Non-detect	0.0381	
Mean of Detected Data	0.967	
Median of Detected Data	0.144	
Variance of Detected Data	5.039	
SD of Detected Data	2.245	
CV of Detected Data	2.321	
Skewness of Detected Data	3.277	
Mean of Detected log data SD of Detected Log data	-1.66 1.897	
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	recommended 76 9 89.41%	
Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev	el	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.146	
SD Standard Free of Mann	0.873	
Standard Error of Mean 95% KM (t) UCL	0.099 0.31	
95% KM (z) UCL	0.309	
95% KM (BCA) UCL	0.401	
95% KM (Percentile Bootstrap) UCL	0.342	
95% KM (Chebyshev) UCL	0.577	
97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.764 1.13	
Data appear Gamma Distributed (0.05) May want to try Gamma UCLs		
Arsenic		
Total Number of Data Number of Non-Detect Data	83 12	

Number of Detected Data	71	
Minimum Detected	0.26	
Maximum Detected	24.3	
Percent Non-Detects	14.46%	
Minimum Non-detect	0.17	
Maximum Non-detect	1.44	
Mean of Detected Data	4.313	
Median of Detected Data	2.93	
Variance of Detected Data	16.5	
SD of Detected Data	4.062	
CV of Detected Data	0.942	
Skewness of Detected Data	2.522	
Mean of Detected log data	1.106	
SD of Detected Log data	0.882	
Note: Data have multiple DLs - Use of KM Me		
For all methods (except KM, DL/2, and ROS Me	ethods),	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	23	
Number treated as Detected	60	
Single DL Percent Detection	27.71%	
Data Dsitribution Test with Detected Values On	lv	
Data appear Gamma Distributed at 5% Significa	ance Level	
.,		
Winsorization Method	27.71%	
Mean	2.801	
SD	1.229	
95% Winsor (t) UCL	3.029	
Kaplan Meier (KM) Method		
Mean	3.739	
SD	3.984	
Standard Error of Mean	0.44	
95% KM (t) UCL	4.472	
95% KM (z) UCL	4.463	
95% KM (BCA) UCL	4.578	
95% KM (Percentile Bootstrap) UCL	4.49	
95% KM (Chebyshev) UCL	5.659	
97.5% KM (Chebyshev) UCL	6.49	
99% KM (Chebyshev) UCL	8.122	
D (
Data appear Gamma Distributed (0.05)		
May want to try Gamma UCLs		

Barium

Number of Valid Observations	83
Number of Distinct Observations	79
Minimum	18.6
Maximum	2180
Mean	345.2
Median	206
SD	349
Variance	121792
Coefficient of Variation	1.011
Skewness	2.74
Mean of log data	5.482
SD of log data	0.84

95% Useful UCLs Student's-t UCL	408.9	
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	420.5 410.9	
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL	408.2 408.9	
95% Standard Bootstrap UCL 95% Bootstrap-t UCL	407.6 422	
95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	433.9 411	
95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	425.9 512.2 584.4 726.4	
Data appear Lognormal (0.05) May want to try Lognormal UCLs		
Benzo(a)anthracene		
Total Number of Data	83	
Number of Non-Detect Data Number of Detected Data	53 30	
Minimum Detected	0.0286	
Maximum Detected	5.02	
Percent Non-Detects	63.86%	
Minimum Non-detect	0.0089	
Maximum Non-detect	0.0998	
Mean of Detected Data	0.936	
Median of Detected Data	0.573	
Variance of Detected Data	1.21	
SD of Detected Data	1,1	
CV of Detected Data	1.175	
Skewness of Detected Data	2.02	
Mean of Detected log data	-0.895	
SD of Detected Log data	1.505	
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs	recommended	
Number treated as Non-Detect	60	
Number treated as Detected	23	
Single DL Percent Detection	72.29%	
Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Lev	rel	
Winsorization Method	N/A	
Kaplan Meier (KM) Method Mean	0.357	
SD	0.783	
Standard Error of Mean	0.0874	
95% KM (t) UCL	0.502	
**		

95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.501 0.521 0.509 0.738 0.903 1.226	
Data appear Gamma Distributed (0.05) May want to try Gamma UCLs		
Benzo(a)pyrene		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 18 65 0.0103 4.57 21.69% 0.00886 0.0984	
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.575 0.0887 1.014 1.007 1.751 2.332 -2.005 1.79	
Note: Data have multiple DLs - Use of KM Method in For all methods (except KM, DL/2, and ROS Methods). Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected. Single DL Percent Detection.		
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.453 0.914 0.101 0.621 0.619 0.624 0.628 0.894 1.085 1.459	
Potential UCL to Use		
Benzo(b)fluoranthene		
Total Number of Data	83	

Number of Non-Detect Data	22	
Number of Detected Data	61	
Minimum Detected	0.0408	
Maximum Detected	5.42	
Percent Non-Detects	26.51%	
Minimum Non-detect	0.00677	
Maximum Non-detect		
waximum non-detect	0.147	
Man of Datastad Data	0.794	
Mean of Detected Data	0.784	
Median of Detected Data	0.21	
Variance of Detected Data	1.421	
SD of Detected Data	1.192	
CV of Detected Data	1.52	
Skewness of Detected Data	2.244	
Mean of Detected log data	-1.212	
SD of Detected Log data	1.393	
OD of Deteoled Log data	1.000	
Note: Data have multiple DLs - Use of KM Method	l is recommended	
For all methods (except KM, DL/2, and ROS Method		
Observations < Largest DL are treated as NDs	-,,	
<u> </u>	47	
Number treated as Non-Detect		
Number treated as Detected	36	
Single DL Percent Detection	56.63%	
Data Databasia Tantasii Data tad Walion Only		
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
14P	N1/A	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.588	
SD	1.065	
Standard Error of Mean	0.118	
95% KM (t) UCL	0.784	
95% KM (z) UCL	0.782	
	0.823	
95% KM (BCA) UCL		
95% KM (Percentile Bootstrap) UCL	0.793	
95% KM (Chebyshev) UCL	1.102	
97.5% KM (Chebyshev) UCL	1.324	
99% KM (Chebyshev) UCL	1.76	
the contract of the contract o	and the control of the control of	
Potential UCL to Use		
95% KM (Chebyshev) UCL	1.102	
Danielo la Nucardania		
Benzo(g,h,i)perylene		
Total Number of Data	83	
Total Number of Data		
Number of Non-Detect Data	34	
Number of Detected Data	49	
Minimum Detected	0.00989	
Maximum Detected	4.24	
Percent Non-Detects	40.96%	
Minimum Non-detect	0.00887	
Maximum Non-detect	1.03	
MAY	1.00	
Mean of Detected Data	0.502	
Median of Detected Data	0.114	
Variance of Detected Data	0.744	
SD of Detected Data	0.863	
CV of Detected Data	1.719	

Skewness of Detected Data	2.664
Mean of Detected log data	-1.881
SD of Detected Log data	1.582

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 76
Number treated as Detected 7
Single DL Percent Detection 91.57%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

Mean	0.304
SD	0.699
Standard Error of Mean	0.0776
95% KM (t) UCL	0.433
95% KM (z) UCL	0.432
95% KM (BCA) UCL	0.441
95% KM (Percentile Bootstrap) UCL	0.436
95% KM (Chebyshev) UCL	0.643
97.5% KM (Chebyshev) UCL	0.789
99% KM (Chebyshev) UCL	1.076

Data appear Lognormal (0.05) May want to try Lognormal UCLs

Benzo(k)fluoranthene

Total Number of Data	83
Number of Non-Detect Data	50
Number of Detected Data	33
Minimum Detected	0.0195
Maximum Detected	4.25
Percent Non-Detects	60.24%
Minimum Non-detect	0.0137
Maximum Non-detect	0.153
Mean of Detected Data	0.583
Median of Detected Data	0.228
Variance of Detected Data	0.722
SD of Detected Data	0.85
CV of Detected Data	1.458
Skewness of Detected Data	2.793
Mean of Detected log data	-1.499
SD of Detected Log data	1.5

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 64
Number treated as Detected 19
Single DL Percent Detection 77.11%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.244 0.595 0.0663 0.354 0.353 0.359 0.356 0.533 0.658	
Data appear Lognormal (0.05) May want to try Lognormal UCLs		
Beryllium		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data	83 1 82 0.014 4.6 1.20% 0.0031 0.0031	
Median of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.325 0.277 0.527 1.275 6.355 -1.306 0.991	
Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significan	ice Level	
Winsorization Method Mean SD 95% Winsor (t) UCL	0.991 0.366 0.257 0.413	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.408 0.522 0.0577 0.504 0.503 0.524 0.514 0.66 0.768 0.982	

Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs

Boron		
Total Number of Data	83	
Number of Non-Detect Data	49	
Number of Detected Data	34	
Minimum Detected	2.43	
	_, , -	
Maximum Detected	54.4	
Percent Non-Detects	59.04%	
Minimum Non-detect	0.95	
Maximum Non-detect	15.3	
•		
Mean of Detected Data	9.961	
Median of Detected Data	8.78	
Variance of Detected Data	81.05	
SD of Detected Data	9.003	
CV of Detected Data	0.904	
Skewness of Detected Data	3.951	
Mean of Detected log data	2.084	
SD of Detected Log data	0.622	
3D of Detected Log data	0.022	
Mater Data have multiple DI = 1151/88 88 (1 - 11		
Note: Data have multiple DLs - Use of KM Method is		
For all methods (except KM, DL/2, and ROS Methods),		
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	81	
Number treated as Detected	2	
Single DL Percent Detection	97.59%	
•		
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
Data de Het Tellett a Bloodiffable Blottibation (0.00)		
Winsprization Method	N/Δ	
Winsorization Method	N/A	
	N/A	
Kaplan Meier (KM) Method		
Kaplan Meier (KM) Method Mean	5.559	
Kaplan Meier (KM) Method Mean SD	5.559 6.776	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean	5.559 6.776 0.756	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL	5.559 6.776 0.756 6.817	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL	5.559 6.776 0.756 6.817 6.803	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL	5.559 6.776 0.756 6.817	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL	5.559 6.776 0.756 6.817 6.803	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL	5.559 6.776 0.756 6.817 6.803 7.256	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (t) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (t) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (t) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (Z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL Butyl benzyl phthalate Total Number of Data	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (Z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL Butyl benzyl phthalate Total Number of Data Number of Non-Detect Data	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (Bootstrap) UCL Detential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL Butyl benzyl phthalate Total Number of Data Number of Non-Detect Data Number of Detected Data	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (Z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL Butyl benzyl phthalate Total Number of Data Number of Non-Detect Data	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (Bootstrap) UCL Detential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL Butyl benzyl phthalate Total Number of Data Number of Non-Detect Data Number of Detected Data	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL Butyl benzyl phthalate Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08 6.817 7.074 83 77 6 0.0129	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (Bootstrap) UCL Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL Butyl benzyl phthalate Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08 6.817 7.074 83 77 6 0.0129 0.297 92.77%	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (2) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (Bootstrap) UCL Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL Butyl benzyl phthalate Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected	5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08 6.817 7.074 83 77 6 0.0129 0.297	

Mean of Detected Data	0.0956
Median of Detected Data	0.0359
Variance of Detected Data	0.013
SD of Detected Data	0.114
CV of Detected Data	1.193
Skewness of Detected Data	1.455
Mean of Detected log data	-2.959
SD of Detected Log data	1.207

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect81Number treated as Detected2Single DL Percent Detection97.59%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.019
SD	0.0352
Standard Error of Mean	0.00424
95% KM (t) UCL	0.0261
95% KM (z) UCL	0.026
95% KM (BCA) UCL	0.0493
95% KM (Percentile Bootstrap) UCL	0.0415
95% KM (Chebyshev) UCL	0.0375
97.5% KM (Chebyshev) UCL	0.0455
99% KM (Chebyshev) UCL	0.0612

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

** Instead of UCL, EPC is selected to be median = <0.01250
[per recommendation in ProUCL User Guide]

Cadmium

Total Number of Data	83
Number of Non-Detect Data	33
Number of Detected Data	50
Minimum Detected	0.023
Maximum Detected	9.71
Percent Non-Detects	39.76%
Minimum Non-detect	0.017
Maximum Non-detect	0.052
Mean of Detected Data	0.764
Median of Detected Data	0.47

Page 16 of 40

Variance of Detected Data	1.948	
SD of Detected Data	1.396	
CV of Detected Data	1.828	
Skewness of Detected Data	5.725	
Mean of Detected log data	-0.79	
SD of Detected Log data	0.942	
OD of Detected Log data	0.942	
Note: Data have multiple DLs - Use of KM M For all methods (except KM, DL/2, and ROS M Observations < Largest DL are treated as NDs	ethods),	
Number treated as Non-Detect	34	
Number treated as Detected	49	
Single DL Percent Detection	40.96%	
	10.007	
Data Dsitribution Test with Detected Values Or Data appear Lognormal at 5% Significance Lev	•	
Winsorization Method	40.96%	
Mean	0.189	
SD	0.112	
95% Winsor (t) UCL	0.211	
(4 5 5		
Kaplan Meier (KM) Method		
Mean	0.469	
SD	1.132	
Standard Error of Mean	0.126	
95% KM (t) UCL	0.678	
95% KM (z) UCL	0.676	
95% KM (BCA) UCL	0.751	
95% KM (Percentile Bootstrap) UCL	0.707	
95% KM (Chebyshev) UCL	1.016	
97.5% KM (Chebyshev) UCL	1.253 1.718	
99% KM (Chebyshev) UCL	1.710	
Data appear Lognormal (0.05) May want to try Lognormal UCLs		
way want to try Eughormal OOEs		
Carbazole		
Total Number of Data	83	
Number of Non-Detect Data	54	
Number of Detected Data	29	
Minimum Detected	0.0104	
Maximum Detected	1.54	
Percent Non-Detects	65.06%	
Minimum Non-detect	0.00864	
Maximum Non-detect	0.0967	
Mean of Detected Data	0.157	
Median of Detected Data	0.0855	
Variance of Detected Data	0.0927	
SD of Detected Data	0.304	
CV of Detected Data	1.94	
Skewness of Detected Data	3.888	
Mean of Detected log data	-2.751	
SD of Detected Log data	1.285	
-		
Note: Data have multiple DLs - Use of KM M		
For all methods (except KM, DL/2, and ROS M		
Observations < Largest DL are treated as NDs		

Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	70 13 84.34%	
Data Dsitribution Test with Detected Values On Data Follow Appr. Gamma Distribution at 5% S		
Winsorization Method	N/A	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs	0.062 0.19 0.0212 0.0973 0.0969 0.107 0.104 0.155 0.195 0.273	
Chromium		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	83 75 3.37 136 16.08 12.6 15.7 246.5 0.977 5.833 2.58 0.568	
95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	18.94 20.09 19.13	
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	18.91 18.94 18.9 21.61	

32

19.25 20.82

23.59 **26.84**

33.22

Data appear Lognormal (0.05) May want to try Lognormal UCLs

99% Chebyshev(Mean, Sd) UCL

95% Hall's Bootstrap UCL

95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL

95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL

Chrysene	
Total Number of Data	83
Number of Non-Detect Data	27
Number of Detected Data	56
Minimum Detected Data	0.00932
Maximum Detected	4.87
Percent Non-Detects	32.53%
Minimum Non-detect	0.00842
Maximum Non-detect	0.0906
maxima m von dotot	5,5555
Mean of Detected Data	0.6
Median of Detected Data	0.16
Variance of Detected Data	0.927
SD of Detected Data	0.963
CV of Detected Data	1.604
Skewness of Detected Data	2.449
Mean of Detected log data	-1.726
SD of Detected Log data	1.665
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods),	
Observations < Largest DL are treated as NDs Number treated as Non-Detect	50
Number treated as Non-Detect Number treated as Detected	33
Single DL Percent Detection	60.24%
· ·	00.2470
Data Dsitribution Test with Detected Values Only	
Data do not follow a Discernable Distribution (0.05)	
Winsorization Method	N/A
·	
Kaplan Meier (KM) Method	
Mean	0.409
SD	0.831
Standard Error of Mean	0.092
95% KM (t) UCL	
	0.562
95% KM (z) UCL	0.562 0.56
95% KM (z) UCL 95% KM (BCA) UCL	
• •	0.56
95% KM (BCA) UCL	0.56 0.562
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.56 0.562 0.567
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.56 0.562 0.567 0.81
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.56 0.562 0.567 0.81
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL	0.56 0.562 0.567 0.81
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use	0.56 0.562 0.567 0.81
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.56 0.562 0.567 0.81
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use	0.56 0.562 0.567 0.81
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use Cobalt	0.56 0.562 0.567 0.81 0.984 1.324
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use Cobalt Total Number of Data	0.56 0.562 0.567 0.81 0.984 1.324
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use Cobalt Total Number of Data Number of Non-Detect Data	0.56 0.562 0.567 0.81 0.984 1.324
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use Cobalt Total Number of Data Number of Non-Detect Data Number of Detected Data	0.56 0.562 0.567 0.81 0.984 1.324
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use Cobalt Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected	0.56 0.562 0.567 0.81 0.984 1.324 83 1 82 0.049
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use Cobalt Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected	0.56 0.562 0.567 0.81 0.984 1.324 83 1 82 0.049 16
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use Cobalt Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects	0.56 0.562 0.567 0.81 0.984 1.324
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use Cobalt Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect	0.56 0.562 0.567 0.81 0.984 1.324

Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	3.495 4.948 2.224 0.593		
Skewness of Detected Data	2.276		
Mean of Detected log data	1.135		
SD of Detected Log data	0.731		
Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level			
Winsorization Method	0.731		
Mean	3.617		
SD	1.87		
	3.959		
95% Winsor (t) UCL	3.939		
Kenlen Meier (KM) Method			
Kaplan Meier (KM) Method	3.706		
Mean			
SD	2.234		
Standard Error of Mean	0.247		
95% KM (t) UCL	4.116		
95% KM (z) UCL	4.112		
95% KM (BCA) UCL	4.111		
95% KM (Percentile Bootstrap) UCL	4.129		
95% KM (Chebyshev) UCL	4.781		
97.5% KM (Chebyshev) UCL	5.247		
99% KM (Chebyshev) UCL	6.161		
Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs			
Copper			
Copper Number of Valid Observations	83		
• •	83 78		
Number of Valid Observations			
Number of Valid Observations Number of Distinct Observations	78		
Number of Valid Observations Number of Distinct Observations Minimum	78 1.55		
Number of Valid Observations Number of Distinct Observations Minimum Maximum	78 1.55 216		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean	78 1.55 216 27.98		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median	78 1.55 216 27.98 16.4		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD	78 1.55 216 27.98 16.4 35.35		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance	78 1.55 216 27.98 16.4 35.35 1249		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation	78 1.55 216 27.98 16.4 35.35 1249 1.263		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844 34.43		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844 34.43		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844 34.43		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844 34.43 36.09 34.7		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844 34.43 36.09 34.7		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844 34.43 36.09 34.7		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844 34.43 36.09 34.7		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	78 1.55 216 27.98 16.4 35.35 1249 1.263 3.794 2.929 0.844 34.43 36.09 34.7		

95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	36.93 44.89 52.21 66.58
Data appear Lognormal (0.05) May want to try Lognormal UCLs	
	····
Dibenz(a,h)anthracene	
Total Number of Data	83
Number of Non-Detect Data	47
Number of Detected Data	36
Minimum Detected	0.0639
Maximum Detected	1.64
Percent Non-Detects	56.63%
Minimum Non-detect	0.00846
Maximum Non-detect	0.0946
Mean of Detected Data	0.347
Median of Detected Data	0.143
Variance of Detected Data	0.148
SD of Detected Data	0.385
CV of Detected Data	′ 1.109
Skewness of Detected Data	1.917
Mean of Detected log data	-1.528
SD of Detected Log data	0.938
Note: Data have multiple DLs - Use of KM Metho For all methods (except KM, DL/2, and ROS Method Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	
Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.187
SD	0.286
Standard Error of Mean	0.0319
95% KM (t) UCL	0.24
95% KM (z) UCL	0.239
95% KM (BCA) UCL ,	0.249
95% KM (Percentile Bootstrap) UCL	0.245
95% KM (Chebyshev) UCL	0.326
97.5% KM (Chebyshev) UCL	0.386
99% KM (Chebyshev) UCL	0.504
Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL	
Dibenzofuran	
Total Number of Data	83

Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	66 17 0.0167 0.821 79.52% 0.0124 0.139	
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.132 0.0603 0.0456 0.214 1.623 2.78 -2.684 1.02	
Note: Data have multiple DLs - Use of KM Meti For all methods (except KM, DL/2, and ROS Meth Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection		
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0)	5)	
Winsorization Method	N/A	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (Z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.041 0.105 0.0119 0.0607 0.0605 0.0723 0.0659 0.0927 0.115	
Potential UCL to Use 95% KM (BCA) UCL	0:0723	
Dieldrin		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 62 21 2.43E-04 0.0205 74.70 % 1.40E-04 0.00701	
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	0.00336 0.00138 2.95E-05 0.00543 1.617	

Skewness of Detected Data	2.499
Mean of Detected log data	-6.547
SD of Detected Log data	1.257

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect80Number treated as Detected3Single DL Percent Detection96.39%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
----------------------	-----

Kaplan Meier (KM) Method

	rapian well (raw) welled	
1	Mean	0.00104
;	SD	0.00299
;	Standard Error of Mean	3.36E-04
	95% KM (t) UCL	0.0016
	95% KM (z) UCL	0.00159
	95% KM (BCA) UCL	0.00187
	95% KM (Percentile Bootstrap) UCL	0.00163
	95% KM (Chebyshev) UCL	0.00251
9	97.5% KM (Chebyshev) UCL	0.00314
9	99% KM (Chebyshev) UCL	0.00439

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

Di-n-butyl phthalate

Total Number of Data	83
Number of Non-Detect Data	74
Number of Detected Data	9
Minimum Detected	0.0368
Maximum Detected	0.753
Percent Non-Detects	89.16%
Minimum Non-detect	0.0251
Maximum Non-detect	0.28
Mean of Detected Data	0.217
Median of Detected Data	0.0819
Variance of Detected Data	0.0586
SD of Detected Data	0.242
CV of Detected Data	1.117
Skewness of Detected Data	1.577
Mean of Detected log data	-2.084
SD of Detected Log data	1.12

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 80
Number treated as Detected 3
Single DL Percent Detection 96.39%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0566
SD	0.0938
Standard Error of Mean	0.0109
95% KM (t) UCL	0.0748
95% KM (z) UCL	0.0746
95% KM (BCA) UCL	0.0993
95% KM (Percentile Bootstrap) UCL	0.0819
95% KM (Chebyshev) UCL	0.104
97.5% KM (Chebyshev) UCL	0.125
99% KM (Chebyshev) UCL	0.166

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Endosulfan sulfate

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 66 17 4.56E-04 0.0713 79.52% 2.65E-04 0.0133
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.00837 0.00154 3.09E-04 0.0176 2.098 3.28 -6.019

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 80 Number treated as Detected Single DL Percent Detection 96.39%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method N/A

Kaplan Meier (KM) Method

0.00209 Mean SD 0.00835

Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	9.45E-04 0.00366 0.00364 0.00421 0.00385 0.0062 0.00799 0.0115
95% KM (BCA) UCL	0.00421
Endrin aldehyde	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data	83 61 22 4.97E-04 0.0738 73.49% 3.36E-04 0.00374
Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data	0.00243 2.63E-04 0.0162 1.991 3.585 -5.742
SD of Detected Log data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Methods Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	
Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level	
Winsorization Method	N/A
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.00253 0.00882 9.91E-04 0.00418 0.00416 0.00487 0.00446 0.00685 0.00872
Data appear Lognormal (0.05) May want to try Lognormal UCLs	

Endrin ketone

Total Number of Data	. 83
Number of Non-Detect Data	66
Number of Detected Data	17
Minimum Detected	0.00123
Maximum Detected	0.02
Percent Non-Detects	79.52%
Minimum Non-detect	4.26E-04
Maximum Non-detect	0.021
Mean of Detected Data	0.00614
Median of Detected Data	0.0041
Variance of Detected Data	2.68E-05
SD of Detected Data	0.00518
CV of Detected Data	0.844
Skewness of Detected Data	1.296
Mean of Detected log data	-5.439
SD of Detected Log data	0.881

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 83
Number treated as Detected 0
Single DL Percent Detection 100.00%

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method Mean 0.00225 SD 0.00303 Standard Error of Mean 3.45E-04 0.00283 95% KM (t) UCL 95% KM (z) UCL 0.00282 95% KM (BCA) UCL 0.00319 95% KM (Percentile Bootstrap) UCL 0.00297 95% KM (Chebyshev) UCL 0.00376 97.5% KM (Chebyshev) UCL 0.00441 99% KM (Chebyshev) UCL 0.00569

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Fluoranthene

Total Number of Data	83
Number of Non-Detect Data	24
Number of Detected Data	59
Minimum Detected	0.0133
Maximum Detected	14.2
Percent Non-Detects	28.92%
Minimum Non-detect	0.0107
Maximum Non-detect	0.117
Mean of Detected Data	1.119
Median of Detected Data	0.24

Variance of D	etected Data	4.976
SD of Detecte	ed Data	2.231
CV of Detecte	ed Data	1.994
Skewness of	Detected Data	4.072
Mean of Dete	cted log data	-1.32
SD of Detecte	ed Log data	1.802

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

Number treated as Non-Detect 47 Number treated as Detected 36 Single DL Percent Detection 56.63%

N/A

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Kaplan Meier (KM) Method	
Mean	0.8
SD	1.931
Standard Error of Mean	0.214
95% KM (t) UCL	1.155
95% KM (z) UCL	1.151
95% KM (BCA) UCL	1.188
95% KM (Percentile Bootstrap) UCL	1.157
95% KM (Chebyshev) UCL	1.731
97.5% KM (Chebyshev) UCL	2.135
99% KM (Chebyshev) UCL	2.926

Data appear Lognormal (0.05) May want to try Lognormal UCLs

Winsorization Method

Fluorene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 55 28 0.00945 1.11 66.27% 0.0086 0.0962
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.133 0.0693 0.059 0.243 1.829 3.384 -2.823

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 74 Number treated as Detected 9 Single DL Percent Detection 89.16% Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0518
SD	0.15
Standard Error of Mean	0.0168
95% KM (t) UCL	0.0797
95% KM (z) UCL	0.0794
95% KM (BCA) UCL	0.0885
95% KM (Percentile Bootstrap) UCL	0.0819
95% KM (Chebyshev) UCL	0.125
97.5% KM (Chebyshev) UCL	0.157
99% KM (Chebyshev) UCL	0.219

Data appear Lognormal (0.05) May want to try Lognormal UCLs

gamma-Chlordane

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 75 8 7.10E-04 0.0156 90.36% 2.20E-04 0.011
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.00604 0.00376 3.27E-05 0.00572 0.948 1.091 -5.575 1.109

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect81Number treated as Detected2Single DL Percent Detection97.59%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method

N/A

Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.00123 0.00229 2.69E-04 0.00167 0.00167 0.00414 0.00381 0.0024 0.0029
Data appear Normal (0.05) May want to try Normal UCLs	
Indeno(1,2,3-cd)pyrene	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 20 63 0.0634 6.49 24.10% 0.0142 0.158
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.616 0.165 1.079 1.039 1.687 3.54 -1.365 1.245
Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Methods Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	
Winsorization Method	N/A
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.483 0.928 0.103 0.654 0.652 0.68 0.661 0.931 1.124 1.505

Potential UCL to Use

Iron	
Number of Valid Observations	83
Number of Distinct Observations	73
Minimum	3450
Maximum	77100
Mean	16285
Median	13400
SD	11193
Variance	1.25E+08
Coefficient of Variation	0.687
Skewness	3.11
Mean of log data	9.548
SD of log data	0.52
95% Useful UCLs	
Student's-t UCL	18329
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	18754
95% Modified-t UCL	18399
Non-Parametric UCLs	
95% CLT UCL	18306
95% Jackknife UCL	18329
95% Standard Bootstrap UCL	18305
95% Bootstrap-t UCL	19144
95% Hall's Bootstrap UCL	19421
95% Percentile Bootstrap UCL	18450
95% BCA Bootstrap UCL	18967
95% Chebyshev(Mean, Sd) UCL	21640
97.5% Chebyshev(Mean, Sd) UCL	23957
99% Chebyshev(Mean, Sd) UCL	28509
Data appear Lognormal (0.05)	
May want to try Lognormal UCLs	
may want to dy Lognorman 3 3 Lo	
Lead	
Number of Valid Observations	83
Number of Distinct Observations	80
Minimum	2.82
Maximum	643
Mean	69.61
Median	34.4
SD	112.8
Variance	12720
Coefficient of Variation	1.62
Skewness	3.653
Mean of log data	3.584
SD of log data	1.077
050/ 11-25:11101 2	
95% Useful UCLs	90.2
Student's-t UCL	9U.Z
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	95.27
	- +

95% KM (Chebyshev) UCL 0.931

95% Modified-t UCL	91.03	
Non-Parametric UCLs		
95% CLT UCL	89.97	
95% Jackknife UCL	90.2	
95% Standard Bootstrap UCL	89.8	
95% Bootstrap-t UCL	101.1	
95% Hall's Bootstrap UCL	96.41	
95% Percentile Bootstrap UCL	91.07	
95% BCA Bootstrap UCL	97.2 122.0	
95% Chebyshev(Mean, Sd) UCL	123.6 1 46.9	
97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	192.8	
99 % Chebyshev(Mean, Su) OCL	132.0	
Data appear Lognormal (0.05)		
May want to try Lognormal UCLs		
110.		
Lithium	·	
Number of Valid Observations	83	
Number of Distinct Observations	80	
Minimum	0.65	
Maximum	28	
Mean	7.856	
Median	6.44	
SD	5.715	
Variance	32.67	
Coefficient of Variation	0.728	
Skewness	1.032	
Mean of log data	1.76	
SD of log data	0.847	
95% Useful UCLs		
Student's-t UCL	8.899	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	8.963	
95% Modified-t UCL	8.911	
Non-Parametric UCLs		
95% CLT UCL	8.887	
95% Jackknife UCL	8.899	
95% Standard Bootstrap UCL	8.865	
95% Bootstrap-t UCL	9.016	
95% Hall's Bootstrap UCL	8.939	
95% Percentile Bootstrap UCL	8.92	
95% BCA Bootstrap UCL	9.002	
95% Chebyshev(Mean, Sd) UCL	10.59	
97.5% Chebyshev(Mean, Sd) UCL	11.77	
99% Chebyshev(Mean, Sd) UCL	14.1	
Data appear Gamma Distributed (0.05)		
May want to try Gamma UCLs		
Manganese		
3411000		
Number of Valid Observations	83	
Number of Distinct Observations	71	
Minimum `	59.3	

Maximum	892	
Mean	257.4	
Median	224	
SD	129.3	
Variance	16726	
Coefficient of Variation	0.502	
Skewness	2.305	
Mean of log data	5.455	
SD of log data	0.426	
OD of log data	5.125	
Data do not follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	281.1	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	284.6	
95% Modified-t UCL	281.7	
Non-Parametric UCLs		
95% CLT UCL	280.8	
95% Jackknife UCL	281.1	
95% Standard Bootstrap UCL	280.3	
95% Bootstrap-t UCL	287	
95% Hall's Bootstrap UCL	287.4	
95% Percentile Bootstrap UCL	280.8	
95% BCA Bootstrap UCL	285.5	
95% Chebyshev(Mean, Sd) UCL	319.3	
97.5% Chebyshev(Mean, Sd) UCL	346.1	
99% Chebyshev(Mean, Sd) UCL	398.7	
Potential UCL to Use Use 95% Student's-t UCL Or 95% Modified-t UCL	281.1 281.7	
Use 95% Student's-t UCL	and the second s	
Use 95% Student's-t UCL	and the second s	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury	281.7	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data	and the second s	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data	281.7	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data	83 46	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data	83 46 37	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected	83 46 37 0.0032	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected	83 46 37 0.0032 0.66	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects	83 46 37 0.0032 0.66 55.42%	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 46 37 0.0032 0.66 55,42% 0.002 0.048	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data	83 46 37 0.0032 0.66 55.42% 0.002 0.048	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119 0.109	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data SCV of Detected Data Skewness of Detected Data	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119 0.109 2.445	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected Data Skewness of Detected Data Mean of Detected Data	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119 0.0119 0.109 2.445 5.279	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data SCV of Detected Data Skewness of Detected Data	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected Data Skewness of Detected Data Mean of Detected Data	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004 1.162	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data SD of Detected Log data	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004 1.162 d is recommended	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Methol	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004 1.162 d is recommended	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Methor For all methods (except KM, DL/2, and ROS Methor	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004 1.162 d is recommended	
Use 95% Student's-t UCL Or 95% Modified-t UCL Mercury Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Methor For all methods (except KM, DL/2, and ROS Methor Observations < Largest DL are treated as NDs	83 46 37 0.0032 0.66 55.42% 0.002 0.048 0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004 1.162 d is recommended	

Single DL Percent Detection	91.57%	
Data Dsitribution Test with Detected Values C Data appear Lognormal at 5% Significance Lognormal	•	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0222	
SD	0.0748	
Standard Error of Mean	0.00832	
95% KM (t) UCL	0.0361	
95% KM (z) UCL	0.0359	
95% KM (BCA) UCL	0.0378	
95% KM (Percentile Bootstrap) UCL	0.0375	
95% KM (Chebyshev) UCL	0.0585	
97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0742 0.105	
Data appear Lognormal (0.05) May want to try Lognormal UCLs		
Molybdenum		
Total Number of Data	83	
Number of Non-Detect Data	12	
Number of Detected Data	71	
Minimum Detected	0.098	
Maximum Detected	8.42	
Percent Non-Detects	14.46%	
Minimum Non-detect	0.068	
Maximum Non-detect	0.078	
Mean of Detected Data	1.521	
Median of Detected Data	1	
Variance of Detected Data	2.632	
SD of Detected Data	1.622	
CV of Detected Data	1.066	
Skewness of Detected Data Mean of Detected log data	2.021 -0.11	
SD of Detected Log data	1.096	
Note: Data have multiple DLs - Use of KM	Method is recommended	
For all methods (except KM, DL/2, and ROS the Largest DL value is used for all NDs	Metnods),	
Data Dsitribution Test with Detected Values 0 Data Follow Appr. Gamma Distribution at 5%		
Winsorization Method	1.096	
Mean	1.067	
SD	0.956	
OE9/ Minoar (t) LICI	1 2/13	

1.243

1.315

1.572

0.174 1.604 1.601

SD

95% Winsor (t) UCL

Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL

Kaplan Meier (KM) Method Mean

95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97:5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	1.611 1.617 2.073 2.4 3.044	
Data follow Appr. Gamma Distribution (0 May want to try Gamma UCLs	.05)	
Nickel		
Number of Valid Observations	83	
Number of Distinct Observations	67	
Minimum	2.84	
Maximum	36.7	
Mean	11.64	
Median	11.2	
SD	4.938	
Variance	24.38	
Coefficient of Variation	0.424	
Skewness	1.825	
Mean of log data	2.373	
SD of log data	0.411	
95% Useful UCLs		
Student's-t UCL	12.54	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	12.65	
95% Modified-t UCL	12.56	
Non-Parametric UCLs		
95% CLT UCL	12.53	
95% Jackknife UCL	12.54	
95% Standard Bootstrap UCL	12.53	
95% Bootstrap-t UCL	12.7	
95% Hall's Bootstrap UCL	12.84	
95% Percentile Bootstrap UCL	12.58	
95% BCA Bootstrap UCL	12.7	
95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	14 Grant Controvers as secretar 50	
99% Chebyshev(Mean, Sd) UCL	15.02 17.03	
Data appear Gamma Distributed (0.05) May want to try Gamma UCLs		
Phenanthrene		
Total Number of Data	83	
Number of Non-Detect Data	26	
Number of Detected Data	57	
Minimum Detected	0.0139	
Maximum Detected	12.6	
Percent Non-Detects	31.33%	
Minimum Non-detect	0.0115	
Maximum Non-detect	0.122	
Mean of Detected Data	0.74	
Median of Detected Data	0.154	

Variance of Detected Data	3.32	
SD of Detected Data	1.822	
CV of Detected Data	2.463	
Skewness of Detected Data	5.422	
Mean of Detected log data	-1.59	
SD of Detected Log data	1.565	
Note: Data have multiple DLs - Use of KM Method is recommended		
For all methods (except KM, DL/2, and ROS Meth	ods),	
Observations at several DL and tracked as NDs		

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 51 32 Number treated as Detected Single DL Percent Detection 61.45%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.513
SD	1.534
Standard Error of Mean	0.17
95% KM (t) UCL	0.796
95% KM (z) UCL	0.793
95% KM (BCA) UCL	0.814
95% KM (Percentile Bootstrap) UCL	0.825
95% KM (Chebyshev) UCL	1.254
97.5% KM (Chebyshev) UCL	1.574
99% KM (Chebyshev) UCL	2.203

Data appear Lognormal (0.05) May want to try Lognormal UCLs

Pyrene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 26 57 0.0121 8.47 31.33% 0.0111 0.3
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data	0.765 0.206 1.966 1.402 1.832 3.609
Mean of Detected log data SD of Detected Log data	-1.517 1.658

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 62 Number treated as Detected 21 Single DL Percent Detection 74.70%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.532
SD	1.203
Standard Error of Mean	0.133
95% KM (t) UCL	0.753
95% KM (z) UCL	0.751
95% KM (BCA) UCL	0.781
95% KM (Percentile Bootstrap) UCL	0.772
95% KM (Chebyshev) UCL	1.112
97.5% KM (Chebyshev) UCL	1.363
99% KM (Chebyshev) UCL	1.857

Data appear Lognormal (0.05) May want to try Lognormal UCLs

Selenium

Total Number of Data

83

Dataset has no Detected Values.

No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.96

Silver

Total Number of Data

83

Dataset has no Detected Values.

No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 1.98

Strontium

Number of Valid Observations	83
Number of Distinct Observations	76
Minimum	16.5
Maximum	527
Mean	70.61
Median	57.3
SD	63.98
Variance	4094
Coefficient of Variation	0.906
Skewness	5.044
Mean of log data	4.06
SD of log data	0.583

Data do not follow a Discernable Distribution

95% Useful UCLs	
Student's-t UCL	82.29

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	86.31 82.94 82.16 82.29 82.12 91.51 139.9 82.73 88.37 101.2 114.5 140.5	
Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL	101.2	
Tin		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 64 19 0.55 4.95 77.11% 0.46 1.02	
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	1.666 1.68 1.302 1.141 0.685 1.434 0.301 0.671	
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection Data Dsitribution Test with Detected Values Only	72 11 86.75%	
Data appear Gamma Distributed at 5% Significance Lev	el	
Winsorization Method	N/A	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.806 0.709 0.0799 0.939 0.938 0.972 0.941	

95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	1.155 1.305 1.602	
Data appear Gamma Distributed (0.05) May want to try Gamma UCLs		
Titanium		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	83 71 11.5 645 29.8 19.5 69.4 4816 2.329 8.71	
Mean of log data	3.055	
SD of log data	0.544	
Data do not follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	42.47	
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	50.11 43.68	
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	42.33 42.47 42.36 93.11 87.11 44.76 54.32 63 77.37	
Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL	63	
Vanadium		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data	83 67 5.42 45.6 13.76 12.9 6.248 39.04 0.454 2.186 2.538	

SD of log data	0.404
95% Useful UCLs Student's-t UCL	14.9
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	15.06 14.93
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	14.89 14.9 15.11 15.17 14.9 15.07 16.75 18.04 20.58
Data appear Gamma Distributed (0.05)	

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

Zinc

Number of Valid Observations	83
Number of Distinct Observations	81
Minimum	12.3
Maximum	4770
Mean	601.2
Median	455
SD	672.8
Variance	452606
Coefficient of Variation	1.119
Skewness	3.386
Mean of log data	5.837
SD of log data	1.203
·	
95% Useful UCLs	
Student's-t UCL	724.1
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	752
95% Modified-t UCL	728.6
Non-Parametric UCLs	
95% CLT UCL	722.7
95% Jackknife UCL	724.1
95% Standard Bootstrap UCL	723.1
95% Bootstrap-t UCL	762.3
95% Hall's Bootstrap UCL	818.2
95% Percentile Bootstrap UCL	734.3
95% BCA Bootstrap UCL	771.3
95% Chebyshev(Mean, Sd) UCL	923.1
97.5% Chebyshev(Mean, Sd) UCL	1062
99% Chebyshev(Mean, Sd) UCL	1336
50 / Gilos Joile V (Medil, Od) GOL	į

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

APPENDIX A-2

SOUTH OF MARLIN SOIL

Nonparametric UCL Statistics for Data Sets with Non-Detects

User Selected Options

From File C:\Users\Michael\...\Gulfco Superfund Site\revised HHRA\Gulfco Marlin South soil-all data_ProUCL input.wst

Full Precision OFF

Г

Confidence Coefficient
Number of Bootstrap Operations

95% 2000

1,3,5-Trimethylbenzene

Total Number of Data	83
Number of Non-Detect Data	74
Number of Detected Data	9
Minimum Detected	2.67E-04
Maximum Detected	4.36
Percent Non-Detects	89.16%
Minimum Non-detect	7.40E-05
Maximum Non-detect	0.0101
Mean of Detected Data	0.91
Median of Detected Data	0.00104
Median of Detected Data Variance of Detected Data	0.00104 3.269
Variance of Detected Data	3.269
Variance of Detected Data SD of Detected Data	3.269 1.808
Variance of Detected Data SD of Detected Data CV of Detected Data	3.269 1.808 1.987

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 81
Number treated as Detected 2
Single DL Percent Detection 97.59%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0989	
SD	0.629	
Standard Error of Mean	0.0732	
95% KM (t) UCL	0.221	
95% KM (z) UCL	0.219	
95% KM (BCA) UCL	0.243	

95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.243 0.418 0.556 0.827	
Potential UCL to Use 97.5% KM (Chebyshev) UCL	0.556	
2-Butanone		
Total Number of Date	00	
Total Number of Data Number of Non-Detect Data	83 42	
Number of Detected Data	41	
Minimum Detected	9.92E-04	
Maximum Detected	0.0226	
Percent Non-Detects	50.60%	
Minimum Non-detect	1.43E-04	
Maximum Non-detect	0.12	
Mean of Detected Data	0.00511	
Median of Detected Data	0.00314	
Variance of Detected Data	2.46E-05	
SD of Detected Data	0.00496	
CV of Detected Data	0.971	
Skewness of Detected Data	1.975	
Mean of Detected log data	-5.61 0.774	
SD of Detected Log data	0.774	
Note: Data have multiple DLs - Use of KM Metho	d is recommended	
For all methods (except KM, DL/2, and ROS Method		
Observations < Largest DL are treated as NDs	,	
Number treated as Non-Detect	83	
Number treated as Detected	0	
Single DL Percent Detection	100.00%	
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)		
Data do not follow a Discernable Distribution (0.03)		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.00329	
SD	0.00401	
Standard Error of Mean	4.58E-04	
95% KM (t) UCL	0.00405	
95% KM (z) UCL	0.00404	***
95% KM (BCA) UCL	0.00425	
95% KM (Percentile Bootstrap) UCL	0.00414	
95% KM (Chebyshev) UCL	0.00528	
97.5% KM (Chebyshev) UCL	0.00615	
99% KM (Chebyshev) UCL	0.00785	
Potential UCL to Use		
95% KM (t) UCL	0.00405	•
95% KM (% Bootstrap) UCL	0.00414	

2-Hexanone

Total Number of Data	83
Number of Non-Detect Data	75
Number of Detected Data	8
Minimum Detected	0.00109
Maximum Detected	0.0207
Percent Non-Detects	90.36%
Minimum Non-detect	3.78E-04
Maximum Non-detect	0.317
Mean of Detected Data	0.00653
Mean of Detected Data Median of Detected Data	0.00653 0.00452
Median of Detected Data	0.00452
Median of Detected Data Variance of Detected Data	0.00452 4.39E-05
Median of Detected Data Variance of Detected Data SD of Detected Data	0.00452 4.39E-05 0.00662
Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	0.00452 4.39E-05 0.00662 1.015

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 83
Number treated as Detected 0
Single DL Percent Detection 100.00%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00165
SD	0.0026
Standard Error of Mean	3.16E-04
95% KM (t) UCL	0.00218
95% KM (z) UCL	0.00218
95% KM (BCA) UCL	0.00471
95% KM (Percentile Bootstrap) UCL	0.00417
95% KM (Chebyshev) UCL	0.00303
97.5% KM (Chebyshev) UCL	0.00363
99% KM (Chebyshev) UCL	0.0048

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

2-Methylnaphthalene	
Total Number of Data	166
Number of Non-Detect Data	134
Number of Detected Data	32
Minimum Detected	0.0106
Maximum Detected	7.21
Percent Non-Detects Minimum Non-detect	80.72% 0.00946
Maximum Non-detect	0.00946
THE ATT COLOR	0.200
Mean of Detected Data	0.315
Median of Detected Data	0.0469
Variance of Detected Data	1.597
SD of Detected Data	1.264
CV of Detected Data	4.009
Skewness of Detected Data Mean of Detected log data	5.582 -2.811
SD of Detected Log data	1.367
ob of botoston bog data	1.557
Note: Data have multiple DLs - Use of KM Method is re	ecommended
For all methods (except KM, DL/2, and ROS Methods),	
Observations < Largest DL are treated as NDs	404
Number treated as Non-Detect Number treated as Detected	161
Single DL Percent Detection	5 96.99%
ongle BET droom Beleation	35.5570
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	
Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0697
SD	0.559
Standard Error of Mean	0.0441
95% KM (t) UCL	0.143
95% KM (z) UCL	0.142
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.16 0.155
95% KM (Chebyshev) UCL	0.165
97.5% KM (Chebyshev) UCL	0.345
99% KM (Chebyshev) UCL	0.508
Potential UCL to Use 95% KM (BCA) UCL	.0.16
4,4'-DDD	
Total Number of Data	166
Number of Non-Detect Data	
Number of Detected Data	145
Number of Detected Data -	145 21
Minimum Detected	

Maximum Detected	1.12	
Percent Non-Detects	87.35%	
Minimum Non-detect	2.35E-04	
Maximum Non-detect	0.0125	
Mean of Detected Data	0.0588	
Median of Detected Data	0.00372	
Variance of Detected Data	0.0592	
SD of Detected Data	0.243	
CV of Detected Data	4.139	
Skewness of Detected Data	4.577	
Mean of Detected log data	-5.478	
SD of Detected Log data	1.706	
Note: Data have multiple DLs - Use of KM Method is r For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	161	
Number treated as Detected	5	
Single DL Percent Detection	96.99%	
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.00776	
SD	0.0866	
Standard Error of Mean	0.00689	
95% KM (t) UCL	0.0192	
95% KM (z) UCL	0.0191	
95% KM (BCA) UCL	0.0276	
95% KM (Percentile Bootstrap) UCL	0.0214	•
95% KM (Chebyshev) UCL	0.0378	
97.5% KM (Chebyshev) UCL	0.0508	
99% KM (Chebyshev) UCL	0.0763	
Potential UCL to Use		
4,4'-DDE		
Total Number of Data	166	
Number of Non-Detect Data	144	
Number of Detected Data	22	
Minimum Detected	4.28E-04	
Maximum Detected	0.0693	
Percent Non-Detects	86.75%	
Minimum Non-detect	3.26E-04	·
Maximum Non-detect	0.0373	
Mean of Detected Data	0.00905	
Median of Detected Data	0.00197	
Variance of Detected Data	3.69E-04	
SD of Detected Data	0.0192	

CV of Detected Data	2.121	
Skewness of Detected Data	2.781	
Mean of Detected log data	-6	
SD of Detected Log data	1.459	
Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	164	
Number treated as Detected	2	

98.80%

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Single DL Percent Detection

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00158
SD	0.00743
Standard Error of Mean	5.91E-04
95% KM (t) UCL	0.00256
95% KM (z) UCL	0.00256
95% KM (BCA) UCL	0.00281
95% KM (Percentile Bootstrap) UCL	0.00259
95% KM (Chebyshev) UCL	0.00416
97.5% KM (Chebyshev) UCL	0.00527
99% KM (Chebyshev) UCL	0.00746
Potential UCL to Use 95% KM (BCA) UCL	0.00281

4,4'-DDT

Total Number of Data	166
Number of Non-Detect Data	98
Number of Detected Data	68
Minimum Detected	2.81E-04
Maximum Detected	0.113
Percent Non-Detects	59.04%
Minimum Non-detect	1.25E-04
Maximum Non-detect	0.0143
Mean of Detected Data	0.0087
Mean of Detected Data Median of Detected Data	0.0087 0.00275
Median of Detected Data	0.00275
Median of Detected Data Variance of Detected Data	0.00275 2.75E-04
Median of Detected Data Variance of Detected Data SD of Detected Data	0.00275 2.75E-04 0.0166
Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	0.00275 2.75E-04 0.0166 1.905

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

Number treated as Non-Detect	154
Number treated as Detected	12
Single DL Percent Detection	92.77%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization	Method	N/A

Kaplan Meier (KM) Method	
Mean	0.00375
SD	0.0113
Standard Error of Mean	8.85E-04
95% KM (t) UCL	0.00521
95% KM (z) UCL	0.0052
95% KM (BCA) UCL	0.00548
95% KM (Percentile Bootstrap) UCL	0.00529
95% KM (Chebyshev) UCL	0.0076

95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 0.00927 99% KM (Chebyshev) UCL

Data appear Lognormal (0.05)

May want to try Lognormal UCLs

0.0125

Acenaphthene

Total Number of Data	166
Number of Non-Detect Data	131
Number of Detected Data	35
Minimum Detected	0.0113
Maximum Detected	1.69
Percent Non-Detects	78.92%
Minimum Non-detect	0.0087
Maximum Non-detect	0.189
Mean of Detected Data	0.161
Median of Detected Data	0.0787
Variance of Detected Data	0.0894
SD of Detected Data	0.299
CV of Detected Data	1.852
Skewness of Detected Data	4.309
Mean of Detected log data	-2.602
SD of Detected Log data	1.192

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 160 Number treated as Detected 6 96.39% Single DL Percent Detection

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0433 0.149 0.0117 0.0627 0.0626 0.0676 0.0635 0.0944 0.116
Data appear Lognormal (0.05)	
May want to try Lognormal UCLs	
Acenaphthylene	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data	166 129 37 0.0172 1.2 77.71% 0.00986 0.128 0.156 0.0517 0.084 0.29
CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	1.862 3.012 -2.69 1.124
Note: Data have multiple DLs - Use of KM Method is refor all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	156 10 93.98%
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	
Winsorization Method	N/A
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL	0.0484 0.147 0.0116 0.0675

95% KM (z) UCL	0.0674
95% KM (BCA) UCL	0.0719
95% KM (Percentile Bootstrap) UCL	0.0688
95% KM (Chebyshev) UCL	0.0987
97.5% KM (Chebyshev) UCL	0.12
99% KM (Chebyshev) UCL	. 0.163
Potential UCL to Use	
95% KM (BCA) UCL	0.0719
Andrea	

83

Acetone

Total Number of Data

Number of Non-Detect Data	73
Number of Detected Data	10
Minimum Detected	0.031
Maximum Detected	0.16
Percent Non-Detects	87.95%
Minimum Non-detect	1.71E-04
Maximum Non-detect	0.144
Mean of Detected Data	0.08
Median of Detected Data	0.0582
Variance of Detected Data	0.00277
SD of Detected Data	0.0526
CV of Detected Data	0.658
Skewness of Detected Data	0.756
Mean of Detected log data	-2.72
SD of Detected Log data	0.655

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 81
Number treated as Detected 2
Single DL Percent Detection 97.59%

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

Mean	0.037
SD	0.0236
Standard Error of Mean	0.00274
95% KM (t) UCL	0.0415
95% KM (z) UCL	0.0415
95% KM (BCA) UCL	0.0559
95% KM (Percentile Bootstrap) UCL	0.0448
95% KM (Chebyshev) UCL	0.0489
97.5% KM (Chebyshev) UCL	0.0541
99% KM (Chebyshev) UCL	0.0642

Data appear Gamma Distributed (0.05)

May want to try 0	3amma UCLs
-------------------	------------

Aluminum		
Number of Valid Observations	166	
Number of Distinct Observations	149	
Minimum	414	
Maximum	15700	
Mean	6452	
Median	6175	
SD	3601	
Variance	12965507	
Coefficient of Variation	0.558	
Skewness	0.362	
Mean of log data	8.565	
SD of log data	0.718	
95% Useful UCLs		
Student's-t UCL	6914	
95% UCLs (Adjusted for Skewness)	0000	
95% Adjusted-CLT UCL	6920	
95% Modified-t UCL	6916	
Non-Parametric UCLs		
95% CLT UCL	6912	
95% Jackknife UCL	6914	
95% Standard Bootstrap UCL	6908	
95% Bootstrap-t UCL	6929	
95% Hall's Bootstrap UCL	6936	
95% Percentile Bootstrap UCL	6914	
95% BCA Bootstrap UCL	6917	
95% Chebyshev(Mean, Sd) UCL	7670	
97.5% Chebyshev(Mean, Sd) UCL	8197	
99% Chebyshev(Mean, Sd) UCL	9233	
Data appear Normal (0.05)		
May want to try Normal UCLs		
Anthracene		
Total Number of Data	166	
Number of Non-Detect Data	102	
Number of Detected Data	64	
Minimum Detected	0.0112	
Maximum Detected	2.46	
Percent Non-Detects	61.45%	
Minimum Non-detect	0.00982	
Maximum Non-detect	0.207	
Mean of Detected Data	0.212	
Median of Detected Data	0.0936	
Variance of Detected Data	0.142	
variation of botooted bata	U. 17L	

SD of Detected Data	0.377
CV of Detected Data	1.781
Skewness of Detected Data	4.103
Mean of Detected log data	-2.472
SD of Detected Log data	1.358
Note: Data have multiple DLs - Use of KM Method is	s recommended
For all methods (except KM, DL/2, and ROS Methods)	

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 150 Number treated as Detected 16 90.36% Single DL Percent Detection

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0889
SD	0.252
Standard Error of Mean	0.0197
95% KM (t) UCL	0.122
95% KM (z) UCL	0.121

22 95% KM (BCA) UCL 0.124 95% KM (Percentile Bootstrap) UCL 0.122 95% KM (Chebyshev) UCL 0.175

97.5% KM (Chebyshev) UCL 0.212 99% KM (Chebyshev) UCL 0.285

Potential UCL to Use 95% KM (BCA) UCL 0.124

Antimony

Mean of Detected log data

SD of Detected Log data

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected	166 101 65 0.94 5.51
Percent Non-Detects	60.84%
Minimum Non-detect	0.19
Maximum Non-detect	1.04
Mean of Detected Data	2.249
Median of Detected Data	2.13
Variance of Detected Data	0.816
SD of Detected Data	0.903
CV of Detected Data	0.402
Skewness of Detected Data	1.372

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

0.739

0.379

Observations < Largest DL are treated as NDs	
Number treated as Non-Detect	103
Number treated as Detected	63
Single DL Percent Detection	62.05%

Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

· · · · · · · · · · · · · · · · · · ·	
Kaplan Meier (KM) Method	
Mean	1.452
SD	0.85
Standard Error of Mean	0.0665
95% KM (t) UCL	1.562
95% KM (z) UCL	1,562
95% KM (BCA) UCL	1.647
95% KM (Percentile Bootstrap) UCL	1.612
95% KM (Chebyshev) UCL	1.742
97.5% KM (Chebyshev) UCL	1.868
99% KM (Chebyshev) UCL	2.114

N/A

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Winsorization Method

Aroclor-1254

Total Number of Data	170
Number of Non-Detect Data	145
Number of Detected Data	25
Minimum Detected	0.0109
Maximum Detected	11.5
Percent Non-Detects	85.29%
Minimum Non-detect	0.00325
Maximum Non-detect	0.0391
Mean of Detected Data	1.407
Median of Detected Data	0.172
Variance of Detected Data	7.459
SD of Detected Data	2.731
CV of Detected Data	1.941
Skewness of Detected Data	2.874
Mean of Detected log data	-1.085
SD of Detected Log data	1.783

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 148
Number treated as Detected 22
Single DL Percent Detection 87.06%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.216	
SD	1.139	
Standard Error of Mean	0.0892	
95% KM (t) UCL	0.364	
95% KM (z) UCL	0.363	
95% KM (BCA) UCL	0.427	•
95% KM (Percentile Bootstrap) UCL	0.376	
95% KM (Chebyshev) UCL	0.605	
97.5% KM (Chebyshev) UCL	0.773	
99% KM (Chebyshev) UCL	1.104	
, ,		
Data appear Lognormal (0.05)		
May want to try Lognormal UCLs		
Arsenic		
Total Number of Data	166	
Number of Non-Detect Data	27	
Number of Detected Data	139	
Minimum Detected	0.23	
Maximum Detected	24.3	
Percent Non-Detects	16.27%	
Minimum Non-detect	0.17	
Maximum Non-detect	1.44	
Mean of Detected Data	3.918	•
Median of Detected Data	3.09	
Variance of Detected Data	10.64	
SD of Detected Data	3.261	
CV of Detected Data	0.832	
Skewness of Detected Data	2.783	
Mean of Detected log data	1.079	
SD of Detected Log data	0.803	
Note: Data have multiple DLs - Use of KM Method is re	commended	
For all methods (except KM, DL/2, and ROS Methods),		
Observations < Largest DL are treated as NDs	47	
Number treated as Non-Detect	47	
Number treated as Detected	119	
Single DL Percent Detection	28.31%	
Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance	l evel	
Data Fullow Appl. Gaillina Distribution at 5% Significance	Levei	
Winsorization Method	28.31%	
Mean	2.696	
SD	1.062	
050()45 () 1101	0.004	

2.834

95% Winsor (t) UCL

Kaplan Meier (KM) Method

Mean	3.331
SD	3.259
Standard Error of Mean	0.254
95% KM (t) UCL	3.752
95% KM (z) UCL	3.749
95% KM (BCA) UCL	3.777
95% KM (Percentile Bootstrap) UCL	3.77
95% KM (Chebyshev) UCL	4.438
97.5% KM (Chebyshev) UCL	4.917
99% KM (Chebyshev) UCL	5.858
39 /0 KW (Chebyshev) OCL	0.000
Data follow Appr. Gamma Distribution (0.05)	
May want to try Gamma UCLs	
Barium	
	400
Number of Valid Observations	166
Number of Distinct Observations	135
Minimum	18.6
Maximum	2180
Median	237.4
Median SD	139.5 274.8
Variance	75535
Coefficient of Variation	1.158
Skewness	3.69
Mean of log data	5.104
SD of log data	0.789
55 51 15g add	
Data do not follow a Discernable Distribution	
95% Useful UCLs	
Student's-t UCL	272.7
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	279
95% Modified-t UCL	273.7
Non-Parametric UCLs	070 5
95% CLT UCL	272.5
95% Jackknife UCL	272.7 273.3
95% Standard Bootstrap UCL 95% Bootstrap-t UCL	284
95% Hall's Bootstrap UCL	287.5
95% Percentile Bootstrap UCL	272.3
95% BCA Bootstrap UCL	279.3
95% Chebyshev(Mean, Sd) UCL	330.4
97.5% Chebyshev(Mean, Sd) UCL	370.6
99% Chebyshev(Mean, Sd) UCL	449.6
• • • •	
Potential UCL to Use	
Use 95% Chebyshev (Mean, Sd) UCL	330.4

Benzene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect	83 11 72 3.39E-04 0.0221 13.25% 9.50E-05
Maximum Non-detect	0.0399
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.00425 0.00378 1.01E-05 0.00318 0.748 2.653 -5.736 0.821
Note: Data have multiple DLs - Use of KM Method is re	commended
For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs	
Number treated as Non-Detect	83
Number treated as Detected	0
Single DL Percent Detection	100.00%
Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level	
Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00389
SD	0.00315
Standard Error of Mean	3.52E-04
95% KM (t) UCL	0.00448
95% KM (z) UCL	0.00447
95% KM (BCA) UCL	0.00453
95% KM (Percentile Bootstrap) UCL	0.0045
95% KM (Chebyshev) UCL	0.00543
97.5% KM (Chebyshev) UCL	0.00609

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

99% KM (Chebyshev) UCL

Benzo(a)anthracene

Total Number of Data	166
Number of Non-Detect Data	122
Number of Detected Data	44
Minimum Detected	0.0118
Maximum Detected	5.02

	•
Percent Non-Detects	73.49%
Minimum Non-detect	0.0089
Maximum Non-detect	0.193
Maximum Non-detect	0.193
Mean of Detected Data	0.98
	0.516
Median of Detected Data	
Variance of Detected Data	1.538
SD of Detected Data	1.24
CV of Detected Data	1.265
Skewness of Detected Data	1.955
Mean of Detected log data	-0.967
SD of Detected Log data	1.624
Note: Data have multiple DLs - Use of KM Method is re- For all methods (except KM, DL/2, and ROS Methods),	commended
Observations < Largest DL are treated as NDs	
Number treated as Non-Detect	135
Number treated as Norr-Detect Number treated as Detected	31
	81.33%
Single DL Percent Detection	01.33%
Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level	
Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.269
SD	0.762
Standard Error of Mean	0.0598
95% KM (t) UCL	0.368
95% KM (z) UCL	0.367
95% KM (BCA) UCL	0.39
95% KM (Percentile Bootstrap) UCL	0.378
95% KM (Chebyshev) UCL	0.53
97.5% KM (Chebyshev) UCL	0.643
	0.864
99% KM (Chebyshev) UCL	0.004
Data appear Gamma Distributed (0.05) May want to try Gamma UCLs	
- ()	
Benzo(a)pyrene	
Total Number of Data	166
Number of Non-Detect Data	53
Number of Detected Data	113
Minimum Detected	0.00999
Maximum Detected	4.88
	31.93%
Percent Non-Detects Minimum Non-detect	
	0.00886
Maximum Non-detect	0.0984
Mean of Detected Data	0.506
Median of Detected Data	0.0666
Variance of Detected Data	0.998
SD of Detected Data	0.999

CV of Detected Data	1.973	
Skewness of Detected Data	2.807	
Mean of Detected log data	-2.255	
<u> </u>	1.801	
SD of Detected Log data	1.001	
Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Methods Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	115	
Number treated as Detected	51	
Single DL Percent Detection	69.28%	
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.348	
SD	0.853	
Standard Error of Mean	0.0665	-
95% KM (t) UCL	0.458	
95% KM (z) UCL	0.457	
95% KM (BCA) UCL	0.458	
95% KM (Percentile Bootstrap) UCL	0.464	
95% KM (Chebyshev) UCL	0.638	
97.5% KM (Chebyshev) UCL	0.763	
99% KM (Chebyshev) UCL	1.009	
Potential UCL to Use		
Potential OOL to ose		
Power (In) (In) and (In)		
Benzo(b)fluoranthene		
Total Number of Data	166	
Number of Non-Detect Data	64	
Number of Detected Data	102	
Minimum Detected	0.0408	
Maximum Detected	5.97	
Percent Non-Detects	38.55%	
Minimum Non-detect	0.00677	
Maximum Non-detect	0.167	
Mean of Detected Data	0.75	
Median of Detected Data	0.206	
Variance of Detected Data	1.497	
SD of Detected Data	1.223	
CV of Detected Data	1.63	
Skewness of Detected Data	2.609	
Mean of Detected log data	-1.254	
SD of Detected Log data	1.353	
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods	recommended	
	2)	
	3),	
Observations < Largest DL are treated as NDs Number treated as Non-Detect	109	

Number treated as Detected	57	
Single DL Percent Detection	65.66%	
Data Daitribution Test with Datasted Values On		
Data Dsitribution Test with Detected Values Onl Data do not follow a Discernable Distribution (0.		
Data do not follow a Discernable Distribution (o.	00)	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.477	
SD CM	1.015	
Standard Error of Mean	0.0791	
95% KM (t) UCL	0.608 0.608	
95% KM (z) UCL 95% KM (BCA) UCL	0.622	
95% KM (BCA) OCL 95% KM (Percentile Bootstrap) UCL	0.611	
95% KM (Chebyshev) UCL	0.822	
97.5% KM (Chebyshev) UCL	0.972	
99% KM (Chebyshev) UCL	1.265	
Potential UCL to Use		
95% KM (Chebyshev) UCL		
Benzo(g,h,i)perylene		
Total Number of Data	166	
Number of Non-Detect Data	91	
Number of Detected Data	75	
Minimum Detected	0.00989	
Maximum Detected	4.24	
Percent Non-Detects	54.82%	
Minimum Non-detect	0.00887	
Maximum Non-detect	2.9	
Mean of Detected Data	0.46	
Median of Detected Data	0.105	
Variance of Detected Data	0.603	
SD of Detected Data	0.776	
CV of Detected Data	1.688	
Skewness of Detected Data	2.724 -1.908	
Mean of Detected log data SD of Detected Log data	1.53	
OD of Detected Log data	1.50	
Note: Data have multiple DLs - Use of KM Mo	ethod is recommended	
For all methods (except KM, DL/2, and ROS Me		
Observations < Largest DL are treated as NDs	,,	
Number treated as Non-Detect	165	
Number treated as Detected	1	
Single DL Percent Detection	99.40%	
Data Dsitribution Test with Detected Values On		
Data do not follow a Discernable Distribution (0	.05)	
Winacrization Mathed	N1/A	
Winsorization Method	N/A	

Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.217 0.565 0.0443 0.291 0.29 0.294 0.296 0.41 0.494 0.658
Benzo(k)fluoranthene	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	166 121 45 0.0158 4.25 72.89% 0.0137 0.296
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.537 0.228 0.578 0.76 1.415 2.959 -1.534 1.472
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect	recommended 149
Number treated as Detected Single DL Percent Detection	17 89.76%
Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level	
Winsorization Method	N/A
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.158 0.455 0.0357 0.217 0.216 0.228 0.223 0.313

97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.381 0.513	
Data appear Lognormal (0.05)		
May want to try Lognormal UCLs		
		•
Beryllium		
Total Number of Data	166	
Number of Non-Detect Data	1	
Number of Detected Data	165	
Minimum Detected	0.014	
Maximum Detected	4.6	
Percent Non-Detects	0.60%	
Minimum Non-detect	0.0031	
Maximum Non-detect	0.0031	
Mean of Detected Data	0.468	
Median of Detected Data	0.42	
Variance of Detected Data	0.176	
SD of Detected Data	0.419	
CV of Detected Data	0.897	
Skewness of Detected Data	5.967	
Mean of Detected log data	-1.079	
SD of Detected Log data	0.914	
Data Dsitribution Test with Detected Valuata do not follow a Discernable Dist		
Winsorization Method	0.914	
Mean	0.446	
SD	0.281	
95% Winsor (t) UCL	0.482	
Kaplan Meier (KM) Method		
Mean	0.465	
SD	0.418	
Standard Error of Mean	0.0326	
95% KM (t) UCL	0.519	
95% KM (z) UCL	0.518	
95% KM (BCA) UCL	0.525	
95% KM (Percentile Bootstrap) UCL	0.521	
95% KM (Chebyshev) UCL	0.607 0.668	
97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.789	
Potential UCL to Use 95% KM (BCA) UCL	0.525	
Boron		
Total Number of Data	166	
Number of Non-Detect Data	95	
or more potoot pata	•	

Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	71 2.43 54.4 57.23% 0.95 15.3	
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	9.924 9.39 43.63 6.605 0.666 4.557 2.158 0.518	
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Method Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05) Winsorization Method	N/A	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	5.675 5.667 0.444 6.41 6.406 6.674 6.505 7.611 8.449 10.09	
95% KM (t) UCL 95% KM (% Bootstrap) UCL	6.41 6.505	
Butyl benzyl phthalate		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	166 156 10 0.0129 0.617 93.98% 0.0109 0.237	

Mean of Detected Data	0.13
Median of Detected Data	0.04
Variance of Detected Data	0.0374
SD of Detected Data	0.193
CV of Detected Data	1.489
Skewness of Detected Data	2.178
Mean of Detected log data	-2.847
SD of Detected Log data	1.268

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 164
Number treated as Detected 2
Single DL Percent Detection 98.80%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A

Kaplan Meier (KM) Method

, ,	
Mean	0.0201
SD	0.0529
Standard Error of Mean	0.00433
95% KM (t) UCL	0.0273
95% KM (z) UCL	0.0272
95% KM (BCA) UCL	0.0439
95% KM (Percentile Bootstrap) UCL	0.0353
95% KM (Chebyshev) UCL	0.039
97.5% KM (Chebyshev) UCL	0.0472
99% KM (Chebyshev) UCL	0.0632

Data appear Lognormal (0.05)

May want to try Lognormal UCLs

Cadmium

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	166 73 93 0.023 9.71 43.98% 0.017 0.087
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data	0.589 0.33 1.174 1.084 1.838 6.915 -1.032

SD of Detected Log data	0.913

Note: Data have multiple DLs - Use of KM Metho		
For all methods (except KM, DL/2, and ROS Metho	ds),	
Observations < Largest DL are treated as NDs	80	
Number treated as Non-Detect	86	
Number treated as Detected	48.19%	
Single DL Percent Detection	40.1976	
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	48.19%	
Mean	0.126	
SD	0.0338	
95% Winsor (t) UCL	0.131	
Kaplan Meier (KM) Method		
Mean	0.34	•
SD	0.854	
Standard Error of Mean	0.0667	
95% KM (t) UCL	0.451	
95% KM (z) UCL	0.45	
95% KM (BCA) UCL	0.505	
95% KM (Percentile Bootstrap) UCL	0.467	
95% KM (Chebyshev) UCL	0.631	
97.5% KM (Chebyshev) UCL	0.757	
99% KM (Chebyshev) UCL	1.004	
Potential UCL to Use		
95% KM (t) UCL	0.451	
95% KM (% Bootstrap) UCL	0.467	
ಲಭ್ಯಾಸಾವ್ಯವ್ಯಕ್ತ ಸ್ವದವರ ಭೋಗವಾಗ ಸ್ವದೀಶವಾಗ ಸ್ವಕ್ತಿಲ್ಲಿದ್ದಾರೆ. ಪ್ರಾಪ್ತಿಪ್ರಕ್ಷಿಯ ಪ್ರತಿಪೊಳ್ಳಲ್ಲಿ ಬರುಗಳು ಪ್ರಸ್ತಿಸಿಗಳು	Marian As Security in a greatest a	
Carbazole		

Total Number of Data	166
Number of Non-Detect Data	124
Number of Detected Data	42
Minimum Detected	0.0104
Maximum Detected	1.54
Percent Non-Detects	74.70%
Minimum Non-detect	0.00864
Maximum Non-detect	0.187
Mean of Detected Data	0.151
Median of Detected Data	0.0857
Variance of Detected Data	0.0723
SD of Detected Data	0.269
CV of Detected Data	1.777
Skewness of Detected Data	3.938
Mean of Detected log data	-2.746
SD of Detected Log data	1.291

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 158
Number treated as Detected 8
Single DL Percent Detection 95.18%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
----------------------	-----

Kaplan Meier (KM) Method

Mean	0.0464
SD	0.147
Standard Error of Mean	0.0116
95% KM (t) UCL	0.0656
95% KM (z) UCL	0.0654
95% KM (BCA) UCL	0.0705
95% KM (Percentile Bootstrap) UCL	0.067
95% KM (Chebyshev) UCL	0.0968
97.5% KM (Chebyshev) UCL	0.119
99% KM (Chebyshev) UCL	0.161

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

0.881

Carbon disulfide

Total Number of Data	83
Number of Non-Detect Data	70
Number of Detected Data	13
Minimum Detected	9.87E-04
Maximum Detected	0.028
Percent Non-Detects	84.34%
Minimum Non-detect	5.00E-05
Maximum Non-detect	0.0419
Mean of Detected Data	0.00521
Median of Detected Data	0.00299
Variance of Detected Data	5.05E-05
SD of Detected Data	0.00711
CV of Detected Data	1.364
Skewness of Detected Data	3.177
Mean of Detected log data	-5.705

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

SD of Detected Log data

Number treated as Non-Detect 83
Number treated as Detected 0
Single DL Percent Detection 100.00%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.00167 0.00313 3.60E-04 0.00227 0.00226 0.00339 0.00269 0.00324 0.00392 0.00525
Data follow Appr. Gamma Distribution (0.05)	
May want to try Gamma UCLs	
Chromium	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	166 144 2.03 136 13.53 10.55 12.49 156 0.923 6.346 2.41
Data do not follow a Discernable Distribution	
95% Useful UCLs Student's-t UCL	15.13
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	15.63 15.21
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	15.12 15.13 15.14 16.04 22.48 15.23 15.68 17.75 19.58 23.17

Use 95% Chebyshev (Mean, Sd) UCL	NOT THE PROPERTY OF THE PARTY O
Chrysene	
Total Number of Data	166
Number of Non-Detect Data	73
Number of Detected Data	93
Minimum Detected	0.00901
Maximum Detected	4.87
Percent Non-Detects	43.98%
Minimum Non-detect	0.00842
Maximum Non-detect	0.169
Mean of Detected Data	0.577
Median of Detected Data	0.139
Variance of Detected Data	0.978
SD of Detected Data	0.989
CV of Detected Data	1.714
Skewness of Detected Data	2.465
Mean of Detected log data	-1.859
SD of Detected Log data	1.688
Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Method Observations < Largest DL are treated as NDs	
Number treated as Non-Detect	125
Number treated as Detected	41
Single DL Percent Detection	75.30%
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	
Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.328
SD	0.788
Standard Error of Mean	0.0615
95% KM (t) UCL	0.429
95% KM (z) UCL	0.429
95% KM (BCA) UCL	0.434
95% KM (Percentile Bootstrap) UCL	0.432
95% KM (Chebyshev) UCL	0.596
97.5% KM (Chebyshev) UCL	0.712
99% KM (Chebyshev) UCL	0.939
Potential UCL to Use	
Cobalt	
Total Number of Data	166
Number of Non-Detect Data	1
Number of Detected Data	165
Minimum Detected	0.049

Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	16 0.60% 0.025 0.025	
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	4.169 3.99 4.113 2.028 0.486 1.409 1.289 0.615	
Data Dsitribution Test with Detected Values C Data appear Normal at 5% Significance Lev	•	
Winsorization Method Mean SD 95% Winsor (t) UCL	0.615 4.109 1.885 4.351	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Normal (0.05)	4.144 2.041 0.159 4.407 4.406 4.408 4.417 4.837 5.137 5.725	
May want to try Normal UCLs		
Copper		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	166 2 164 0.13 487 1.20% 0.066 0.3 24.55 12 2206 46.97 1.913	
Skewness of Detected Data	6.882	

Mean of Detected log data	2.587	
SD of Detected Log data	1.065	
Note: Data have multiple DLs - Use of KM Method is recor For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	mmended 3 163 1.81%	
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)		
Data de Not Iolion à Dissernation Distribution (6.66)		
Winsorization Method	1.81%	
Mean	21.1	
SD	25.47	
95% Winsor (t) UCL	24.37	
Kaplan Meier (KM) Method		
Mean	24.26	
SD	46.62	
Standard Error of Mean	3.63	
95% KM (t) UCL	30.26	
95% KM (z) UCL	30.23	
95% KM (BCA) UCL	31.03	
95% KM (Percentile Bootstrap) UCL	30.9	
95% KM (Chebyshev) UCL	40.08	
97.5% KM (Chebyshev) UCL	46.92	
99% KM (Chebyshev) UCL	60.37	
Potential UCL to Use 95% KM (Chebyshev) UCL	40.08	
Cyclohexane		
Total Number of Data	83	
Number of Non-Detect Data	36	
Number of Detected Data	47	
	6.26E-04	
Maximum Detected	21.7	
Percent Non-Detects	43.37%	
	8.87E-04	
Maximum Non-detect	0.0685	
Mean of Detected Data	0.467	
Median of Detected Data	0.00177	
Variance of Detected Data	10.01	
SD of Detected Data	3.165	
CV of Detected Data	6.783	
Skewness of Detected Data	6.855	
Mean of Detected log data	-5.92	
SD of Detected Log data	1.616	
Note: Data have multiple DLs - Use of KM Method is recommended		

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs	0.4	
Number treated as Non-Detect	81	
Number treated as Detected	2	
Single DL Percent Detection	97.59%	
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	•
14 1 N 1 (421) N 1 1		
Kaplan Meier (KM) Method	0.265	
Mean SD	0.265 2.367	
Standard Error of Mean	0.263	
95% KM (t) UCL	0.702	
95% KM (z) UCL	0.697	
95% KM (BCA) UCL	0.787	
95% KM (Percentile Bootstrap) UCL	0.787	
95% KM (Chebyshev) UCL	1.409	
97.5% KM (Chebyshev) UCL	1.905	
99% KM (Chebyshev) UCL	2.878	
Potential UCL to Use		
Dibenz(a,h)anthracene		
Total Niveshov of Data	166	
Total Number of Data Number of Non-Detect Data	110	
Number of Non-Detect Data	56	
Minimum Detected	0.0619	
Maximum Detected	1.64	
Percent Non-Detects	66.27%	
Minimum Non-detect	0.00846	
Maximum Non-detect	0.183	
Mean of Detected Data	0.317	
Median of Detected Data	0.145	
Variance of Detected Data	0.127	•
SD of Detected Data	0.356	
CV of Detected Data	1.122	
Skewness of Detected Data	2.024	
Mean of Detected log data	-1.608	
SD of Detected Log data	0.914	
Note: Data have multiple DLa. Use of VM Mathe	d is recommended	
Note: Data have multiple DLs - Use of KM Methor For all methods (except KM, DL/2, and ROS Methor		
Observations < Largest DL are treated as NDs	uo),	
Number treated as Non-Detect	143	
Number treated as Detected	23	
Single DL Percent Detection	86.14%	
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		

N/A

Winsorization Method

Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.148 0.238 0.0186 0.179 0.179 0.186 0.18 0.229	·
99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL	0.333 0.179 0.18	
Dibenzofuran		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	166 143 23 0.0167 0.821 86.14% 0.0124 0.268	
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.133 0.0604 0.0357 0.189 1.415 2.831 -2.559 0.963	
Note: Data have multiple DLs - Use of KM Methors For all methods (except KM, DL/2, and ROS Methodobservations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection		
Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level		
Winsorization Method	N/A	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL	0.0334 0.0798 0.00635 0.0439 0.0439	

95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0541 0.05 0.0611 0.0731 0.0966
Data appear Lognormal (0.05)	
May want to try Lognormal UCLs	

Dieldrin

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	133 33 2.43E-04 0.0205 80.12% 1.40E-04 0.0161
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.00344 0.00172 2.32E-05 0.00481 1.398 2.321 -6.408 1.218

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect164Number treated as Detected2Single DL Percent Detection98.80%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
----------------------	-----

Kaplan M	eier (KM)	Method
----------	-----------	--------

Mean	8.89E-04
SD	0.00247
Standard Error of Mean	1.95E-04
95% KM (t) UCL	0.00121
95% KM (z) UCL	0.00121
95% KM (BCA) UCL	0.00137
95% KM (Percentile Bootstrap) UCL	0.00125
95% KM (Chebyshev) UCL	0.00174
97.5% KM (Chebyshev) UCL	0.00211
99% KM (Chebyshev) UCL	0.00283

Data follow Appr. Gamma Distribution (0.05)

Mayw	ant to tr	v Gamma	ء ااکا د
IVIAV VV	aii 10 ii	v Gaillia	2 UULS

Din-butyl phthalate	
Number of Non-Detect Data Number of Detected Data 11 Minimum Detected 0.0311 Maximum Detected 0.753 Percent Non-Detects 93.37% Minimum Non-detect 0.0251 Maximum Non-detect 0.0251 Maximum Non-detect 0.542 Mean of Detected Data 0.188 Median of Detected Data 0.0819 Variance of Detected Data 0.0511 SD of Detected Data 0.0511 SD of Detected Data 0.226 CV of Detected Data 1.201 Skewness of Detected Data 1.85 Mean of Detected log data 1.85 Mean of Detected Log data 1.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.0519 95% KM (2) UCL 0.0569 95% KM (2) UCL 0.0569 95% KM (Percentile Bootstrap) UCL 0.0569 95% KM (Percentile Bootstrap) UCL 0.0755	
Number of Non-Detect Data Number of Detected Data 11 Minimum Detected 0.0311 Maximum Detected 0.753 Percent Non-Detects 93.37% Minimum Non-detect 0.0251 Maximum Non-detect 0.0542 Mean of Detected Data 0.188 Median of Detected Data 0.0819 Variance of Detected Data 0.0511 SD of Detected Data 0.026 CV of Detected Data 1.201 Skewness of Detected Data 1.201 Skewness of Detected Data 1.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method Mean 0.0418 SD 0.068 Standard Error of Mean 9.5% KM (t) UCL 9.5% KM (t) UCL 9.5% KM (ECA) UCL 9.5% KM (Chebyshev) UCL 0.0569 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 0.0756	
Number of Detected Data	
Minimum Detected	
Maximum Detected 0.753 Percent Non-Detects 93.37% Minimum Non-detect 0.0251 Maximum Non-detect 0.542 Mean of Detected Data 0.542 Mean of Detected Data 0.0819 Variance of Detected Data 0.0511 SD of Detected Data 0.226 CV of Detected Data 1.201 Skewness of Detected Data 1.85 Mean of Detected log data -2.241 SD of Detected Log data 1.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method N/A Mean 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.0	
Percent Non-Detects 93.37%	
Minimum Non-detect 0.0251 Maximum Non-detect 0.542 Mean of Detected Data 0.188 Median of Detected Data 0.0819 Variance of Detected Data 0.0511 SD of Detected Data 0.0511 SD of Detected Data 1.201 Skewness of Detected Data 1.201 Skewness of Detected Data 1.85 Mean of Detected log data 1.85 Mean of Detected Log data 1.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.0519 95% KM (Clebyshev) UCL 0.0599 95% KM (Chebyshev) UCL 0.0599 95% KM (Chebyshev) UCL 0.0598 95% KM (Chebyshev) UCL 0.0569	
Maximum Non-detect 0.542 Mean of Detected Data 0.0819 Variance of Detected Data 0.0511 SD of Detected Data 0.226 CV of Detected Data 1.201 Skewness of Detected Data 1.85 Mean of Detected log data -2.241 SD of Detected Log data 1.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Pollow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (BcA) UCL 0.0599 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.0765	
Mean of Detected Data 0.188 Median of Detected Data 0.0819 Variance of Detected Data 0.0511 SD of Detected Data 0.226 CV of Detected Data 1.201 Skewness of Detected Data 1.85 Mean of Detected log data -2.241 SD of Detected Log data 1.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Pollow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (2) UCL 0.0509 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.0765 <td></td>	
Median of Detected Data 0.0819 Variance of Detected Data 0.0511 SD of Detected Data 0.226 CV of Detected Data 1.201 Skewness of Detected Data 1.85 Mean of Detected log data -2.241 SD of Detected Log data 1.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method N/A Kaplan Meier (KM) Method N/A Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (2) UCL 0.0509 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.0765	
Variance of Detected Data 0.0511 SD of Detected Data 0.226 CV of Detected Data 1.201 Skewness of Detected Data 1.85 Mean of Detected log data 1.85 Mean of Detected Log data -2.241 SD of Detected Log data 1.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (t) UCL 0.0509 95% KM (BCA) UCL 0.0669 95% KM (Percentile Bootstrap) UCL 0.066 97.5% KM (Chebyshev) UCL 0.066	
SD of Detected Data CV of Detected Data 1.201 Skewness of Detected Data 1.85 Mean of Detected log data 2.241 SD of Detected Log data 3.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 95% KM (2) UCL 95% KM (2) UCL 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
SD of Detected Data CV of Detected Data 1.201 Skewness of Detected Data 1.85 Mean of Detected log data 2.241 SD of Detected Log data 3.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 95% KM (2) UCL 95% KM (2) UCL 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
Skewness of Detected Data Mean of Detected log data 7.2.241 SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 0.0508	
Skewness of Detected Data Mean of Detected log data 7.2.241 SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 0.0508	
Mean of Detected log data -2.241 SD of Detected Log data 1.087 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (t) UCL 0.0509 95% KM (g) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066	
Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066	
For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 165 Number treated as Detected 1 Single DL Percent Detection 99.40% Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
Data Follow Appr. Gamma Distribution at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
Kaplan Meier (KM) Method Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
Mean 0.0418 SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
SD 0.068 Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
Standard Error of Mean 0.00556 95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
95% KM (t) UCL 0.051 95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
95% KM (z) UCL 0.0509 95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
95% KM (BCA) UCL 0.0679 95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
95% KM (Percentile Bootstrap) UCL 0.0598 95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
95% KM (Chebyshev) UCL 0.066 97.5% KM (Chebyshev) UCL 0.0765	
97.5% KM (Chebyshev) UCL 0.0765	
Data follow Appr. Gamma Distribution (0.05)	
May want to try Gamma UCLs	/
Endosulfan sulfate	

166

Total Number of Data

Number of Non-Detect Data	145	
Number of Detected Data	21	
Minimum Detected	4.22E-04	
Maximum Detected	0.0713	
Percent Non-Detects	87.35%	
Minimum Non-detect	2.65E-04	
Maximum Non-detect	0.0304	
Mean of Detected Data	0.00705	
Median of Detected Data	0.00154	
Variance of Detected Data	2.55E-04	
SD of Detected Data	0.016	
CV of Detected Data	2.263	•
Skewness of Detected Data	3.667	
Mean of Detected log data	-6.164	•
SD of Detected Log data	1.391	
05 0, 50,00,00 E59 data	1.001	
Note: Data have multiple DLs - Use of KM Method is r For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs	ecommended	
Number treated as Non-Detect	165	
Number treated as Detected	1	
Single DL Percent Detection	99.40%	
olingic DE i crocin Detection	00.4070	
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
Data do not follow a Discernable Distribution (0.05) Winsorization Method	N/A	
Winsorization Method	N/A	
Winsorization Method Kaplan Meier (KM) Method		
Winsorization Method Kaplan Meier (KM) Method Mean	0.00127	
Winsorization Method Kaplan Meier (KM) Method Mean SD	0.00127 0.00597	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean	0.00127 0.00597 4.75E-04	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL	0.00127 0.00597 4.75E-04 0.00206	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL	0.00127 0.00597 4.75E-04 0.00206 0.00205	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424 0.006	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424 0.006	·
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Endrin aldehyde	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424 0.006	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Endrin aldehyde Total Number of Data	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424 0.006	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Endrin aldehyde Total Number of Data Number of Non-Detect Data	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424 0.006	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Potential UCL to Use 95% KM (BCA) UCL Total Number of Data Number of Non-Detect Data Number of Detected Data	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424 0.006	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Potential UCL to Use 95% KM (BCA) UCL Total Number of Data Number of Detected Data Number of Detected Data Minimum Detected	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424 0.006 0.0023	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Potential UCL to Use 95% KM (BCA) UCL Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424 0.006 0.0023	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Potential UCL to Use 95% KM (BCA) UCL Total Number of Data Number of Detected Data Number of Detected Data Minimum Detected	0.00127 0.00597 4.75E-04 0.00206 0.00205 0.0023 0.00215 0.00334 0.00424 0.006 0.0023	

0.0385

Maximum Non-detect

Mean of Detected Data	0.00852
Median of Detected Data	0.00247
Variance of Detected Data	2.29E-04
SD of Detected Data	0.0151
CV of Detected Data	1.779
Skewness of Detected Data	3.24
Mean of Detected log data	-5.658
SD of Detected Log data	1.245
Note: Data have multiple DL a. Llee of KM Method	l io rocommondod
Note: Data have multiple DLs - Use of KM Method	
For all methods (except KM, DL/2, and ROS Method	s),
Observations < Largest DL are treated as NDs	

164 Number treated as Non-Detect Number treated as Detected 2 Single DL Percent Detection 98.80%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00201
SD	0.00716
Standard Error of Mean	5.66E-04
95% KM (t) UCL	0.00295
95% KM (z) UCL	0.00294
95% KM (BCA) UCL	0.00354
95% KM (Percentile Bootstrap) UCL	0.0032
95% KM (Chebyshev) UCL	0.00448
97.5% KM (Chebyshev) UCL	0.00554
99% KM (Chebyshev) UCL	0.00764

Potential UCL to Use 95% KM (BCA) UCL 0.00354

Endrin ketone

Total Number of Data	166
Number of Non-Detect Data	142
Number of Detected Data	24
Minimum Detected	7.03E-04
Maximum Detected	0.02
Percent Non-Detects	85.54%
Minimum Non-detect	4.26E-04
Maximum Non-detect	0.0482
Mean of Detected Data	0.00502
Mean of Detected Data Median of Detected Data	0.00502 0.00291
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Median of Detected Data	0.00291
Median of Detected Data Variance of Detected Data	0.00291 2.23E-05
Median of Detected Data Variance of Detected Data SD of Detected Data	0.00291 2.23E-05 0.00473
Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	0.00291 2.23E-05 0.00473 0.942
Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data	0.00291 2.23E-05 0.00473 0.942 1.696

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

166 Number treated as Non-Detect 0 Number treated as Detected 100.00% Single DL Percent Detection

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

N/A Winsorization Method

Kaplan Meier (KM) Method

rapian well (raw) wellou	
Mean	0.00135
SD	0.00235
Standard Error of Mean	1.88E-04
95% KM (t) UCL	0.00166
95% KM (z) UCL	0.00166
95% KM (BCA) UCL	0.00212
95% KM (Percentile Bootstrap) UCL	0.00201
95% KM (Chebyshev) UCL	0.00217
97.5% KM (Chebyshev) UCL	0.00253
99% KM (Chebyshev) UCL	0.00322

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Ethylbenzene

Total Number of Data	83
Number of Non-Detect Data	36
Number of Detected Data	47
Minimum Detected	6.54E-04
Maximum Detected	0.105
Percent Non-Detects	43.37%
Minimum Non-detect	1.54E-04
Maximum Non-detect	0.0795
Mean of Detected Data	0.00536
Median of Detected Data	0.00206
Variance of Detected Data	2.57E-04
SD of Detected Data	0.016
CV of Detected Data	2.992
Skewness of Detected Data	5.73 .
Mean of Detected log data	-6.04
SD of Detected Log data	0.853

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 82 Number treated as Detected 98.80% Single DL Percent Detection

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0034	
SD ~	0.0122	
Standard Error of Mean	0.00135	
95% KM (t) UCL	0.00564	
95% KM (z) UCL	0.00562	
95% KM (BCA) UCL	0.00624	
95% KM (Percentile Bootstrap) UCL	0.00591	
95% KM (Chebyshev) UCL	0.00929	
97.5% KM (Chebyshev) UCL	0.0118	
99% KM (Chebyshev) UCL	0.0168	
Potential UCL to Use		
95% KM (t) UCL	0.00564	
95% KM (% Bootstrap) UCL	0.00591	

Fluoranthene

Total Number of Data	166
Number of Non-Detect Data	70
Number of Detected Data	96
Minimum Detected	0.0133
Maximum Detected	14.2
Percent Non-Detects	42.17%
Minimum Non-detect	0.0107
Maximum Non-detect	0.213
Mean of Detected Data	1.017
Median of Detected Data	0.179
Variance of Detected Data	4.437
SD of Detected Data	2.106
CV of Detected Data	2.071
Skewness of Detected Data	3.808
Mean of Detected log data	-1.503
SD of Detected Log data	1.799

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 119
Number treated as Detected 47
Single DL Percent Detection 71.69%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method N/A

Kaplan Meier (KM) Method

	0.505	
Mean	0.595	
SD	1.669	
Standard Error of Mean	0.13	
95% KM (t) UCL	0.81	
95% KM (z) UCL	0.809	
95% KM (BCA) UCL	0.825	
95% KM (Percentile Bootstrap) UCL	0.819	
95% KM (Chebyshev) UCL	1.162	
	1.408	
97.5% KM (Chebyshev) UCL	- 1, 10 0100 - 10 0120 PF 765, 7420	
99% KM (Chebyshev) UCL	1.89	
Potential UCL to Use		
Fluorene		
·		
Total Number of Data	166	
Total Number of Data		
Number of Non-Detect Data	125	
Number of Detected Data	41	
Minimum Detected	0.00945	
Maximum Detected	1.11	
Percent Non-Detects	75.30%	
Minimum Non-detect	0.0086	
Maximum Non-detect	0.186	
Maximum Non-detect	0.100	
Manager CD (sector) Dete	0.440	
Mean of Detected Data	0.149	
Median of Detected Data	0.0805	
Variance of Detected Data	0.053	
SD of Detected Data	0.23	
CV of Detected Data	1.543	
Skewness of Detected Data	2.813	
Mean of Detected log data	-2.681	
SD of Detected Log data	1.232	
OD of Detected Log data	1.202	
Note: Date have multiple Discussion of KNA Method:		
Note: Data have multiple DLs - Use of KM Method i		
For all methods (except KM, DL/2, and ROS Methods)	i	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	158	
Number treated as Detected	8	
Single DL Percent Detection	95.18%	
Data Dsitribution Test with Detected Values Only		
Data appear Lognormal at 5% Significance Level		
Bata appear Logitornia at 070 eigrimoarioe Lever		
NA/in a suimeti sus NA-the and	NI/A	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0444	
SD	0.128	
Standard Error of Mean	0.0101	
95% KM (t) UCL	0.0611	
95% KM (z) UCL	0.061	
• •		
95% KM (BCA) UCL	0.0666	
95% KM (Percentile Bootstrap) UCL	0.0624	
95% KM (Chebyshev) UCL	0.0883	
97.5% KM (Chebyshev) UCL	0.107	
•		

May want to try Gamma UCLs

Indeno(1,2,3-cd)pyrene

Total Number of Data	166
Number of Non-Detect Data	62
Number of Detected Data	104
Minimum Detected `	0.0574
Maximum Detected	6.49
Percent Non-Detects	37.35%
Minimum Non-detect	0.0142
Maximum Non-detect	0.158
Mean of Detected Data	0.58
Median of Detected Data	0.145
Variance of Detected Data	0.934
SD of Detected Data	0.967
CV of Detected Data	1.665
	1.005
Skewness of Detected Data	3.417

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect115Number treated as Detected51Single DL Percent Detection69.28%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
VVIIISONZALION IVIELIIOU	11//

Kaplan Meier (KM) Method Mean

Mean	0.385
SD	0.802
Standard Error of Mean	0.0626
95% KM (t) UCL	0.489
95% KM (z) UCL	0.488
95% KM (BCA) UCL	0.495
95% KM (Percentile Bootstrap) UCL	0.495
95% KM (Chebyshev) UCL	0.658
97.5% KM (Chebyshev) UCL	0.776
99% KM (Chebyshev) UCL	1.008

Potential UCL to Use 95% KM (Chebyshev) UCL 0.658

Iron

Number of Valid Observations	166
Number of Distinct Observations	125
Minimum	2410
Maximum	77100
Mean	14277
Median	12400

Page 39 of 57

SD	9389	
Variance	88155411	
Coefficient of Variation	0.658	
Skewness	3.268	
Mean of log data	9.418	•
SD of log data	0.533	
Data do not follow a Discernable Distribution		
Data do not follow a Discernable Distribution		
95% Useful UCLs	45400	
Student's-t UCL	15482	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	15673	
95% Modified-t UCL	15513	
New Bearing Co. HOLe		
Non-Parametric UCLs	45.475	
95% CLT UCL	15475	
95% Jackknife UCL	15482	
95% Standard Bootstrap UCL	15450	
95% Bootstrap-t UCL	15739	
95% Hall's Bootstrap UCL	15921	
95% Percentile Bootstrap UCL	15429	
95% BCA Bootstrap UCL	15603	
95% Chebyshev(Mean, Sd) UCL	17453	
97.5% Chebyshev(Mean, Sd) UCL	18828	
99% Chebyshev(Mean, Sd) UCL	21528	
一次上点 化结构的复数形式 医全压性 医动物性结束 医上部外外 医电影性神经 医克里特氏 计可控制 化多烷酸 人名英格兰人		
Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL	17453 	
Use 95% Chebyshev (Mean, Sd) UCL	and the second s	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data	83	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data	83 67	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data	83 67 16	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected	83 67 16 3.18E-04	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected	83 67 16 3.18E-04 64.9	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects	83 67 16 3.18E-04 64.9 80.72%	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect	83 67 16 3.18E-04 64.9 80.72% 7.00E-05	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect	83 67 16 3.18E-04 64.9 80.72% 7.00E-05	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948 4.309	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948 4.309 0.00233	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948 4.309 0.00233 262	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948 4.309 0.00233 262 16.18	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948 4.309 0.00233 262 16.18 3.756	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948 4.309 0.00233 262 16.18 3.756 3.978	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948 4.309 0.00233 262 16.18 3.756 3.978 -4.744 3.489	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Metel	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948 4.309 0.00233 262 16.18 3.756 3.978 -4.744 3.489	
Use 95% Chebyshev (Mean, Sd) UCL Isopropylbenzene (Cumene) Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Met For all methods (except KM, DL/2, and ROS Met	83 67 16 3.18E-04 64.9 80.72% 7.00E-05 0.00948 4.309 0.00233 262 16.18 3.756 3.978 -4.744 3.489	

Number treated as Detected	6	
Single DL Percent Detection	92.77%	
5		
Data Dsitribution Test with Detected Values	s Only	
Data do not follow a Discernable Distributio		
Data do Not follow a Diocomanio Diocinada	(0.00)	
Winsorization Method	N/A	
VVIII30112atio11 Wethou	14//	
Kaplan Meier (KM) Method		
Mean	0.831	
	7.087	
SD		
Standard Error of Mean	0.803	
95% KM (t) UCL	2.167	
95% KM (z) UCL	2.152	
95% KM (BCA) UCL	2.394	
95% KM (Percentile Bootstrap) UCL	2.394	
95% KM (Chebyshev) UCL	4.333	
97.5% KM (Chebyshev) UCL	5.848	
99% KM (Chebyshev) UCL	8.825	
Potential UCL to Use		
97.5% KM (Chebyshev) UCL	5.848	
201 1 20 4 1 20 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Lead		
•	•	
Number of Valid Observations	166	
Number of Distinct Observations	145	
Minimum	2.48	
Maximum	702	
Mean	53.52	
Median	17.1	
SD	104.2	
Variance	10860	
Coefficient of Variation	1.947	
	4.276	
Skewness	3.186	
Mean of log data		
SD of log data	1.12	
Data da matifallanca Diagonalda Diatella		
Data do not follow a Discernable Distrib	ution	
059/ Haoful LICL o		
95% Useful UCLs	66.0	
Student's-t UCL	66.9	
050/ 1101 a /A divisted for Oleaning 5-1		
95% UCLs (Adjusted for Skewness)	60.60	
95% Adjusted-CLT UCL	69.69	
95% Modified-t UCL	67.35	
Non Donomotrio IIOI -		
Non-Parametric UCLs	00.00	
95% CLT UCL	66.82	
95% Jackknife UCL	66.9	
95% Standard Bootstrap UCL	66.77	
95% Bootstrap-t UCL	70.85	
95% Hall's Bootstrap UCL	69.86	
95% Percentile Bootstrap UCL	67.01	
95% BCA Bootstrap UCL	68.96	

95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	88.78 104 134	
Potential UCL to Use Use 97.5% Chebyshev (Mean, Sd) UCL	104	
Lithium		
Number of Valid Observations	166 ·	
Number of Distinct Observations	145	
Minimum	0.65	
Maximum	28.6	
Mean	10.03	
Median	9.02	
SD	6.299	
Variance	39.67	
Coefficient of Variation	0.628	
Skewness	0.63	
Mean of log data	2.054	
SD of log data	0.791	
Data do not follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	10.84	
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	10.86 10.85	
Non-Parametric UCLs		
95% CLT UCL	10.84	
95% Jackknife UCL	10.84	
95% Standard Bootstrap UCL	10.85	
95% Bootstrap-t UCL	10.85	
95% Hall's Bootstrap UCL	10.89	
95% Percentile Bootstrap UCL	10.84	
95% BCA Bootstrap UCL	10.86 12.17	
95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	13.09	
99% Chebyshev(Mean, Sd) UCL	14.9	
33 % Chebyshev(Mean, 3d) CCL	14.0	
Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL	12.17	
m,p-Xylene		
Total Number of Data	83	
Number of Non-Detect Data	30	
Number of Detected Data	53	
Minimum Detected	5.58E-04	
Maximum Detected	2.56	
Percent Non-Detects	36.14%	

Minimum Non-detect	1.82E-04	
Maximum Non-detect	0.0247	
Maximum 1011 dotoot		
Mean of Detected Data	0.0533	
Median of Detected Data	0.00141	
Variance of Detected Data	0.123	
SD of Detected Data	0.351	
CV of Detected Data	6.594	
Skewness of Detected Data	7.251	
Mean of Detected log data	-6.235	
SD of Detected Log data	1.391	
S		
Note: Data have multiple DLs - Use of KM Method	is recommended	
For all methods (except KM, DL/2, and ROS Methods		
Observations < Largest DL are treated as NDs	<i>)</i> ,	
Number treated as Non-Detect	80	
Number treated as Detected	3	
Single DL Percent Detection	96.39%	
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0343	
SD	0.279	
Standard Error of Mean	0.031	
95% KM (t) UCL	0.0858	
95% KM (z) UCL	0.0852	
95% KM (BCA) UCL	0.0945	-
95% KM (Percentile Bootstrap) UCL	0.0955	
95% KM (Chebyshev) UCL	0.169	
97.5% KM (Chebyshev) UCL	0.228	
99% KM (Chebyshev) ÚCL	0.342	
,,,		
Potential UCL to Use		
95% KM (Chebyshev) UCL	0.169	
्षा का विकास कर कर के कार्य के कार्य के कार्य कार्य के अपने कार्य के अधिक कर है। यह की किया कार्य के कार्य कर 	The Angle (1997) to a Markey Section to open a more than	
Manganese		
-		
Number of Valid Observations	166	
Number of Distinct Observations	133	
Minimum	59.3	
Maximum	892	
Mean	261.2	•
Median	224.5	
SD	127.4	
Variance	16239	
Coefficient of Variation	0.488	
Skewness	2.072	
Mean of log data	5.47	
SD of log data	0.429	
OD OF TOO GATA	U.723	

Data do not follow a Discernable Distribution

95% Useful UCLs Student's-t UCL	277.5	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	279.2	
95% Modified-t UCL	277.8	
Non-Parametric UCLs		
95% CLT UCL	277.5	
95% Jackknife UCL	277.5	
95% Standard Bootstrap UCL	277.4	
95% Bootstrap-t UCL	279.2	
95% Hall's Bootstrap UCL	280.3	
95% Percentile Bootstrap UCL	277.8	
95% BCA Bootstrap UCL	279.9	
95% Chebyshev(Mean, Sd) UCL	304.3	
97.5% Chebyshev(Mean, Sd) UCL	323	
99% Chebyshev(Mean, Sd) UCL	359.6	
Potential UCL to Use		
Use 95% Student's-t UCL	277.5	
Or 95% Modified-t UCL	277.8	
Section 1997 1994 1997 1997 1997 1997 1997 1997	and the second of the second o	

Mercury		
Total Number of Data	166	
Number of Non-Detect Data	93	
Number of Detected Data	73	
Minimum Detected	0.0026	
Maximum Detected	0.85	
Percent Non-Detects	56.02%	
Minimum Non-detect	0.002	
Maximum Non-detect	0.048	
Mean of Detected Data	0.0533	
Median of Detected Data	0.012	
Variance of Detected Data	0.0189	
SD of Detected Data	0.420	
	0.138	
CV of Detected Data	2.582	
Skewness of Detected Data	2.582 4.518	
Skewness of Detected Data Mean of Detected log data	2.582 4.518 -4.069	
Skewness of Detected Data	2.582 4.518	
Skewness of Detected Data Mean of Detected log data SD of Detected Log data	2.582 4.518 -4.069 1.269	
Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is	2.582 4.518 -4.069 1.269	
Skewness of Detected Data Mean of Detected log data SD of Detected Log data	2.582 4.518 -4.069 1.269	
Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods),	2.582 4.518 -4.069 1.269	
Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs	2.582 4.518 -4.069 1.269	
Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect	2.582 4.518 -4.069 1.269 recommended	
Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	2.582 4.518 -4.069 1.269 recommended	
Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected	2.582 4.518 -4.069 1.269 recommended	
Skewness of Detected Data Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection Data Dsitribution Test with Detected Values Only	2.582 4.518 -4.069 1.269 recommended	

12 1 14 1 (1210) 14 (1 1		
Kaplan Meier (KM) Method		•
Mean	0.0256	
Standard Error of Mean	0.00734	
95% KM (t) UCL	0.0377	
95% KM (z) UCL	0.0376	
95% KM (BCA) UCL	0.04	
95% KM (Percentile Bootstrap) UCL	0.0388	
95% KM (Chebyshev) UCL	0.0576	
97.5% KM (Chebyshev) UCL	0.0714	
99% KM (Chebyshev) UCL	0.0986	
Potential UCL-to Use		
95% KM (BCA) UCL	0.04	
		*
Methylcyclohexane		
Total Number of Data	83	
Number of Non-Detect Data	26	
Number of Detected Data	57	
Minimum Detected	6.65E-04	
Maximum Detected	2.73	
Percent Non-Detects	31.33%	
Minimum Non-detect	2.75E-04	
Maximum Non-detect	0.0229	
Mean of Detected Data	0.0528	
Median of Detected Data	0.00224	
Variance of Detected Data	0.13	
SD of Detected Data	0.361	
CV of Detected Data	6.838	
Skewness of Detected Data	7.532	
Mean of Detected log data	-5.932	
SD of Detected Log data	1.234	
OD of Detected Log data	1.254	
Note: Data have multiple DLs - Use of KM Meth	od is recommended	
For all methods (except KM, DL/2, and ROS Methods)	ods),	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	80	
Number treated as Detected	3	
Single DL Percent Detection	96.39%	
Data Dsitribution Test with Detected Values Only	•	
Data do not follow a Discernable Distribution (0.05)	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0366	
SD .	0.298	
Standard Error of Mean	0.033	
95% KM (t) UCL	0.0914	
05% KM (7) LICI	0.0009	

0.0908 0.102

0.102

95% KM (z) UCL 95% KM (BCA) UCL

95% KM (Percentile Bootstrap) UCL

95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.18 0.242 0.365	
Potential UCL to Use 95% KM (Chebyshev) UCL		
		m= 11
Molybdenum		
Total Number of Data	166	
Number of Non-Detect Data	48	
Number of Detected Data	118	
Minimum Detected	0.088	
Maximum Detected	10.4	
Percent Non-Detects	28.92%	
Minimum Non-detect	0.068	
Maximum Non-detect	0.33	
Mean of Detected Data	1.236	
Median of Detected Data	0.615	
Variance of Detected Data	2.704	
SD of Detected Data	1.644	
CV of Detected Data	1.33	
Skewness of Detected Data	2.955	
Mean of Detected log data	-0.402	
SD of Detected Log data	1.095	
05 0, 50,00,00 10g uu.u		
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect	recommended 84	
Number treated as Detected	82	
Single DL Percent Detection	50.60%	
Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.905	
SD	1.475	
Standard Error of Mean	0.115	
95% KM (t) UCL	1.095	
95% KM (z) UCL	1.094	
95% KM (BCA) UCL	1.099	
95% KM (Percentile Bootstrap) UCL	1.101	
95% KM (Chebyshev) UCL	1.406	
97.5% KM (Chebyshev) UCL	1.623	
99% KM (Chebyshev) UCL	2.049	
Data appear Lognormal (0.05)		

May want to try Lognormal UCLs

Naphthalene

Total Number of Data	83
Number of Non-Detect Data	76
Number of Detected Data	7
Minimum Detected	0.00482
Maximum Detected	19.2
Percent Non-Detects	91.57%
Minimum Non-detect	2.72E-04
Maximum Non-detect	0.0233
Mean of Detected Data	3.817
Median of Detected Data	0.0762
Variance of Detected Data	53.3
SD of Detected Data	7.301
CV of Detected Data	1.913
Skewness of Detected Data	2.047
Mean of Detected log data	-2.014
SD of Detected Log data	3.291

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect Number treated as Detected	79
Number treated as Detected	4
Single DL Percent Detection	95.18%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.326
SD .	2.231
Standard Error of Mean	0.264
95% KM (t) UCL	0.766
95% KM (z) UCL	0.761
95% KM (BCA) UCL	0.888
95% KM (Percentile Bootstrap) UCL	0.792
95% KM (Chebyshev) UCL	1.479
97.5% KM (Chebyshev) UCL	1.978
99% KM (Chebyshev) UCL	2.958

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

** Instead of UCL, EPC is selected to be med [per recommendation in ProUCL User C		
Nickel		
Number of Valid Observations	166	
Number of Distinct Observations	120	
Minimum	2.7	
Maximum	36.7	
Mean	11.74	
Median	11.65	
SD	4.874	
Variance	23.76	
Coefficient of Variation	0.415	
Skewness	1.176	
Mean of log data	2.374	
SD of log data	0.441	
Data do not follow a Discernable Distribution	n	
95% Useful UCLs		
Student's-t UCL	12.37	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	12.4	
95% Modified-t UCL	12.37	
Non-Parametric UCLs	,	
95% CLT UCL	12.36	
95% Jackknife UCL	12.37	
95% Standard Bootstrap UCL	12.38	
95% Bootstrap-t UCL	12.43	
95% Hall's Bootstrap UCL	12.45	
95% Percentile Bootstrap UCL	12.39	
95% BCA Bootstrap UCL	12.35	
95% Chebyshev(Mean, Sd) UCL	13.39	
97.5% Chebyshev(Mean, Sd) UCL	14.1	
99% Chebyshev(Mean, Sd) ÚCL	15.5	
Potential UCL to Use		
Use 95% Student's-t UCL	12.37	
Or 95% Modified-t UCL	12.37	
n-Propylbenzene		
Total Number of Data	83	
Number of Non-Detect Data	69	
Number of Detected Data	14	
Minimum Detected	2.30E-04	
Maximum Detected	1.8	
Percent Non-Detects	83.13%	
Minimum Non-detect	6.40E-05	
Maximum Non-detect	0.00868	

Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.139 4.49E-04 0.229 0.479 3.441 3.718 -6.488 2.756	
Note: Data have multiple DLs - Use of KM Method is a For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	80 3 96.39%	
Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Potential UCL to Use 97.5% KM (Chebyshev) UCL	0.0237 0.197 0.0224 0.0609 0.0605 0.0684 0.0671 0.121 0.163 0.246	
o-Xylene		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	83 51 32 2.23E-04 0.84 61.45% 8.00E-05 0.0108	
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.0334 6.15E-04 0.0222 0.149 4.456 5.45 -6.683 1.929	

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 79
Number treated as Detected 4

Single DL Percent Detection 95.18%

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method N/A

Kaplan Meier (KM) Method

Mean 0.013 0.0925 Standard Error of Mean 0.0103 95% KM (t) UCL 0.0302 95% KM (z) UCL 0.03 95% KM (BCA) UCL 0.0338 95% KM (Percentile Bootstrap) UCL 0.0322 95% KM (Chebyshev) UCL 0.058 97.5% KM (Chebyshev) UCL 0.0775 99% KM (Chebyshev) UCL 0.116

Potential UCL to Use

Phenanthrene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	166 71 95 0.0138 12.6 42.77% 0.0115 0.235
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.691 0.142 2.449 1.565 2.264 5.422 -1.663 1.597

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 129
Number treated as Detected 37
Single DL Percent Detection 77.71%

Data Dsitribution Test with Detected Values Only

Data o	do not follow	a Discernable	Distribution	(0.05)
--------	---------------	---------------	--------------	--------

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.402
SD	1.224
Standard Error of Mean	0.0955
95% KM (t) UCL	0.56
95% KM (z) UCL	0.559
95% KM (BCA) UCL	0.593
95% KM (Percentile Bootstrap) UCL	0.572
95% KM (Chebyshev) UCL	0.819
97.5% KM (Chebyshev) UCL	0.999
99% KM (Chebyshev) UCL	1.353

Potential UCL to Use

Pyrene

Total Number of Data	166
Number of Non-Detect Data	68
Number of Detected Data	98
Minimum Detected	0.0121
Maximum Detected	8.47
Percent Non-Detects	40.96%
Minimum Non-detect	0.0111
Maximum Non-detect	0.3
Mean of Detected Data	0.721
Median of Detected Data	0.164
Variance of Detected Data	1.891
SD of Detected Data	1.375
CV of Detected Data	1.908
Skewness of Detected Data	3.327
Mean of Detected log data	-1.67
SD of Detected Log data	1.681

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 131 Number treated as Detected 35 Single DL Percent Detection 78.92%

Data Dsitribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

Mean 0.432 SD 1.107 Standard Error of Mean 0.0864 95% KM (t) UCL 0.575

95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.574 0.58 0.572 0.808 0.971 1.291
Data appear Lognormal (0.05) May want to try Lognormal UCLs	
Strontium	
Number of Valid Observations	166
Number of Distinct Observations	151
Minimum	16.5
Maximum	591
Mean	75.61
Median	58.1
SD	73.75
Variance	5439
Coefficient of Variation	0.975
Skewness	4.41
Mean of log data	4.107
SD of log data	0.59
Data do not follow a Discernable Distribution	
050/ 110050111010	
95% Useful UCLs Student's-t UCL	05.00
Student s-t OCL	85.08
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	87.12
95% Modified-t UCL	85.41
Non-Parametric UCLs	
95% CLT UCL	85.03
95% Jackknife UCL	85.08
95% Standard Bootstrap UCL	85.02
95% Bootstrap-t UCL	87.86 ·
95% Hall's Bootstrap UCL	88.32
95% Percentile Bootstrap UCL	85.49
95% BCA Bootstrap UCL	86.55
95% Chebyshev(Mean, Sd) UCL	100.6
97.5% Chebyshev(Mean, Sd) UCL	111.4
99% Chebyshev(Mean, Sd) UCL	132.6
Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL	100.6
Tin	
T'(1) (5)	
Total Number of Data	166
Number of Non-Detect Data	134
Number of Detected Data	32

Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	0.55 6.48 80.72% 0.46 2.4	
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	1.896 1.695 1.825 1.351 0.713 1.594 0.413 0.692	
Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	156 10 93.98%	
Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Leve Winsorization Method	el N/A	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.811 0.789 0.0623 0.914 0.914 0.929 0.924 1.083	
Data appear Gamma Distributed (0.05) May want to try Gamma UCLs		
Titanium		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	166 114 4.02 645 25.77 19 50.15 2515 1.946 11.61	

Mean of log data	3.014	
SD of log data	0.484	
· ·		
Data do not follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	32.21	
Student's-t OCL	32.21	
057/1101 (4.15 / 15 01)		
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	35.92	
95% Modified-t UCL	32.8	
	-	
Non-Parametric UCLs		
95% CLT UCL	32.17	
95% Jackknife UCL	32.21	
95% Standard Bootstrap UCL	32.16	
95% Bootstrap-t UCL	49.28	
95% Hall's Bootstrap UCL	55.9	
•		
95% Percentile Bootstrap UCL	33.18	
95% BCA Bootstrap UCL	38.2	
95% Chebyshev(Mean, Sd) UCL	42.74	
97.5% Chebyshev(Mean, Sd) UCL	50.08	
99% Chebyshev(Mean, Sd) UCL	64.5	
Potential UCL to Use		
Use 95% Student's-t UCL	32.21	
Or 95% Modified-t UCL	32.8	
Taluana		
Toluene		
	92	
Total Number of Data	83	
Total Number of Data Number of Non-Detect Data	14	
Total Number of Data Number of Non-Detect Data Number of Detected Data	14 6 9	
Total Number of Data Number of Non-Detect Data	14 69 7.21E-04	
Total Number of Data Number of Non-Detect Data Number of Detected Data	14 6 9	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected	14 69 7.21E-04	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected	14 69 7.21E-04 0.0192	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects	14 69 7.21E-04 0.0192 16.87 %	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect	14 69 7.21E-04 0.0192 16.87 % 5.22E-04	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected Data Mean of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436 -5.612	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected Data Mean of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436 -5.612 0.626	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected Data Skewness of Detected Data Shewness of Detected Data	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436 -5.612 0.626 I is recommended	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Data Skewness of Detected Data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Method	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436 -5.612 0.626 I is recommended	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Method Observations < Largest DL are treated as NDs	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436 -5.612 0.626 I is recommended s),	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data SD of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Method Observations < Largest DL are treated as NDs Number treated as Non-Detect	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436 -5.612 0.626 I is recommended s),	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Method Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436 -5.612 0.626 I is recommended s),	
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data SD of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Method Observations < Largest DL are treated as NDs Number treated as Non-Detect	14 69 7.21E-04 0.0192 16.87% 5.22E-04 0.211 0.00437 0.00382 7.80E-06 0.00279 0.639 2.436 -5.612 0.626 I is recommended s),	

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00399
SD	0.00285
Standard Error of Mean	3.27E-04
95% KM (t) UCL	0.00454
95% KM (z) UCL	0.00453
95% KM (BCA) UCL	0.00463
95% KM (Percentile Bootstrap) UCL	0.00453
95% KM (Chebyshev) UCL	0.00542
97.5% KM (Chebyshev) UCL	0.00604
99% KM (Chebyshev) UCL	0.00725

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

١	1_	na	a١	٠.	
	<i>ı</i> a	na	nı	11	m

Number of Valid Observations	166
Number of Distinct Observations	117
Minimum	4.73
Maximum	45.6
Mean	14.4
Median	13.75
SD	5.905
Variance	34.87
Coefficient of Variation	0.41
Skewness	1.359
Mean of log data	2.588
SD of log data	0.406
•	
95% Useful UCLs	
Student's-t UCL	15.16
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	15.21
95% Modified-t UCL	15.17
Non-Parametric UCLs	
95% CLT UCL	15.16
95% Jackknife UCL	15.16
95% Standard Bootstrap UCL	15.16
95% Bootstrap-t UCL	15.23
95% Hall's Bootstrap UCL	15.21
95% Percentile Bootstrap UCL	15.15
95% BCA Bootstrap UCL	15.21
95% Chebyshev(Mean, Sd) UCL	16.4
Signate was the contempted from the contempted from the contempted of the contempte	17.27
99% Chebyshev(Mean, Sd) UCL	18.96

,,		
		-
Xylene (total)		
Total Number of Data	83	
Number of Non-Detect Data	30	
Number of Detected Data	53	
Minimum Detected	7.77E-04	
Maximum Detected	3.4	
Percent Non-Detects	3.4 36.14%	
Minimum Non-detect	2.61E-04	
Maximum Non-detect	0.0355	
Mean of Detected Data	0.0735	
Median of Detected Data	0.00187	
Variance of Detected Data	0.218	
SD of Detected Data	0.467	
CV of Detected Data	6.356	
Skewness of Detected Data	7.213	
Mean of Detected log data	-5.976	
SD of Detected Log data	1.506	
•		
Note: Data have multiple DLs - Use of KM Method is	recommended	
For all methods (except KM, DL/2, and ROS Methods),		
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	79	
Number treated as Detected	4	
Single DL Percent Detection	95.18%	
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	
THIS STREET, WOLLDON		
Kaplan Meier (KM) Method		
Mean	0.0473	
SD	0.371	
Standard Error of Mean	0.0412	
95% KM (t) UCL	0.116	
95% KM (z) UCL	0.115	
95% KM (BCA) UCL	0.129	
95% KM (Percentile Bootstrap) UCL	0.129	
95% KM (Chebyshev) UCL	0.227	
97.5% KM (Chebyshev) UCL		
99% KM (Chebyshev) UCL	0.457	
Potential UCL to Use		
		_
		•
Zinc		
Number of Valid Observations	166	
Number of Distinct Observations	159	
· · · · · · · · · · · · · · · · · · ·		

Minimum	6.17
Maximum	7650
Mean	433.8
Median	192.5
SD	786.8
Variance	619126
Coefficient of Variation	1.814
Skewness	5.977
Mean of log data	5.141
SD of log data	1.438
Data do not follow a Discernable Distribution	
95% Useful UCLs	
Student's-t UCL	534.8
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	564.5
95% Modified-t UCL	539.6
Non-Parametric UCLs	ĺ
95% CLT UCL	534.3
95% Jackknife UCL	534.8
95% Standard Bootstrap UCL	534.4
95% Bootstrap-t UCL	604.2
95% Hall's Bootstrap UCL	971.8
95% Percentile Bootstrap UCL	543.4
95% BCA Bootstrap UCL	581.3
95% Chebyshev(Mean, Sd) UCL	700
97.5% Chebyshev(Mean, Sd) UCL	815.2
99% Chebyshev(Mean, Sd) UCL	1041
Potential UCL to Use	
Use 97.5% Chebyshev (Mean, Sd) UCL	815.2

APPENDIX A-3

NORTH OF MARLIN SURFACE SOIL

User Selected Options

From File

C:\Users\Michael\....\North of Marlin Soil Boring\N of Marlin Soil - surface\North of Marlin Soil - surface_ProUCL input.wst

Full Precision

OFF

Confidence Coefficient

Number of Bootstrap Operations

95% 2000

1,1-Dichloroethane

Total Number of Data

Insufficent Number of Observations to produce Meaningful Statistics.

Instead, EPC is single value (nondetect) = <0.00671

1,1-Dichloroethene

Total Number of Data

Insufficent Number of Observations to produce Meaningful Statistics.

Instead, EPC is single value (nondetect) = <0.015

1,2-Dichloroethane

Total Number of Data

Insufficent Number of Observations to produce Meaningful Statistics.

Instead, EPC is single value (detect) = 0.177

2-Butanone

Total Number of Data

Insufficent Number of Observations to produce Meaningful Statistics.

Instead, EPC is single value (nondetect) = <0.013

2-Methylnaphthalene

Total Number of Data 18 Number of Non-Detect Data 15 **Number of Detected Data** Minimum Detected 0.01 0.053 Maximum Detected 83.33% **Percent Non-Detects** Minimum Non-detect 0.01 Maximum Non-detect 0.0634

Mean of Detected Data

0.0362

Median of Detected Data	0.0456
Variance of Detected Data	5.29E-04
SD of Detected Data	0.023
CV of Detected Data	0.635
Skewness of Detected Data	-1.532
Mean of Detected log data	-3.543
SD of Detected Log data	0.923

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect18Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0146
SD	0.0127
Standard Error of Mean	0.00378
95% KM (t) UCL	0.0212
95% KM (z) UCL	0.0208
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	0.053
95% KM (Chebyshev) UCL	0.0311
97.5% KM (Chebyshev) UCL	0.0382
99% KM (Chebyshev) UCL	0.0522
D . 1/0.053	

Data appear Normal (0.05)
May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.0118
[per recommendation in ProUCL User Guide]

4,4'-DDE

Total Number of Data 18
Number of Non-Detect Data 16

North of Marlin Soil - surface_ProUCL sheets.xlsx nonparam UCLs 01/29/10 mlj

Number of Detected Data	2
Minimum Detected	0.00216
Maximum Detected	0.0149
Percent Non-Detects	88.89%
Minimum Non-detect	3.83E-04
Maximum Non-detect	0.00252
Mean of Detected Data	0.00853
Median of Detected Data	0.00853
Variance of Detected Data	8.12E-05
SD of Detected Data	0.00901
CV of Detected Data	1.056
Skewness of Detected Data	N/A
Mean of Detected log data	-5.172
SD of Detected Log data	1.366

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17 Number treated as Detected 1 Single DL Percent Detection 94.44%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00287
SD	0.00292
Standard Error of Mean	9.73E-04
95% KM (t) UCL	0.00456
95% KM (z) UCL	0.00447
95% KM (BCA) UCL	0.0149
95% KM (Percentile Bootstrap) UCL	0.0149
95% KM (Chebyshev) UCL	0.00711
97.5% KM (Chebyshev) UCL	0.00894

99% KM (Chebyshev) UCL 0.0125

Potential UCL to Use

95% KM (BCA) UCL 0.0149

** Instead of UCL, EPC is selected to be median = <0.000424

[per recommendation in ProUCL User Guide]

4.4'-DDT

Total Number of Data	18
Number of Non-Detect Data	11
Number of Detected Data	7
Minimum Detected	0.000597
Maximum Detected	0.0108
Percent Non-Detects	61.11%
Minimum Non-detect	1.48E-04
Maximum Non-detect	0.00282
Mean of Detected Data	0.0029
Median of Detected Data	0.00122
Variance of Detected Data	1.38E-05
SD of Detected Data	0.00372
CV of Detected Data	1.282
Skewness of Detected Data	2.085
Mean of Detected log data	-6.377
SD of Detected Log data	1.031

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect16Number treated as Detected2Single DL Percent Detection88.89%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

 Mean
 0.0015

 SD
 0.00242

 Standard Error of Mean
 6.17E-04

 95% KM (t) UCL
 0.00257

 95% KM (z) UCL
 0.00252

95% KM (BCA) UCL	0.0031
95% KM (Percentile Bootstrap) UCL	0.00269
95% KM (Chebyshev) UCL	0.00419
97.5% KM (Chebyshev) UCL	0.00535
99% KM (Chebyshev) UCL	0.00764

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

** Instead of UCL, EPC is selected to be median = <0.000545

[per recommendation in ProUCL User Guide]

Acenaphthene

Total Number of Data	18	
Number of Non-Detect Data	16	
Number of Detected Data	2	
Minimum Detected	0.021	
Maximum Detected	0.157	
Percent Non-Detects	88.89%	
Minimum Non-detect	0.01	
Maximum Non-detect	0.0583	
Mean of Detected Data	0.089	
Median of Detected Data	0.089	
Variance of Detected Data	0.00925	
SD of Detected Data	0.0962	
CV of Detected Data	1.081	
Skewness of Detected Data	N/A	
Mean of Detected log data	-2.857	
SD of Detected Log data	1.423	

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17
Number treated as Detected 1
Single DL Percent Detection 94.44%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0286
SD	0.0312
Standard Error of Mean	0.0104
95% KM (t) UCL	0.0466
95% KM (z) UCL	0.0456
95% KM (BCA) UCL	0.157
95% KM (Percentile Bootstrap) UCL	0.157
95% KM (Chebyshev) UCL	0.0738
97.5% KM (Chebyshev) UCL	0.0934
99% KM (Chebyshev) UCL	0.132
** Instead of UCL, EPC is selected to be media	an = <0.0110
[per recommendation in ProUCL User Gu	ide]

Acenaphthylene

Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	0.0555
Maximum Detected	0.0555
Percent Non-Detects	94.44%
Minimum Non-detect	0.00768
Maximum Non-detect	0.0661

Data set has all detected values equal to = 0.0555, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0555

** Instead of UCL, EPC is selected to be median = <0.0121 [per recommendation in ProUCL User Guide]

Aluminum

Number of Valid Observations	18
Number of Distinct Observations	17
Minimum	1810
Maximum	16800
Mean	10673
Median	10300
SD ·	3687

Page 6 of 45

Variance	13591176
Coefficient of Variation	0.345
Skewness	-0.368
Mean of log data	9.189
SD of log data	0.496
-	

95% Useful UCLs Student's-t UCL	12185
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	12022
95% Modified-t UCL	12172
Non-Parametric UCLs	
95% CLT UCL	12103
95% Jackknife UCL	12185
95% Standard Bootstrap UCL	12058
95% Bootstrap-t UCL	12081
95% Hall's Bootstrap UCL	12129
95% Percentile Bootstrap UCL	12001
95% BCA Bootstrap UCL	12048
95% Chebyshev(Mean, Sd) UCL	14461
97.5% Chebyshev(Mean, Sd) UCL	16100
99% Chebyshev(Mean, Sd) UCL	19319

Data appear Normal (0.05)

May want to try Normal UCLs

Anthracene

Total Number of Data	18
Number of Non-Detect Data	14
Number of Detected Data	4
Minimum Detected	0.00887
Maximum Detected	0.264
Percent Non-Detects	77.78%
Minimum Non-detect	0.00744
Maximum Non-detect	0.0641
Mean of Detected Data	0.089
Median of Detected Data	0.0415
Variance of Detected Data	0.0139
SD of Detected Data	0.118
CV of Detected Data	1.326
Skewness of Detected Data	1.872
Mean of Detected log data	-3.119
SD of Detected Log data	1.402

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 17 Number treated as Detected 1 Single DL Percent Detection 94.44%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0269
SD	0.0585
Standard Error of Mean	0.016
95% KM (t) UCL	0.0546
95% KM (z) UCL	0.0531
95% KM (BCA) UCL	0.264
95% KM (Percentile Bootstrap) UCL	0.0836
95% KM (Chebyshev) UCL	0.0964
97.5% KM (Chebyshev) UCL	0.127
99% KM (Chebyshev) UCL	0.186

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.0121 [per recommendation in ProUCL User Guide]

Antimony

Total Number of Data	18
Number of Non-Detect Data	9
Number of Detected Data	9
Minimum Detected	1.66
Maximum Detected	8.09
Percent Non-Detects	50.00%
Minimum Non-detect	0.19
Maximum Non-detect	0.25
Mean of Detected Data	3.373
Median of Detected Data	2.62
Variance of Detected Data	3.814
SD of Detected Data	1.953
CV of Detected Data	0.579
Skewness of Detected Data	2.131
Mean of Detected log data	1.107
SD of Detected Log data	0.461

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	2.517
SD	1.559
Standard Error of Mean	0.39
95% KM (t) UCL	3.194
95% KM (z) UCL	3.158
95% KM (BCA) UCL	3.612
95% KM (Percentile Bootstrap) UCL	3.351
95% KM (Chebyshev) UCL	4.215
97.5% KM (Chebyshev) UCL	4.95
99% KM (Chebyshev) UCL	6.394

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Aroclor-1254

Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	0.0122
Maximum Detected	0.0122
Percent Non-Detects	94.44%
Minimum Non-detect	0.00383
Maximum Non-detect	0.031

Data set has all detected values equal to = 0.0122, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0122

** Instead of UCL, EPC is selected to be median = <0.0042 [per recommendation in ProUCL User Guide]

Arsenic

Total Number of Data	18	
Number of Non-Detect Data	1	,
Number of Detected Data	17	
Minimum Detected	0.54	
Maximum Detected	5.69	
Percent Non-Detects	5.56%	
Minimum Non-detect	0.68	
Maximum Non-detect	0.68	
Mean of Detected Data	2.651	
Median of Detected Data	2.55	
Variance of Detected Data	1.123	
SD of Detected Data	1.06	
CV of Detected Data	0.4	
Skewness of Detected Data	1.143	
Mean of Detected log data	0.887	
SD of Detected Log data	0.476	
Data Dsitribution Test with Detected Values Only		
Data Follow Appr. Gamma Distribution at 5% Sign	nificance Level	
Winsorization Method	0.476	
Mean	2.526	
SD	0.59	
95% Winsor (t) UCL	2.772	
W 1 20 : (100) 20 : 1		
Kaplan Meier (KM) Method	2 522	
Mean	2.533	
SD Standard France of Manage	1.11	
Standard Error of Mean	0.27	
95% KM (t) UCL	3.002	
95% KM (z) UCL	2.977	
95% KM (BCA) UCL	3.069	
95% KM (Percentile Bootstrap) UCL	3.002 3.709	
95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	4.218	•
99% KM (Chebyshev) UCL	5.217	
33% KW (Chebyshev) OCE	5.217	
Data follow Appr. Gamma Distribution (0.05)		
May want to try Gamma UCLs		
Way want to dy damma odes		
Barium		
Number of Valid Observations	18	
Number of Distinct Observations	18	
Minimum	46.1	
Maximum	476	
Mean	145.2	
Median	114	
SD	115.8	

Variance	13417
Coefficient of Variation	0.798
Skewness	2.357
Mean of log data	4.783
SD of log data	0.59
Data do not follow a Discernable Dist	ribution
95% Useful UCLs	
Student's-t UCL	192.6
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	206.3
95% Modified-t UCL	195.2
New December 1101	
Non-Parametric UCLs	190.1
95% CLT UCL 95% Jackknife UCL	192.6
95% Standard Bootstrap UCL	189.6
95% Bootstrap-t UCL	287.9
•	287.9 491.4
95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	196.4
•	207.9
95% BCA Bootstrap UCL	264.2
95% Chebyshev (Mean, Sd) UCL	315.6
97.5% Chebyshev(Mean, Sd) UCL	416.8
99% Chebyshev(Mean, Sd) UCL	410.8
Potential UCL to Use	
Use 95% Chebyshev (Mean, Sd) UCL	264.2
Benzo(a)anthracene	
Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	1.18
Maximum Detected	1.18
Percent Non-Detects	94.44%
Minimum Non-detect	0.00503
Maximum Non-detect	1.18
	nd estimates can be computed using such a data set.
	und statistics (UPLs, UTLs) and UCLs should also be nondetects less than the maximum detection limit = 1.18
** Instead of UCL, EPC is selected to [per-recommendation in ProUCL	

Total Number of Data	18
Number of Non-Detect Data	11
Number of Detected Data	7
Minimum Detected	0.0135
Maximum Detected	1.42
Percent Non-Detects	61.11%
Minimum Non-detect	0.00901
Maximum Non-detect	0.0117
Mean of Detected Data	0.284
Median of Detected Data	0.103
Variance of Detected Data	0.253
SD of Detected Data	0.503
CV of Detected Data	1.773
Skewness of Detected Data	2.591
Mean of Detected log data	-2.178
SD of Detected Log data	1.387

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.119
SD	0.319
Standard Error of Mean	0.0813
95% KM (t) UCL	0.26
95% KM (z) UCL	0.252
95% KM (BCA) UCL	0.305
95% KM (Percentile Bootstrap) UCL	0.273
95% KM (Chebyshev) UCL	0.473
97.5% KM (Chebyshev) UCL	0.626
99% KM (Chebyshev) UCL	0.927
Data appear Lognormal (0.05)	
May want to try Lognormal UCLs	
** Instead of UCL, EPC is selected to be median =	<0.0116

[per recommendation in ProUCL User Guide]

Page 12 of 45

Benzo(b)fluoranthene

Total Number of Data	18
Number of Non-Detect Data	10
Number of Detected Data	8
Minimum Detected	0.0487
Maximum Detected	1.62
Percent Non-Detects	55.56%
Minimum Non-detect	0.00721
Maximum Non-detect	0.0497
Mean of Detected Data	0.318
Median of Detected Data	0.13
Variance of Detected Data	0.279
SD of Detected Data	0.528
CV of Detected Data	1.659
Skewness of Detected Data	2.777
Mean of Detected log data	-1.785
SD of Detected Log data	1.019

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect11Number treated as Detected7Single DL Percent Detection61.11%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.169
SD	0.356
Standard Error of Mean	0.0896
95% KM (t) UCL	0.325
95% KM (z) UCL	0.316
95% KM (BCA) UCL	0.373
95% KM (Percentile Bootstrap) UCL	0.339
95% KM (Chebyshev) UCL	0.559
97.5% KM (Chebyshev) UCL	0.728
99% KM (Chebyshev) UCL	1.06
Potential UCL to Use 95% KM (BCA) UCL	0.373

Benzo(g.h.i	ber	/lene

Total Number of Data	18
Number of Non-Detect Data	8
Number of Detected Data	10
Minimum Detected	0.0237
Maximum Detected	1.28
Percent Non-Detects	44.44%
Minimum Non-detect	0.0103
Maximum Non-detect	0.0116
Mean of Detected Data	0.234
Median of Detected Data	0.0895
Variance of Detected Data	0.147
SD of Detected Data	0.384
CV of Detected Data	1.642
Skewness of Detected Data	2.721
Mean of Detected log data	-2.257
SD of Detected Log data	1.245

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method

Kaplan Meier (KM) Method

Mean	0.14
SD .	0.291
Standard Error of Mean	0.0723
95% KM (t) UCL	0.266
95% KM (z) UCL	0.259
95% KM (BCA) UCL	0.288
95% KM (Percentile Bootstrap) UCL	0.277
95% KM (Chebyshev) UCL	0.455
97.5% KM (Chebyshev) UCL	0.592
99% KM (Chebyshev) UCL	0.859

N/A

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

Benzo(k)fluoranthene

Total Number of Data		18
Number of Non-Detect Data	-	14
Number of Detected Data		4
Minimum Detected		0.068

Maximum Detected	0.799
Percent Non-Detects	77.78%
Minimum Non-detect	0.011
Maximum Non-detect	0.0916
Mean of Detected Data	0.272
Median of Detected Data	0.111
Variance of Detected Data	0.124
SD of Detected Data	0.353
CV of Detected Data	1.296
Skewness of Detected Data	1.949
Mean of Detected log data	-1.849
SD of Detected Log data	1.13

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 16
Number treated as Detected 2
Single DL Percent Detection 88.89%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.113
SD	0.167
Standard Error of Mean	0.0455
95% KM (t) UCL	0.193
95% KM (z) UCL	0.188
95% KM (BCA) UCL	0.799
95% KM (Percentile Bootstrap) UCL	0.252
95% KM (Chebyshev) UCL	0.312
97.5% KM (Chebyshev) UCL	0.398
99% KM (Chebyshev) UCL	0.566

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

** Instead of UCL, EPC is selected to be median = <0.0175
[per recommendation in ProUCL User Guide]

Beryllium

Total Number of Data	18	
Number of Non-Detect Data	1	
Number of Detected Data	17	
Minimum Detected	0.066	
Maximum Detected	2.88	
Percent Non-Detects	5.56%	
Minimum Non-detect	0.026	
Maximum Non-detect	0.026	
Mean of Detected Data	0.749	
Median of Detected Data	0.66	
Variance of Detected Data	0.356	
SD of Detected Data	0.597	
CV of Detected Data	0.797	
Skewness of Detected Data	3.046	
Mean of Detected log data	-0.528	
SD of Detected Log data	0.774	
Data Dsitribution Test with Detected Values C		
Data Follow Appr. Gamma Distribution at 5%	Significance Level	
Minagripation Mathed	0.774	
Winsorization Method Mean	0.774 0.605	
SD	0.605	
95% Winsor (t) UCL	0.277	
33% Willison (t) OCE	0.72	
Kaplan Meier (KM) Method		
Mean	0.711	
SD	0.584	
Standard Error of Mean	0.142	
95% KM (t) UCL	0.958	
95% KM (z) UCL	0.944	
95% KM (BCA) UCL	0.995	
95% KM (Percentile Bootstrap) UCL	0.959	
95% KM (Chebyshev) UCL	1.329	
97.5% KM (Chebyshev) UCL	1.597	
99% KM (Chebyshev) UCL	2.123	
Data follow Appr. Gamma Distribution (0.05)		
May want to try Gamma UCLs		
Bis(2-Ethylhexyl)phthalate		
Total Niverbay of Data	40	
Total Number of Data Number of Non-Detect Data	18	
Number of Non-Detect Data Number of Detected Data	11 7	
Minimum Detected	0.0122	
Maximum Detected	0.0122	
Percent Non-Detects	61.11%	•
Leireiit Moil-Defertz	01.11%	

0.046

0.105

Minimum Non-detect

Maximum Non-detect

Mean of Detected Data	0.0693
Median of Detected Data	0.0532
Variance of Detected Data	0.00595
SD of Detected Data	0.0771
CV of Detected Data	1.113
Skewness of Detected Data	2.321
Mean of Detected log data	-3.069
SD of Detected Log data	0.937

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17
Number treated as Detected 1
Single DL Percent Detection 94.44%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0445
SD	0.0502
Standard Error of Mean	0.0138
95% KM (t) UCL	0.0685
95% KM (z) UCL	0.0672
95% KM (BCA) UCL	0.076
95% KM (Percentile Bootstrap) UCL	0.0695
95% KM (Chebyshev) UCL	0.105
97.5% KM (Chebyshev) UCL	0.131
99% KM (Chebyshev) UCL	0.182

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

** Instead of UCL, EPC is selected to be median = <0.0546 [per recommendation in ProUCL User Guide]

Boron

Total Number of Data	18
Number of Non-Detect Data	5
Number of Detected Data	13
Minimum Detected	3.15

Maximum Detected	39.2
Percent Non-Detects	27.78%
Minimum Non-detect	1.11
Maximum Non-detect	1.25
Mean of Detected Data	10.89
Median of Detected Data	9
Variance of Detected Data	95.21
SD of Detected Data	9.757
CV of Detected Data	0.896
Skewness of Detected Data	2.309
Mean of Detected log data	2.125
SD of Detected Log data	0.713

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method Mean SD 95% Winsor (t) UCL	0.713 5.999 2.737 7.221
Kaplan Meier (KM) Method	
Mean	8.743
SD	8.689
Standard Error of Mean	2.132
95% KM (t) UCL	12.45
95% KM (z) UCL	12.25
95% KM (BCA) UCL	12.91
95% KM (Percentile Bootstrap) UCL	12.43
95% KM (Chebyshev) UCL	18.03
97.5% KM (Chebyshev) UCL	22.06
99% KM (Chebyshev) UCL	29.95

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Butyl benzyl phthalate

Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	0.151
Maximum Detected	0.151
Percent Non-Detects	94.44%
Minimum Non-detect	0.00913
Maximum Non-detect	0.0733

Data set has all detected values equal to = 0.151, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.151

** Instead of UCL, EPC is selected to be median = <pre><col/> <col/> <col/> (per recommendation in ProUCL User Guide) </pre>	
[per leconing and the state of	

Cadmium

Total Number of Data	18
Number of Non-Detect Data	10
Number of Detected Data	8
Minimum Detected	0.28
Maximum Detected	0.8
Percent Non-Detects	55.56%
Minimum Non-detect	0.006
Maximum Non-detect	0.033
Mean of Detected Data	0.455
Median of Detected Data	0.385
Variance of Detected Data	0.028
SD of Detected Data	0.167
CV of Detected Data	0.368
Skewness of Detected Data	1.539
Mean of Detected log data	-0.838
SD of Detected Log data	0.327

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A ·
Kaplan Meier (KM) Method	
Mean	0.358
SD	0.136
Standard Error of Mean	0.0342
95% KM (t) UCL	0.417
95% KM (z) UCL	0.414
95% KM (BCA) UCL	0.467
95% KM (Percentile Bootstrap) UCL	0.45

95% KM (Chebyshev) UCL	0.507
97.5% KM (Chebyshev) UCL	0.572
99% KM (Chebyshev) UCL	0.698

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

~.~.........

Carbazole

Total Number of Data	18	
Number of Non-Detect Data	14	
Number of Detected Data	4	
Minimum Detected	0.013	
Maximum Detected	0.128	
Percent Non-Detects	77.78%	
Minimum Non-detect	0.00965	
Maximum Non-detect	0.0578	
Mean of Detected Data	0.0445	
Median of Detected Data	0.0185	
Variance of Detected Data	0.00311	
SD of Detected Data	0.0557	
CV of Detected Data	1.252	
Skewness of Detected Data	1.987	
Mean of Detected log data	-3.595	
SD of Detected Log data	1.04	

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17
Number treated as Detected 1
Single DL Percent Detection 94.44%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	

timp into the time to the time	
Mean	0.02
SD	0.0262
Standard Error of Mean	0.00714
95% KM (t) UCL	0.0325
95% KM (z) UCL	0.0318
95% KM (BCA) UCL	0.128

95% KM (Percentile Bootstrap) UCL	0.0388
95% KM (Chebyshev) UCL	0.0512
97.5% KM (Chebyshev) UCL	0.0647
99% KM (Chebyshev) UCL	0.0911

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

** Instead of UCL, EPC is selected to be med	lian = <0.0111
[per recommendation in ProUCL User G	iuide]

Chromium		
Number of Valid Observations	18	
Number of Distinct Observations	18	
Minimum	7.9	
Maximum	128	
Mean	20.26	
Median	11.6	
SD	27.58	
Variance	760.5	
Coefficient of Variation	1.361	
Skewness	3.912	
Mean of log data	2.683	
SD of log data	0.658	
Data do not follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	31.56	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	37.35	
95% Modified-t UCL	32.56	
Non-Parametric UCLs		
95% CLT UCL	30.95	•
95% Jackknife UCL	31.56	
95% Standard Bootstrap UCL	30.37	
95% Bootstrap-t UCL	66.91	
95% Hall's Bootstrap UCL	67.88	
95% Percentile Bootstrap UCL	32.64	
95% BCA Bootstrap UCL	40.53	
95% Chebyshev(Mean, Sd) UCL	48.59	
97.5% Chebyshev(Mean, Sd) UCL	60.85	
99% Chebyshev(Mean, Sd) UCL	84.93	
Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL	48,59	

Chrysene

Total Number of Data	18
Number of Non-Detect Data	11
Number of Detected Data	7
Minimum Detected	0.011
Maximum Detected	1.3
Percent Non-Detects	61.11%
Minimum Non-detect	0.00911
Maximum Non-detect	0.0523
Mean of Detected Data	0.253
Median of Detected Data	0.115
Variance of Detected Data	0.216
SD of Detected Data	0.465
CV of Detected Data	1.838
Skewness of Detected Data	2.58
Mean of Detected log data	-2.455
SD of Detected Log data	1.543

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect	13
Number treated as Detected	5
Single DL Percent Detection	72.22%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.105
SD	0.293
Standard Error of Mean	0.0746
95% KM (t) UCL	0.235
95% KM (z) UCL	0.228
95% KM (BCA) UCL	0.323
95% KM (Percentile Bootstrap) UCL	0.248
95% KM (Chebyshev) UCL	0.43
97.5% KM (Chebyshev) UCL	0.571
99% KM (Chebyshev) UCL	0.847

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

** Instead of UCL, EPC is selected to be median = <0.0103 [per recommendation in ProUCL User Guide]		
	· - · - · - · - · - · - · - · - · - · -	
Cobalt		
Number of Valid Observations	18	
Number of Distinct Observations	18	
Minimum	2.81	
Maximum	7.87	
Mean	5.789	
Median	5.84	
SD 。	1.506	
Variance	2.268	
Coefficient of Variation	0.26	
Skewness	-0.505	
Mean of log data	1.718	
SD of log data	0.299	
95% Useful UCLs Student's-t UCL	6.406	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	6.328	
95% Modified-t UCL	6.399	
Non-Parametric UCLs	,	
95% CLT UCL	6.373	
95% Jackknife UCL	6.406	
95% Standard Bootstrap UCL	6.352	
95% Bootstrap-t UCL	6.376	
95% Hall's Bootstrap UCL	6.339	
95% Percentile Bootstrap UCL	6.363	
95% BCA Bootstrap UCL	6.318	
95% Chebyshev(Mean, Sd) UCL	7.336	
97.5% Chebyshev(Mean, Sd) UCL	8.006	
99% Chebyshev(Mean, Sd) UCL	9.321	
Data appear Normal (0.05) May want to try Normal UCLs		
Copper		
Number of Valid Observations	18	
Number of Distinct Observations	17	
Minimum	5.9	
Maximum	200	
Mean	24.13	
Median	9.895	
SD	44.66	
Variance	1994	

Coefficient of Variation	1.851	
Skewness	4.008	
Mean of log data	2.621	
SD of log data	0.865	
Data do not follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	42.44	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	.52.07	
95% Modified-t UCL	44.1	
Non-Parametric UCLs		
95% CLT UCL	41.44	
95% Jackknife UCL	42.44	
95% Standard Bootstrap UCL	40.65	
95% Bootstrap-t UCL	100.8	
95% Hall's Bootstrap UCL	104	
95% Percentile Bootstrap UCL	44.65	
95% BCA Bootstrap UCL	56.68	
95% Chebyshev(Mean, Sd) UCL	70.01	
97.5% Chebyshev(Mean, Sd) UCL	89.86	
99% Chebyshev(Mean, Sd) UCL	128.9	
	•	
Potential UCL to Use		
Use 95% Chebyshev (Mean, Sd) UCL	70.01	
. — . — . — . — . — . — . — . — . — . —		
Dibenz(a,h)anthracene		
Total Number of Data	18	
Number of Non-Detect Data	14	
Number of Detected Data	4	
Minimum Detected	0.045	
Maximum Detected	0.404	
Percent Non-Detects	77.78%	
Minimum Non-detect	0.00687	
Maximum Non-detect	0.0565	
Mean of Detected Data	0.189	
Median of Detected Data	0.153	
Variance of Detected Data	0.0233	
SD of Detected Data	0.153	
CV of Detected Data	0.81	
Skewness of Detected Data	1.295	
Mean of Detected log data	-1.944	
SD of Detected Log data	0.902	
55 of Detected Log data	0.302	

For all methods (except KM, DL/2, and ROS Methods),

Note: Data have multiple DLs - Use of KM Method is recommended

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 15 Number treated as Detected 3 Single DL Percent Detection 83.33%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0769
SD	0.0863
Standard Error of Mean	0.0235
95% KM (t) UCL	0.118
95% KM (z) UCL	0.116
95% KM (BCA) UCL	0.192
95% KM (Percentile Bootstrap) UCL	0.192
95% KM (Chebyshev) UCL	0.179
97.5% KM (Chebyshev) UCL	0.224
99% KM (Chebyshev) UCL	0.311

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.0110 [per recommendation in ProUCL User Guide]

Dibenzofuran

Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	0.0862
Maximum Detected	0.0862
Percent Non-Detects	94.44%
Minimum Non-detect	0.00606
Maximum Non-detect	0.083

Data set has all detected values equal to = 0.0862, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0862

** Instead of UCL, EPC is selected to be median = <0.0152 [per recommendation in ProUCL User Guide]

Dieldrin

Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	0.00545
Maximum Detected	0.00545
Percent Non-Detects	94.44%
Minimum Non-detect	0.000165
Maximum Non-detect	0.00246

Data set has all detected values equal to = 0.00545, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00545

** Instead of UCL, EPC is selected to be median = < <0.000183

[per recommendation in ProUCL User Guide]

Diethyl phthalate

Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	0.011
Maximum Detected	0.011
Percent Non-Detects	94.44%
Minimum Non-detect	0.00756
Maximum Non-detect	0.0996

Data set has all detected values equal to = 0.011, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.011

** Instead of UCL, EPC is selected to be median = <0.0185

[per recommendation in ProUCL User Guide]

Di-n-butyl phthalate

Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	0.01
Maximum Detected	0.01
Percent Non-Detects	94.44%
Minimum Non-detect	0.00797
Maximum Non-detect	0.167

Page 26 of 45

Data set has all detected values equal to = 0.01, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.01

(4) (最初等)(表示)		action is a section of the contract of the	Charles Action	高端的 医皮肤	BUT A SEPTEMBER BEFORE BELLEVE OF A LOS
** Incton	d of UCL, E	DC ic colo	ctod to bo	modion -	<0.0310
an illioted	u OI OCL, C	ru is seie	Lieu to ne	meulan –	
A Trible Profession		医色色管 经收益债券	1503 154 158 151 151 151	机铸铁矿的现在分词 海绵县	· 医克里特别的 医克里特氏 医二甲基酚 计中心
生物學學學的學科學	\$50 man (100 to 10 to 10)			6651.57	
iner	recommen	dation in	Proficience	er (-iline) -	Brankaji kalendara
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		aacion in		ci caiacj.	

Di-n-octyl phthalate

Total Number of Data	18	
Number of Non-Detect Data	16	
Number of Detected Data	2	
Minimum Detected	0.0154	
Maximum Detected	0.123	
Percent Non-Detects	88.89%	
Minimum Non-detect	0.00848	
Maximum Non-detect	0.0487	
Mean of Detected Data	0.0692	
Median of Detected Data	0.0692	
Variance of Detected Data	0.00579	
SD of Detected Data	0.0761	
CV of Detected Data	1.099	
Skewness of Detected Data	N/A	
Mean of Detected log data	-3.134	
SD of Detected Log data	1.469	

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect17Number treated as Detected1Single DL Percent Detection94.44%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0214
SD	0.0246
Standard Error of Mean	0.00822
95% KM (t) UCL	0.0357
95% KM (z) UCL	0.0349
95% KM (BCA) UCL	0.123
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.0572
97.5% KM (Chebyshev) UCL	0.0372
99% KM (Chebyshev) UCL	0.103
3370 KW (Chebyshev) GCE	0.103
Potential UCL to Use	
95% KM (BCA) UCL	0.123
, ,	
** Instead of UCL, EPC is selected to be med	dian = <0.00950
[per recommendation in ProUCL User G	Guide]
The state of the s	and the second s
Endrin	
Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	0.00149
Maximum Detected	0.00149
Percent Non-Detects	94.44%
Minimum Non-detect	0.0002

Data set has all detected values equal to = 0.00149, having '0' variation.

Maximum Non-detect

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

0.00295

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00149

** Instead of UCL, EPC is selected to be median = <0.000222 [per recommendation in ProUCL User Guide]				

Maximum Non-detect

0.00298

Data set has all detected values equal to = 0.00966, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00966

** Instead of UCL, EPC is selected to be median = <0.000548</pre>
[per recommendation in ProUCL User Guide]

Fluoranthene

Total Number of Data	18
Number of Non-Detect Data	12
Number of Detected Data	6
Minimum Detected	0.0214
Maximum Detected	2.19
Percent Non-Detects	66.67%
Minimum Non-detect	0.00676
Maximum Non-detect	0.0658
Mean of Detected Data	0.462
Median of Detected Data	0.125
Variance of Detected Data	0.724
SD of Detected Data	0.851
CV of Detected Data	1.843
Skewness of Detected Data	2.395
Mean of Detected log data	-1.942
SD of Detected Log data	1.595

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect14Number treated as Detected4Single DL Percent Detection77.78%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

 Mean
 0.168

 SD
 0.494

 Standard Error of Mean
 0.128

95% KM (t) UCL	0.39
95% KM (z) UCL	0.378
95% KM (BCA) UCL	0.447
95% KM (Percentile Bootstrap) UCL	0.416
95% KM (Chebyshev) UCL	0.725
97.5% KM (Chebyshev) UCL	0.965
99% KM (Chebyshev) UCL	1.438

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

** Instead of UCL, EPC is selected to be median = <0.0128

[per recommendation in ProUCL User Guide]

Fluorene

Total Number of Data

Number of Non-Detect Data	15
Number of Detected Data	3
Minimum Detected	0.017
Maximum Detected	0.141
Percent Non-Detects	83.33%
Minimum Non-detect	0.00689
Maximum Non-detect	0.0575
Mean of Detected Data	0.0647
Median of Detected Data	0.036
Variance of Detected Data	0.00446
SD of Detected Data	0.0668
CV of Detected Data	1.033
Skewness of Detected Data	1.576
Mean of Detected log data	-3.119
SD of Detected Log data	1.073

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect17Number treated as Detected1Single DL Percent Detection94.44%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

18

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.025
SD	0.0285
Standard Error of Mean	0.00823
95% KM (t) UCL	0.0393
95% KM (z) UCL	0.0385
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	0.141
95% KM (Chebyshev) UCL	0.0609
97.5% KM (Chebyshev) UCL	0.0764

0.107

Data appear Normal (0.05)
May want to try Normal UCLs

99% KM (Chebyshev) UCL

** Instead of UCL, EPC is selected to be median = <0.0109 [per recommendation in ProUCL User Guide]

Indeno(1,2,3-cd)pyrene

18
9
9
0.02
1.51
50.00%
0.0165
0.095
0.289
0.149
0.215
0.464
1.604
2.851
-1.916
1.153

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect12Number treated as Detected6Single DL Percent Detection66.67%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions
It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.155
SD	0.337
Standard Error of Mean	0.0843
95% KM (t) UCL	0.302
95% KM (z) UCL	0.294
95% KM (BCA) UCL	0.333
95% KM (Percentile Bootstrap) UCL	0.317
95% KM (Chebyshev) UCL	0.523
97.5% KM (Chebyshev) UCL	0.682
99% KM (Chebyshev) UCL	0.994

Data appear Lognormal (0.05) May want to try Lognormal UCLs

١	r	n	r	ì
,		v	•	•

Number of Valid Observations	18
Number of Distinct Observations	18
Minimum	8450
Maximum	102000
Mean	19477
Median	14700
SD	21073
Variance	4.44E+08
Coefficient of Variation	1.082
Skewness	3.929
Mean of log data	9.653
SD of log data	0.564

Data do not follow a Discernable Distribution

95% Useful UCLs	
Student's-t UCL	28117
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	32561
95% Modified-t UCL	28884
Non-Parametric UCLs	
95% CLT UCL	27646
95% Jackknife UCL	28117
95% Standard Bootstrap UCL	27671

95% Bootstrap-t UCL	49011	
95% Hall's Bootstrap UCL	60240	
95% Percentile Bootstrap UCL	29148	
95% BCA Bootstrap UCL	33973	
95% Chebyshev(Mean, Sd) UCL	41127	•
97.5% Chebyshev(Mean, Sd) UCL	50495	
99% Chebyshev(Mean, Sd) UCL	68897	
55% Chebyshev(Weah), 5d/ OCE	00057	
Potential UCL to Use		
Use 95% Chebyshev (Mean, Sd) UCL	41127	
Lead		
Number of Valid Observations	18	
Number of Distinct Observations	16	
Minimum	8.22	
Maximum	471	•
Mean	57.7	
Median	17.1	
SD	111.1	
Variance	12345	
Coefficient of Variation	1.926	
Skewness	3.403	
Mean of log data	3.182	
SD of log data	1.161	
Data do not follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	103.3	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	123.2	
95% Modified-t UCL	106.8	
Non-Parametric UCLs		
95% CLT UCL	100.8	
95% Jackknife UCL	103.3	
95% Standard Bootstrap UCL	98.59	
95% Bootstrap-t UCL	189.9	
95% Hall's Bootstrap UCL	228.1	
95% Percentile Bootstrap UCL	106.1	
95% BCA Bootstrap UCL	131.6	
95% Chebyshev(Mean, Sd) UCL	171.9	
97.5% Chebyshev(Mean, Sd) UCL	221.2	
99% Chebyshev(Mean, Sd) UCL	318.3	
55% Chebyshev(Mean, 3d) OCL	310.3	
ender et en margen in de la communicació de la proposación de la comprese de margen de la communicación de	en lagger and a set of the transfer and the region of the section	
Potential UCL to Use		

Lithium

Number of Valid Observations	18
Number of Distinct Observations	18
Minimum	2.59
Maximum	26.6
Mean	16.57
Median	16.15
SD	5.136
Variance	26.38
Coefficient of Variation	0.31
Skewness	-0.697
Mean of log data	2.729
SD of log data	0.49

95% Useful UCLs Student's-t UCL	18.68
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	18.35
95% Modified-t UCL	18.64
Non-Parametric UCLs	
95% CLT UCL	18.56
95% Jackknife UCL	18.68
95% Standard Bootstrap UCL	18.5
95% Bootstrap-t UCL	18.59
95% Hall's Bootstrap UCL	18.58
95% Percentile Bootstrap UCL	18.48
95% BCA Bootstrap UCL	18.33
95% Chebyshev(Mean, Sd) UCL	21.85
97.5% Chebyshev(Mean, Sd) UCL	24.13

28.62

Data appear Normal (0.05)

May want to try Normal UCLs

99% Chebyshev(Mean, Sd) UCL

Manganese

Number of Valid Observations	18
Number of Distinct Observations	18
Minimum	82.3
Maximum	1210
Mean	369.5
Median	296
SD	247.7
Variance	61331
Coefficient of Variation	0.67
Skewness	2.484
Mean of log data	5.754
SD of log data	0.565

Page 34 of 45

95% Useful UCLs	
Student's-t UCL	471
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	502
95% Modified-t UCL	476.7
Non-Parametric UCLs	
95% CLT UCL	465.5
95% Jackknife UCL	471
95,% Standard Bootstrap UCL	463.6
95% Bootstrap-t UCL	537.6
95% Hall's Bootstrap UCL	893.1
95% Percentile Bootstrap UCL	466.1
95% BCA Bootstrap UCL	496.7
95% Chebyshev(Mean, Sd) UCL	623.9
97.5% Chebyshev(Mean, Sd) UCL	734
99% Chebyshev(Mean, Sd) UCL	950.3
Data appear Gamma Distributed (0.05)	

Mercury

May want to try Gamma UCLs

Total Number of Data	18
Number of Non-Detect Data	10
Number of Detected Data	8
Minimum Detected	0.006
Maximum Detected	0.064
Percent Non-Detects	55.56%
Minimum Non-detect	0.0023
Maximum Non-detect	0.025
Mean of Detected Data	0.0229
Median of Detected Data	0.0165
Variance of Detected Data	3.98E-04
SD of Detected Data	0.0199
CV of Detected Data	0.872
Skewness of Detected Data	1.451
Mean of Detected log data	-4.096
SD of Detected Log data	0.853

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect15Number treated as Detected3Single DL Percent Detection83.33%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions. It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0138
SD	0.0149
Standard Error of Mean	0.00379
95% KM (t) UCL	0.0204
95% KM (z) UCL	0.0201
95% KM (BCA) UCL	0.0227
95% KM (Percentile Bootstrap) UCL	0.0213
95% KM (Chebyshev) UCL	0.0303
97.5% KM (Chebyshev) UCL	0.0375
99% KM (Chebyshev) UCL	0.0515
Data appear Normal (0.05)	
May want to try Normal UCLs	

Molybdenum

Total Number of Data	18
Number of Non-Detect Data	7
Number of Detected Data	11
Minimum Detected	0.085
Maximum Detected	10.7
Percent Non-Detects	38.89%
Minimum Non-detect	0.074
Maximum Non-detect	0.084
Mean of Detected Data	1.527
Median of Detected Data	0.26
Variance of Detected Data	9.681
SD of Detected Data	3.111
CV of Detected Data	2.038
Skewness of Detected Data	3.066
Mean of Detected log data	-0.802
SD of Detected Log data	1.546

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	1.546	
Mean	0.112	
SD	0.0267	
95% Winsor (t) UCL	0.127	
Kaplan Meier (KM) Method		
Mean	0.966	
SD	2.423	
Standard Error of Mean	0.599	
95% KM (t) UCL	2.008	
95% KM (z) UCL	1.951	
95% KM (BCA) UCL	2.184	
95% KM (Percentile Bootstrap) UCL	2.068	
95% KM (Chebyshev) UCL	3.577	
97.5% KM (Chebyshev) UCL	4.707	
99% KM (Chebyshev) UCL	6.927	
		•
Data follow Appr. Gamma Distribution (0	.05)	
May want to try Gamma UCLs		
Nickel		
Mickey		
Number of Valid Observations	18	
Number of Distinct Observations	17	
Minimum	11.7	•
Maximum	51.7	
Mean	17.04	
Median	14.6	
SD	9.054	
Variance	81.97	
Coefficient of Variation	0.531	
Skewness	3.644	
Mean of log data	2.762	
SD of log data	0.343	-
SD of log data	0.545	
Data do not follow a Discernable Distrib	ution	
95% Useful UCLs		
Student's-t UCL	20.76	
OFFICIAL (Adiosta differ Sharing and)		
95% UCLs (Adjusted for Skewness)	22.54	
95% Adjusted-CLT UCL	22.51	
95% Modified-t UCL	21.06	
Non-Parametric UCLs		
95% CLT UCL	20.55	
95% Jackknife UCL	20.76	
95% Standard Bootstrap UCL	20.47	
95% Bootstrap-t UCL	27.18	
•		
95% Hall's Bootstrap UCL	33.8	
95% Percentile Bootstrap UCL	20.98	

95% BCA Bootstrap UCL	23.37
95% Chebyshev(Mean, Sd) UCL	26.35
97.5% Chebyshev(Mean, Sd) UCL	30.37
99% Chebyshev(Mean, Sd) UCL	38.28
Potential UCL to Use	
Use 95% Student's-t UCL	20.76
Or 95% Modified-t UCL	21.06

Phenanthrene

Total Number of Data	18
Number of Non-Detect Data	11
Number of Detected Data	7
Minimum Detected	0.018
Maximum Detected	1.34
Percent Non-Detects	61.11%
Minimum Non-detect	0.00729
Maximum Non-detect	0.0727
Mean of Detected Data	0.266
Median of Detected Data	0.041
Variance of Detected Data	0.231
SD of Detected Data	0.481
CV of Detected Data	1.805
Skewness of Detected Data	2.482
Mean of Detected log data	-2.452
SD of Detected Log data	1.542

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect15Number treated as Detected3Single DL Percent Detection83.33%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.115
SD	0.303
Standard Error of Mean	0.0771
95% KM (t) UCL	0.249

95% KM (z) UCL	0.242
95% KM (BCA) UCL	0.265
95% KM (Percentile Bootstrap) UCL	0.261
95% KM (Chebyshev) UCL	0.451
97.5% KM (Chebyshev) UCL	0.596
99% KM (Chebyshev) UCL	0.882

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

** Instead of UCL, I	FPC is salartad	to he median	- - 0.0143
[per recomme	ndation in Prol	ICL User Guide	

Pyrene

Total Number of Data	19	
Number of Non-Detect Data	10	
Number of Detected Data	9	
Minimum Detected	0.0149	
Maximum Detected	4.64	
Percent Non-Detects	52.63%	
Minimum Non-detect	0.0122	
Maximum Non-detect	0.0702	
Mean of Detected Data	0.798	
Median of Detected Data	0.091	
Variance of Detected Data	2.426	
SD of Detected Data	1.558	
CV of Detected Data	1.951	
Skewness of Detected Data	2.356	
Mean of Detected log data	-1.978	
SD of Detected Log data	2.019	

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect13Number treated as Detected6Single DL Percent Detection68.42%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Ditribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Kaplan Meier (KM) Method

Winsorization Method

N/A

Mean	0.386
SD	1.084
Standard Error of Mean	0.264
95% KM (t) UCL	0.843
95% KM (z) UCL	0.82
95% KM (BCA) UCL	0.898
95% KM (Percentile Bootstrap) UCL	0.866
95% KM (Chebyshev) UCL	1.536
97,5% KM (Chebyshev) UCL	2,033
99% KM (Chebyshev) UCL	3.01

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Total Number of Data

18

Silver

16
2
0.092
0.41
88.89%
0.027
0.15
0.251
0.251
0.0506
0.225
0.896
N/A
-1.639
1.057

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect17Number treated as Detected1Single DL Percent Detection94.44%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

Page 40 of 45

However, results obtained using 4 to 9 distinct values may not be reliable. It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.11
SD	0.0728
Standard Error of Mean	0.0243
95% KM (t) UCL	0.152
95% KM (z) UCL	0.15
95% KM (BCA) UCL	0.41
95% KM (Percentile Bootstrap) UCL	0.41
95% KM (Chebyshev) UCL	0.216
97.5% KM (Chebyshev) UCL	0.261
99% KM (Chebyshev) UCL	0.351
Potential UCL to Use	
95% KM (BCA) UCL	0.41
** Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]	<0.0600

C+	 -	٠.,	m

Number of Valid Observations	18
Number of Distinct Observations	18
Minimum	26.6
Maximum	93.6
Mean	57.32
Median	52.85
SD	19.7
Variance	388.2
Coefficient of Variation	0.344
Skewness	0.325
Mean of log data	3.989
SD of log data	0.364
95% Useful UCLs Student's-t UCL	65.4
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	65.34
95% Modified-t UCL	65.45
Non-Parametric UCLs	
95% CLT UCL	64.96

95% Jackknife UCL	65.4
95% Standard Bootstrap UCL	64.55
95% Bootstrap-t UCL	66.09
95% Hall's Bootstrap UCL	65.38
95% Percentile Bootstrap UCL	64.71
95% BCA Bootstrap UCL	64.87
95% Chebyshev(Mean, Sd) UCL	77.56
97.5% Chebyshev(Mean, Sd) UCL	86.32
99% Chebyshev(Mean, Sd) UCL	103.5

Data appear Normal (0.05)

May want to try Normal UCLs

Thallium

Total Number of Data	18
Number of Non-Detect Data	17
Number of Detected Data	1
Minimum Detected	0.63
Maximum Detected	0.63
Percent Non-Detects	94.44%
Minimum Non-detect	0.091
Maximum Non-detect	0.89

Data set has all detected values equal to = 0.63, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.63

** Instead of UCL, EPC is selected to	be median = <0.100
	그 집에 되는 사람은 그리를 들어서 안 하면 요즘 사이를 만든다고 된 시간이 사랑하는 것이다.
[per recommendation in ProUCL	. User Guidej

Tin

Total Number of Data	18	
Number of Non-Detect Data	14	
Number of Detected Data	4	
Minimum Detected	0.68	
Maximum Detected	3.67	
Percent Non-Detects	77.78%	
Minimum Non-detect	0.39	
Maximum Non-detect	2.17	
Mean of Detected Data	1.673	
Median of Detected Data	1.17	
Variance of Detected Data	1.962	
SD of Detected Data	1.401	
CV of Detected Data	0.837	
Skewness of Detected Data	1.487	
Mean of Detected log data	0.267	

0.795

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17
Number treated as Detected 1
Single DL Percent Detection 94.44%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.904
SD	0.706
Standard Error of Mean	0.193
95% KM (t) UCL	1.239
95% KM (z) UCL	1.221
95% KM (BCA) UCL	3.67
95% KM (Percentile Bootstrap) UCL	1.848
95% KM (Chebyshev) UCL	1.744
97.5% KM (Chebyshev) UCL	2.108
99% KM (Chebyshev) UCL	2.822

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median =
[per recommendation in ProUCL User Guide]

< 0.590

Titanium

Number of Valid Observations	18
Number of Distinct Observations	17
Minimum	3.41
Maximum	55.9
Mean	20.67
Median	18.7
SD	11.65
Variance	135.7
Coefficient of Variation	0.563
Skewness	1.656
Mean of log data	2.882
SD of log data	0.591

95% Useful UCLs Student's-t UCI	25.45
Student 2-f OCF	25.45
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	26.33
95% Modified-t UCL	25.63
Non-Parametric UCLs	
95% CLT UCL	25.19
95% Jackknife UCL	25.45
95% Standard Bootstrap UCL	24.96
95% Bootstrap-t UCL	27.41
95% Hall's Bootstrap UCL	33.8
95% Percentile Bootstrap UCL	25.5
95% BCA Bootstrap UCL	26.63
95% Chebyshev(Mean, Sd) UCL	32.64
97.5% Chebyshev(Mean, Sd) UCL	37.82
99% Chebyshev(Mean, Sd) UCL	47.99
Data appear Gamma Distributed (0.05)	
May want to try Gamma UCLs	

Vanadium

Number of Valid Observations	18
Number of Distinct Observations	18
Minimum	7.85
Maximum	45.8
Mean	19.66
Median	18.65
SD	9.126
Variance	83.28
Coefficient of Variation	0.464
Skewness	1.322
Mean of log data	2.884
SD of log data	0.449
95% Useful UCLs Student's-t UCL	23.4
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	23.91
95% Modified-t UCL	23.51
Non-Parametric UCLs	
95% CLT UCL	23.2
95% Jackknife UCL	23.4
95% Standard Bootstrap UCL	23.07
95% Bootstrap-t UCL	24.51
95% Hall's Bootstrap UCL	25.38

95% Percentile Bootstrap UCL	23.28	
95% BCA Bootstrap UCL	23.91	
95% Chebyshev(Mean, Sd) UCL	29.03	
97.5% Chebyshev(Mean, Sd) UCL	33.09	
99% Chebyshev(Mean, Sd) UCL	41.06	
Data appear Normal (0.05)		
May want to try Normal UCLs		
Zinc		
Number of Valid Observations	18	
Number of Distinct Observations	18	
Minimum	29.5	
Maximum	5640	
Mean	418.4	
Median	53.95	
SD	1308	
Variance	1709718	
Coefficient of Variation	3.125	
Skewness	4.195	
Mean of log data	4.562	
SD of log data	1.321	
Data do not follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	954.5	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	1251	
95% Modified-t UCL	1005	
Non-Parametric UCLs		
95% CLT UCL	925.3	
95% Jackknife UCL	954.5	
95% Standard Bootstrap UCL	913.4	
95% Bootstrap-t UCL	5677	
95% Hall's Bootstrap UCL	3640	
95% Percentile Bootstrap UCL	1029	
95% BCA Bootstrap UCL	1364	
95% Chebyshev(Mean, Sd) UCL	1762	
97.5% Chebyshev(Mean, Sd) UCL	2343	
99% Chebyshev(Mean, Sd) UCL	3485	
Potential UCL to Use		
99% Chebyshev(Mean, Sd) UCL		

APPENDIX A-4

NORTH OF MARLIN SOIL

Nonparametric UCL Statistics for Data Sets with Non-Detects

User Selected Options

From File C:\Users\Michael\....\ProUCL data analysis\North of Marlin Soil Boring\North of Marlin Soil - all data_ProUCL input.wst

Full Precision

OFF

Confidence Coefficient

Number of Bootstrap Operations

95% 2000

1,1-Dichloroethane

Total Number of Data	21
Number of Non-Detect Data	18
Number of Detected Data	3
Minimum Detected	0.00161
Maximum Detected	0.518
Percent Non-Detects	85.71%
Minimum Non-detect	1.28E-04
Maximum Non-detect	0.186
Mean of Detected Data	0.177
Median of Detected Data	0.0121
Variance of Detected Data	0.0871
SD of Detected Data	0.295
CV of Detected Data	1.665
Skewness of Detected Data	1.73
Mean of Detected log data	-3.835
SD of Detected Log data	2.93

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 20
Number treated as Detected 1
Single DL Percent Detection 95.24%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

Mean 0.0267 SD 0.11

North of Marlin Soil - all data_ProUCL sheets.xls $\,$ nonparam UCLs $\,$ 01/28/10 $\,$ mlj $\,$

Standard Error of Mean	0.0294
95% KM (t) UCL	0.0774
95% KM (z) UCL	0.075
95% KM (BCA) UCL	0.518
95% KM (Percentile Bootstrap) UCL	0.518
95% KM (Chebyshev) UCL	0.155
97.5% KM (Chebyshev) UCL	0.21
99% KM (Chebyshev) UCL	0.319

Data appear Lognormal (0.05) May want to try Lognormal UCLs

** Instead of UCL, EPC is selected to be median = <0.000175

[per recommendation in ProUCL User Guide]

1,1-Dichloroethene

Total Number of Data	21
Number of Non-Detect Data	19
Number of Detected Data	2
Minimum Detected	0.00178
Maximum Detected	0.313
Percent Non-Detects	90.48%
Minimum Non-detect	2.90E-04
Maximum Non-detect	0.419
Mean of Detected Data	0.157
Median of Detected Data	0.157
Variance of Detected Data	0.0484
SD of Detected Data	0.22
CV of Detected Data	1.398
Skewness of Detected Data	N/A
Mean of Detected log data	-3.746
SD of Detected Log data	3.655

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates. The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only
Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0173
SD	0.0678
Standard Error of Mean	0.0214
95% KM (t) UCL	0.0543
95% KM (z) UCL	0.0526
95% KM (BCA) UCL	0.313
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.111
97.5% KM (Chebyshev) UCL	0.151
99% KM (Chebyshev) UCL	0.231
Potential UCL to Use	
99% KM (Chebyshev) UCL	0.231
** Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]	<0.000392

1,2-Dichloroethane

Total Number of Data	. 21
Number of Non-Detect Data	. 16
Number of Detected Data	5
Minimum Detected	0.00231
Maximum Detected	0.178
Percent Non-Detects	76.19%
Minimum Non-detect	9.20E-05
Maximum Non-detect	0.133
Mean of Detected Data	0.0744
Median of Detected Data	0.011
Variance of Detected Data	0.00887
SD of Detected Data	0.0942
CV of Detected Data	1.266
Skewness of Detected Data	0.603
Mean of Detected log data	-3.934
SD of Detected Log data	2.091

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect	19
Number treated as Detected	2
Single DL Percent Detection	90.48%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0195
SD	0.0513
Standard Error of Mean	0.0125
95% KM (t) UCL	0.0411
95% KM (z) UCL	0.0401
95% KM (BCA) UCL	0.177
95% KM (Percentile Bootstrap) UCL	0.0507
95% KM (Chebyshev) UCL	0.0741
97.5% KM (Chebyshev) UCL	0.0977
99% KM (Chebyshev) UCL	0.144

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

** Instead of UCL, EPC is selected to be median =	<0.000127
[per recommendation in ProUCL User Guide]	

2-Butanone

Total Number of Data	21
Number of Non-Detect Data	10
Number of Detected Data	11
Minimum Detected	0.0017
Maximum Detected	0.208
Percent Non-Detects	47.62%
Minimum Non-detect	2.52E-04
Maximum Non-detect	0.364
Mean of Detected Data	0.0222
Median of Detected Data	0.00299
Variance of Detected Data	0.0038
SD of Detected Data	0.0617
CV of Detected Data	2.78
Skewness of Detected Data	3.312
Mean of Detected log data	-5.351
SD of Detected Log data	1.327

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 21
Number treated as Detected 0
Single DL Percent Detection 100.00%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0132
SD	0.0447
Standard Error of Mean	0.0105
95% KM (t) UCL	0.0313
95% KM (z) UCL	0.0305
95% KM (BCA) UCL	0.0339
95% KM (Percentile Bootstrap) UCL	0.0327
95% KM (Chebyshev) UCL	0.0589
97.5% KM (Chebyshev) UCL	0.0787
99% KM (Chebyshev) UCL	0.118
	CONTROL OF STATE OF S

Potential UCL to Use 97.5% KM (Chebyshev) UCL 0.0787

2-Methylnaphthalene

Total Number of Data	. 38
Number of Non-Detect Data	32
Number of Detected Data	6
Minimum Detected	0.01
Maximum Detected	1.04
Percent Non-Detects	84.21%
Minimum Non-detect	0.01
Maximum Non-detect	0.0634
Mean of Detected Data	0.202
Median of Detected Data	0.0493
Variance of Detected Data	0.169
SD of Detected Data	0.411
CV of Detected Data	2.029
Skewness of Detected Data	2.437
Mean of Detected log data	-2.979
SD of Detected Log data	1.651

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

Number treated as Non-Detect	t	37
Number treated as Detected		1
Single DL Percent Detection		97.37%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0405
SD	0.165
Standard Error of Mean	0.0293
95% KM (t) UCL	0.0899
95% KM (z) UCL	0.0886
95% KM (BCA) UCL	1.04
95% KM (Percentile Bootstrap) UCL	0.0983
95% KM (Chebyshev) UCL	0.168
97.5% KM (Chebyshev) UCL	0.223
99% KM (Chebyshev) UCL	0.332

Data appear Lognormal (0.05) May want to try Lognormal UCLs

** Instead of UCL, EPC is selected to be median =	<0.0119
[per recommendation in ProUCL User Guide]	

4,4'-DDE

Total Number of Data	38
Number of Non-Detect Data	36
Number of Detected Data	2
Minimum Detected	0.00216
Maximum Detected	0.0149
Percent Non-Detects	94.74%
Minimum Non-detect	3.79E-04
Maximum Non-detect	0.054
Mean of Detected Data	0.00853
Median of Detected Data	0.00853
Variance of Detected Data	8.12E-05
SD of Detected Data	0.00901
CV of Detected Data	1.056
Skewness of Detected Data	N/A
Mean of Detected log data	-5.172
SD of Detected Log data	1.366

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect38Number treated as Detected0Single DL Percent Detection100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0025
SD	0.00207
Standard Error of Mean	4.80E-04
95% KM (t) UCL	0.00331
95% KM (z) UCL	0.00329
95% KM (BCA) UCL	0.0149
95% KM (Percentile Bootstrap) UCL	0.0149
95% KM (Chebyshev) UCL	0.0046
97.5% KM (Chebyshev) UCL	0.0055
99% KM (Chebyshev) UCL	0.00728
Potential UCL to Use	
95% KM (BCA) UCL	0.0149
** Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]	<0.000428

MINNEY WALL IN MA ALLEY IN	Chiches Willes Consider Lines.	Baltist Mithwolfin	ál.frá	

4,4'-DDT

Total Number of Data	38
Number of Non-Detect Data	29
Number of Detected Data	9
Minimum Detected	0.000597

Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	0.395 76.32% 1.46E-04 0.00282
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.0471 0.00145 0.017 0.131 2.771 2.995 -5.592 2.035

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 34
Number treated as Detected 4
Single DL Percent Detection 89.47%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0116	
SD	0.0631	
Standard Error of Mean	0.0109	
95% KM (t) UCL	0.0299	
95% KM (z) UCL	0.0295	
95% KM (BCA) UCL	0.0329	
95% KM (Percentile Bootstrap) UCL	0.0323	
95% KM (Chebyshev) UCL	0.0589	
97.5% KM (Chebyshev) UCL	0.0794	
99% KM (Chebyshev) UCL	0.12	
Potential UCL to Use		
99% KM (Chebyshev) UCL	0.12	

Acenaphthene

Total Number of Data	38
Number of Non-Detect Data	33
Number of Detected Data	5

Minimum Detected	0.013
Maximum Detected	0.157
Percent Non-Detects	86.84%
Minimum Non-detect	0.00998
Maximum Non-detect	0.125
Mean of Detected Data	0.0648
Median of Detected Data	0.027
Variance of Detected Data	0.00406
SD of Detected Data	0.0637
CV of Detected Data	0.983
Skewness of Detected Data	0.93
Mean of Detected log data	-3.183
SD of Detected Log data	1.078

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect37Number treated as Detected1Single DL Percent Detection97.37%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0199
SD	0.0272
Standard Error of Mean	0.00495
95% KM (t) UCL	0.0283
95% KM (z) UCL	0.0281
95% KM (BCA) UCL	0.107
95% KM (Percentile Bootstrap) UCL	0.0407
95% KM (Chebyshev) UCL	0.0415
97.5% KM (Chebyshev) UCL	0.0508
99% KM (Chebyshev) UCL	0.0692
Data appear Normal (0.05)	
May want to try Normal UCLs	
** Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]	<0.0111

Acenaphthylene

Total Number of Data	38
Number of Non-Detect Data	37
Number of Detected Data	1
Minimum Detected	0.0555
Maximum Detected	0.0555
Percent Non-Detects	97.37%
Minimum Non-detect	0.00768
Maximum Non-detect	0.09

Data set has all detected values equal to = 0.0555, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0555

Assessment Control	66.00mm (1965年) 1967年 (1967年) 1967年 (1967年) 1967年 (1967年) 1967年 (1967年) 1967年 (1967年) 1967年 (1967年)	医性结膜术 医磺胺基酚	JUNEAU STREET, SALES	SECURE CONTRACTOR SECTION	Billion Police Inc. Com-	自然,经验,直接通明证	LUNG BETTER SEC 15 LIFE
** 1	L C	I FDC:-		L- L		· · · · · · · · · · · · · · · · · · ·	<0.0120
Inst	ead of UL	L. EPC IS S	electeu	to be me		1101.55	~ CO.OIZU
25432		e distribution of the		The state of the s	and a street hitter		THE STREET STORY
110000000000000000000000000000000000000			2.27.41.11.12.11			100000000000000000000000000000000000000	
APRIL P.	OF FOCOMO	aandatiar	in Drall	Clicor	Guidal	N. 174 BERTHAN	A CONTRACTOR OF THE
37 F 18 1 D	ei i ecomin	lelluatioi		CL USEI	Juluel	the second second second	11 27 27 20 1

л	luminum	

Number of Valid Observations	39
Number of Distinct Observations	34
Minimum	1810
Maximum	18300
Mean	12268
Median	12600
SD	3987
Variance	15892441
Coefficient of Variation	0.325
Skewness	-0.344
Mean of log data	9.344
SD of log data	0.431
	and the second second second second

95% OCLS (Adjusted for Skewness)	
95% Adjusted-CLT UCL	13281
95% Modified-t UCL	13339
•	

Non-Parame	tric UCLs
------------	-----------

95% CLT UCL	13318
95% Jackknife UCL	13344
95% Standard Bootstrap UCL	13305
95% Bootstrap-t UCL	13336
95% Hall's Bootstrap UCL	13249
95% Percentile Bootstrap UCL	13267
95% BCA Bootstrap UCL	13253
95% Chebyshev(Mean, Sd) UCL	15051
97.5% Chebyshev(Mean, Sd) UCL	16255
99% Chebyshev(Mean, Sd) UCL	18620

Data appear Normal (0.05)

May want to try Normal UCLs

An	tł	ıra	ce	ne

Total Number of Data	38
Number of Non-Detect Data	30
Number of Detected Data	8
Minimum Detected	0.00887
Maximum Detected	0.264
Percent Non-Detects	78.95%
Minimum Non-detect	0.00744
Maximum Non-detect	0.0641
Mean of Detected Data	0.104
Median of Detected Data	0.0565
Variance of Detected Data	0.00876
SD of Detected Data	0.0936
CV of Detected Data	0.899
Skewness of Detected Data	0.812
Mean of Detected log data	-2.719
SD of Detected Log data	1.124

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect35Number treated as Detected3Single DL Percent Detection92.11%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.029
SD	0.0559
Standard Error of Mean	0.0097
95% KM (t) UCL	0.0454
95% KM (z) UCL	0.045
95% KM (BCA) UCL	0.0731
95% KM (Percentile Bootstrap) UCL	0.064
95% KM (Chebyshev) UCL	0.0713
97.5% KM (Chebyshev) UCL	0.0896

Data appear Normal (0.05)

May want to try Normal UCLs

May want to try Normal UCLs		
Antimony		
Total Number of Data	39	-
Number of Non-Detect Data	20	
Number of Detected Data	19	
Minimum Detected	0.22	
Maximum Detected	8.09	
Percent Non-Detects	51.28%	
Minimum Non-detect	0.19	
Maximum Non-detect	0.26	
Mean of Detected Data	2.753	
Median of Detected Data	2.56	
Variance of Detected Data	2.663	
SD of Detected Data	1.632	
CV of Detected Data	0.593	
Skewness of Detected Data	1.815	
Mean of Detected log data	0.798	
SD of Detected Log data	0.807	
Note: Data have multiple DLs - Use of KM Method is re	commended	
For all methods (except KM, DL/2, and ROS Methods),		
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	21	·
Number treated as Detected	18	
Single DL Percent Detection	53.85%	
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	1.454	
SD	1.683	
Standard Error of Mean	0.277	
95% KM (t) UCL	1.921	•
95% KM (z) UCL	1.91	
95% KM (BCA) UCL	2.662	
95% KM (Percentile Bootstrap) UCL	2.454	
95% KM (Chebyshey) UCL	2.661	
97.5% KM (Chebyshev) UCL	3.183	
99% KM (Chebyshev) UCL	4.209	
Potential UCL to Use		
95% KM (t) UCL	1.921	

Aroclor-1254

Total Number of Data	38
Number of Non-Detect Data	35
Number of Detected Data	3
Minimum Detected	0.0122
Maximum Detected	6.35
Percent Non-Detects	92.11%
Minimum Non-detect	0.00379
Maximum Non-detect	0.033
Mean of Detected Data	2.152
Median of Detected Data	0.0938
Variance of Detected Data	13.22
SD of Detected Data	3.636
CV of Detected Data	1.689
Skewness of Detected Data	1.731
Mean of Detected log data	-1.641
SD of Detected Log data	3.19

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect36Number treated as Detected2Single DL Percent Detection94.74%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

N/A

N/A

Data Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

Kanlan	Meier	(KM)	Method

Winsorization Method

Rapian Metrod		
Mean		0.181
SD		1.014
Standard Error of Mean		0.202
95% KM (t) UCL		0.521
95% KM (z) UCL		0.513
95% KM (BCA) UCL	N/A	

95% KM (Percentile Bootstrap) UCL

95% KM (Chebyshev) UCL	1.059
97.5% KM (Chebyshev) UCL	1.44
99% KM (Chebyshev) UCL	2.186

Data appear Lognormal (0.05) May want to try Lognormal UCLs

** Instead of UCL, EPC is selected to be median = <0.00430
[per recommendation in ProUCL User Guide]

rse	

Total Number of Data	39
Number of Non-Detect Data	6
Number of Detected Data	33
Minimum Detected	0.54
Maximum Detected	5.69
Percent Non-Detects	15.38%
Minimum Non-detect	0.15
Maximum Non-detect	0.68
Mean of Detected Data	2.83
Median of Detected Data	2.55
Variance of Detected Data	1.311
SD of Detected Data	1.145
CV of Detected Data	0.405
Skewness of Detected Data	0.914
Mean of Detected log data	0.956
SD of Detected Log data	0.441

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect7Number treated as Detected32Single DL Percent Detection17.95%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	17.95%
Mean	2.436
SD	0.738
95% Winsor (t) UCL	2.638

Kaplan Meier (KM) Method

Mean	2.477
SD	1.326
Standard Error of Mean	0.216
95% KM (t) UCL	2.841
95% KM (z) UCL	2.832

95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs	2.994 2.905 3.417 3.824 4.623	
Barium		
	20	
Number of Valid Observations	39	
Number of Distinct Observations	33	
Minimum	46.1	
Maximum	476	
Mean	141	
Median	123	
SD	93.22	
Variance	8690	
Coefficient of Variation	0.661	
Skewness	2.335	
Mean of log data	4.799	
SD of log data	0.523	
95% Useful UCLs		
Student's-t UCL	166.1	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	171.5	
95% Modified-t UCL	167.1	
Non-Parametric UCLs		·
95% CLT UCL	165.5	
95% Jackknife UCL	166.1	
95% Standard Bootstrap UCL	164.9	
95% Bootstrap-t UCL	176.3	
95% Hall's Bootstrap UCL	184.8	
95% Percentile Bootstrap UCL	165.8	
95% BCA Bootstrap UCL	173.7	
95% Chebyshev(Mean, Sd) UCL	206	
97.5% Chebyshev(Mean, Sd) UCL	234.2	
99% Chebyshev(Mean, Sd) UCL	289.5	
Data appear Lognormal (0.05)		
May want to try Lognormal UCLs		
Benzene		
Total Number of Data	21	
Number of Non-Detect Data	9	
Number of Non-Detect Data	Э	

Number of Detected Data	12	
Minimum Detected	0.00138	
Maximum Detected	0.00632	
Percent Non-Detects	42.86%	
Minimum Non-detect	9.00E-05	•
Maximum Non-detect	0.121	•
		av.
Mean of Detected Data	0.00357	
Median of Detected Data	0.00299	
Variance of Detected Data	2.98E-06	
SD of Detected Data	0.00173	
CV of Detected Data	0.484	
Skewness of Detected Data	0.473	
Mean of Detected log data	-5.752	
SD of Detected Log data	0.517	
Note: Data have multiple DLs - Use of KM Method is re	rcommondad	
For all methods (except KM, DL/2, and ROS Methods),	commenueu	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	21	
Number treated as Non-Detect Number treated as Detected	0	
Single DL Percent Detection	100.00%	
Single DE Percent Detection	100.00%	
Data Dsitribution Test with Detected Values Only		
Data appear Normal at 5% Significance Level		
Winsorization Method	N/A	
Winsorization Method	N/A	
Kaplan Meier (KM) Method	·	
Kaplan Meier (KM) Method Mean	0.00292	
Kaplan Meier (KM) Method Mean SD	·	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean	0.00292 0.0016 3.95E-04	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL	0.00292 0.0016 3.95E-04 0.0036	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL	0.00292 0.0016 3.95E-04 0.0036 0.00357	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL	0.00292 0.0016 3.95E-04 0.0036 0.00357	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Normal (0.05)	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Normal (0.05)	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Normal (0.05)	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Normal (0.05) May want to try Normal UCLs	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Bata appear Normal (0.05) May want to try Normal UCLs Benzo(a)anthracene	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464 0.00539 0.00685	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Bata appear Normal (0.05) May want to try Normal UCLs Benzo(a)anthracene Total Number of Data	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464 0.00539 0.00685	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Normal (0.05) May want to try Normal UCLs Benzo(a)anthracene Total Number of Data Number of Non-Detect Data	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464 0.00539 0.00685	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Normal (0.05) May want to try Normal UCLs Benzo(a)anthracene Total Number of Data Number of Detected Data Number of Detected Data	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00371 0.00361 0.00464 0.00539 0.00685	
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Normal (0.05) May want to try Normal UCLs Benzo(a)anthracene Total Number of Data Number of Detected Data Minimum Detected	0.00292 0.0016 3.95E-04 0.0036 0.00357 0.00361 0.00464 0.00539 0.00685	

Minimum Non-detect	0.00503
Maximum Non-detect	0.0596
Mean of Detected Data	0.576
Median of Detected Data	0.611
Variance of Detected Data	0.219
SD of Detected Data	0.468
CV of Detected Data	0.813
Skewness of Detected Data	0.128
Mean of Detected log data	-1.075
SD of Detected Log data	1.398

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 34
Number treated as Detected 4
Single DL Percent Detection 89.47%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.109
SD	0.237
Standard Error of Mean	0.043
95% KM (t) UCL	0.182
95% KM (z) UCL	0.18
95% KM (BCA) UCL	0.864
95% KM (Percentile Bootstrap) UCL	0.671
95% KM (Chebyshev) UCL	0.296
97.5% KM (Chebyshev) UCL	0.377
99% KM (Chebyshev) UCL	0.537

Data appear Normal (0.05) May want to try Normal UCLs

	집(이라고막 어디라는 게		
** Instead of UCL, EPC i	s selected to I	ne median = :	<0.0111
	Auditor (Complete effects of a	e de la Marie de la capación de la	
그렇게 살아왔습니다. 나는 사람들이 없어요요. 스트 이 경기를 다 했다.		经支付权 计联合可能 医电流	그 경기되게 하지 않아 본 경기에 되는 것이다.
[per recommendat	ion in ProUCL	User Guidel	化自己催生物 经成本公司 医多大性性坏疽
A TO PERSON OF THE	Marie Co. 2011 Del Santo Co.	A COLOR NO.	THE PARTY OF MANY STOLEN OF

Benzo(a)pyrene

Total Number of Data		38
Number of Non-Detect Data		28

Number of Detected Data 10			
Maximum Detected 1.42 Percent Non-Detects 73.68% Minimum Non-detect 0.00901 Maximum Non-detect 0.1 Mean of Detected Data 0.318 Median of Detected Data 0.107 Variance of Detected Data 0.223 SD of Detected Data 0.472 CV of Detected Idada 0.474 CV o			
Percent Non-Detects 73.68% Minimum Non-detect 0.00901 Maximum Non-detect 0.00901 Maximum Non-detect 0.01 Mean of Detected Data 0.107 Variance of Detected Data 0.223 SD of Detected Data 0.472 CV of Detected Data 0.472 CV of Detected Data 1.951 Mean of Detected Data 1.951 Mean of Detected Data 1.951 Mean of Detected Data 1.9951 Mean of Detected Data 1.9951 Mean of Detected Log data 1.9951 Mean of Detected Log data 1.998 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 31 Number treated as Non-Detect 7 Single DL Percent Detection 81.58% Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.0266 Standard Error of Mean 0.0455 S9% KM (t) UCL 0.169 95% KM (gL UCL 0.169 95% KM (gL UCL 0.169 95% KM (Percentile Bootstrap) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.292 97.5% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.378 P9% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 38 Number of Detected Data 12 Number of Detected Data 12 Number of Detected Data 12 Numbir of Detected Data 12 Numbir of Detected Data 1.62			
Minimum Non-detect Maximum Non-detect Maximum Non-detect Maximum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Dotaniane of Detected Dota Dotaniane of Detected Data Dotaniane of Detected			
Mean of Detected Data Mean of Detected Data Median of Detected Data Median of Detected Data Median of Detected Data O.107 Variance of Detected Data O.223 SD of Detected Data O.472 CV of Detected Data O.473 Skewness of Detected Data O.475 So of Detected Log data O.475 So of Detected Log data O.475 Note: Data have multiple Dis - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect O.475 Single DL Percent Detected O.586 Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method Mean O.0937 SD O.266 Standard Error of Mean O.0455 95% KM (Chely Med) UCL O.17 95% KM (SQ) UCL O.169 95% KM (SQ) UCL O.226 95% KM (Chebyshev) UCL O.226 95% KM (Chebyshev) UCL O.292 97.5% KM (Chebyshev) UCL O.378 99% KM (Chebyshev) UCL O.378 O.378 Perzo (Diffuoranthene Total Number of Data Number of Data Number of Detected Data O.0487 Minimum Detected O.0487 Minimum Detected O.0487 Maximum Detected O.0487 Maximum Detected O.0487			* *
Mean of Detected Data Median of Detected Data Median of Detected Data O.107 Variance of Detected Data O.223 SD of Detected Data O.472 CV of Detected Data 1.484 Skewness of Detected Data Mean of Detected India Skewness of Detected India Mean of Detected India Mean of Detected India Note: Data have multiple Dts - Use of KM Method is recommended For all methods (except KM, Dt/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 31 Number treated as Non-Detect 31 Number treated as Detected 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 95% KM (t) (Chebyshev) UCL 95% KM (Chebyshev) UCL 0.183 99% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Deta Commanded Total Number of Data Number of Data Number of Datected Data Number of Non-Detect Data Number of Detected Data Numbinum Detected Numbur Detected Naximum Detected 1.62			
Median of Detected Data Variance of Detected Data O.223 SD of Detected Data O.223 SD of Detected Data O.472 CV of Detected Data 1.484 Skewness of Detected Data 1.951 Mean of Detected log data SD of Detected log data Por all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 31 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (c) UCL 0.17 95% KM (2) UCL 0.169 95% KM (BCA) UCL 0.226 95% KM (BCA) UCL 0.295 95% KM (Percentile Bootstrap) UCL 0.295 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Detected Data 12 Number of Potected Data 12 Numbur Detected Maximum Detected 0.0487 Maximum Detected 0.0487 Maximum Detected 0.0487 Maximum Detected 1.62	Maximum Non-detect	1.0	
Median of Detected Data Variance of Detected Data O.223 SD of Detected Data O.223 SD of Detected Data O.472 CV of Detected Data 1.484 Skewness of Detected Data 1.951 Mean of Detected log data SD of Detected log data Por all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 31 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (c) UCL 0.17 95% KM (2) UCL 0.169 95% KM (BCA) UCL 0.226 95% KM (BCA) UCL 0.295 95% KM (Percentile Bootstrap) UCL 0.295 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Detected Data 12 Number of Potected Data 12 Numbur Detected Maximum Detected 0.0487 Maximum Detected 0.0487 Maximum Detected 0.0487 Maximum Detected 1.62	Mean of Detected Data	0.318	
Variance of Detected Data Do Detected Data O. 0.472 CV of Detected Data 1.484 Skewness of Detected Data 1.484 Skewness of Detected Data 1.951 Mean of Detected log data 2.019 SD of Detected log data 3.398 Note: Data have multiple Dts - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest Dt are treated as NDs Number treated as Non-Detect 31 Number treated as Detected 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 95% KM (2) UCL 95% KM (2) UCL 95% KM (2) UCL 95% KM (Percentile Bootstrap) UCL 0.169 95% KM (Reca) UCL 0.226 95% KM (Chebyshev) UCL 0.378, 99% KM (Chebyshev) UCL 0.378, 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data Number of Non-Detect Data Number of Non-Detect Data Number of Potected Data Number of Potected Data Number of Detected Data Number of Detected Data Numbirmum Detected Naximum Detected Naximum Detected Naximum Detected 1.62			
SD of Detected Data CV of Detected Data 1.484 Skewness of Detected Data 1.951 Mean of Detected log data 2-0.19 SD of Detected Log data 1.398 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDS Number treated as Non-Detect 31 Number treated as Detected 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.169 95% KM (2) UCL 0.169 95% KM (2) UCL 0.5% KM (Percentile Bootstrap) UCL 0.5% KM (Percentile Bootstrap) UCL 0.5% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Non-Detect Data Number of Potected Data Number of Detected Data Number of Detected Data Number of Detected Data Numbir of Detected Data Minimum Detected Naximum Detected			
CV of Detected Data Skewness of Detected Data Skewness of Detected Data 1.951 Mean of Detected log data 2.019 SD of Detected Log data 1.398 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 31 Number treated as Non-Detect 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method Mean 0.0937 SD 0.266 Standard Error of Mean 9.0455 95% KM (t) UCL 95% KM (2) UCL 95% KM (2) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Percentile Bootstrap) UCL 97.5% KM (Chebyshev) UCL 97.5%			
Skewness of Detected Data Mean of Detected log data 5D of Detected Log data 1.398 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 31 Number treated as Detected 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (SCA) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 0.169 95% KM (Percentile Bootstrap) UCL 0.378 99% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 38 Number of Non-Detect Data 12 Minimum Detected Maximum Detected 1.62	CV of Detected Data		
Mean of Detected log data SD of Detected Log data 1.398 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 31 Number treated as Non-Detect 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method Mean 0.0937 SD 0.266 Standard Error of Mean 9.0945 95% KM (t) UCL 95% KM (t) UCL 95% KM (t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 0.0487 Number of Non-Detect Data 12 Minimum Detected Maximum Detected 1.62			
Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDS Number treated as Non-Detect 31 Number treated as Potected 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (t) UCL 0.19 95% KM (gCA) UCL 0.226 95% KM (gCA) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.292 97.5% KM) (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62		-2.019	
Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 31 Number treated as Detected 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (t) UCL 0.17 95% KM (t) UCL 0.169 95% KM (gBCA) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.295 97.5% KM (Chebyshev) UCL 0.296 97.5% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62		1.398	
For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 31 Number treated as Detected 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (z) UCL 0.169 95% KM (Percentile Bootstrap) UCL 0.183 95% KM (Chebyshev) UCL 0.226 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Non-Detect Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	-		
Number treated as Non-Detect 31 Number treated as Pon-Detect 7 Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Nean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (g) UCL 0.169 95% KM (Percentile Bootstrap) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Non-Detect Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Note: Data have multiple DLs - Use of KM Method is re	commended	
Number treated as Non-Detect Number treated as Detected Single DL Percent Detection S1.58% Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 95% KM (2) UCL 95% KM (2) UCL 0.169 95% KM (Percentile Bootstrap) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Benzo(b)fluoranthene Total Number of Data Number of Detected Data Number of Detected Data Minimum Detected 0.0487 Maximum Detected 1.62			
Number treated as Detected Single DL Percent Detection 81.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (2) UCL 95% KM (2) UCL 95% KM (2) UCL 95% KM (BCA) UCL 0.183 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Dotected Data Number of Detected Data Minimum Detected 0.0487 Maximum Detected 1.62	Observations < Largest DL are treated as NDs		
Single DL Percent Detection Bata Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (z) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Percentile Bootstrap) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Dotected Data Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Number treated as Non-Detect		
Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 95% KM (t) UCL 95% KM (t) UCL 95% KM (z) UCL 95% KM (percentile Bootstrap) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data Number of Non-Detect Data Number of Detected Data Number of Detected Data Number of Detected Data Minimum Detected Maximum Detected N/A N/A Nones 0.0937 0.0455 0.17 0.17 0.17 0.183 0.226 0.378 0.378 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data Number of Data 12 Minimum Detected 0.0487 Maximum Detected			
Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (BCA) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.183 95% KM (Chebyshev) UCL 0.292 97,5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Single DL Percent Detection	81.58%	
Winsorization Method N/A Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (BCA) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.183 95% KM (Chebyshev) UCL 0.292 97,5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Data Daitribution Tost with Datastad Values Only		
Winsorization Method N/A Kaplan Meier (KM) Method 0.0937 Mean 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (BCA) UCL 0.226 95% KM (Chebyshev) UCL 0.183 95% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) 0.546 May want to try Gamma UCLs 38 Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	•	sl	
Kaplan Meier (KM) Method Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (BCA) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.183 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Data appear Gamma Distributed at 570 Significance Leve	:1	
Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (Percentile Bootstrap) UCL 0.183 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Winsorization Method	NI/A	
Mean 0.0937 SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (Percentile Bootstrap) UCL 0.183 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62		N/A	
SD 0.266 Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (BCA) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.183 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62		N/A	
Standard Error of Mean 0.0455 95% KM (t) UCL 0.17 95% KM (z) UCL 0.169 95% KM (BCA) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.183 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Kaplan Meier (KM) Method	N/A	
95% KM (t) UCL 0.169 95% KM (z) UCL 0.266 95% KM (BCA) UCL 0.226 95% KM (Percentile Bootstrap) UCL 0.183 95% KM (Chebyshev) UCL 0.292 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	· · ·	·	
95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 95	Mean	0.0937	
95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Non-Detect Data Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean	0.0937 0.266 0.0455	
95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL	0.0937 0.266 0.0455 0.17	
95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL	0.0937 0.266 0.0455 0.17 0.169	
97.5% KM (Chebyshev) UCL 0.378 99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.00487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL	0.0937 0.266 0.0455 0.17 0.169 0.226	
99% KM (Chebyshev) UCL 0.546 Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183	
Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292	
May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292	
May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292	
Benzo(b)fluoranthene Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292	
Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05)	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292	
Total Number of Data 38 Number of Non-Detect Data 26 Number of Detected Data 12 Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05)	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292	
Number of Non-Detect Data26Number of Detected Data12Minimum Detected0.0487Maximum Detected1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05)	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292	
Number of Detected Data12Minimum Detected0.0487Maximum Detected1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292	
Minimum Detected 0.0487 Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292 0.378 0.546	
Maximum Detected 1.62	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292 0.378 0.546	
	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Non-Detect Data	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292 0.378 0.546	
Percent Non-Detects 68.42%	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Non-Detect Data Number of Detected Data	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292 0.378 0.546	
	Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs Benzo(b)fluoranthene Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected	0.0937 0.266 0.0455 0.17 0.169 0.226 0.183 0.292 0.378 0.546	

Minimum Non-detect	0.00721		
Maximum Non-detect	0.137	-	
Mean of Detected Data	0.349		
Median of Detected Data	0.148		
Variance of Detected Data	0.237		
SD of Detected Data	0.487		
CV of Detected Data	1.397		
Skewness of Detected Data	2.223		
Mean of Detected log data	-1.63		
SD of Detected Log data	1		
ALL DISTRIBUTED DISTRIBUTED AND A SALE AND A	!		
Note: Data have multiple DLs - Use of KM Method			
For all methods (except KM, DL/2, and ROS Method	15),		
Observations < Largest DL are treated as NDs	21		
Number treated as Non-Detect	31 7		
Number treated as Detected	•		
Single DL Percent Detection	81.58%		
Data Dsitribution Test with Detected Values Only			
Data do not follow a Discernable Distribution (0.05)	1		
Butta do Not Tollow a Discernable Distribution (c.es)			
Winsorization Method	N/A		
Kaplan Meier (KM) Method			
Mean	0.144		
SD	0.297		
Standard Error of Mean	0.0503		
95% KM (t) UCL	0.229		
95% KM (z) UCL	0.226		
95% KM (BCA) UCL	0.293		
95% KM (Percentile Bootstrap) UCL	0.252		
95% KM (Chebyshev) UCL	0.363		
97.5% KM (Chebyshev) UCL	0.458		
99% KM (Chebyshev) UCL	0.644		
5570 KW (Chicayshev) 552			
Potential UCL to Use			
95% KM (t) UCL	0.229		
95% KM (% Bootstrap) UCL	0.252		
Benzo(g,h,i)perylene			
Total Number of Data	38		
Number of Non-Detect Data	24		
Number of Detected Data	14		
Minimum Detected	0.0237		
Maximum Detected	1.28		
Percent Non-Detects	63.16%		
Minimum Non-detect	0.00933		
Maximum Non-detect	0.101		

Mean of Detected Data	0.239
Median of Detected Data	0.0895
Variance of Detected Data	0.119
SD of Detected Data	0.345
CV of Detected Data	1.448
Skewness of Detected Data	2.504
Mean of Detected log data	-2.129
SD of Detected Log data	1.17

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect33Number treated as Detected5Single DL Percent Detection86.84%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization I	Method	N//	A

Kaplan Meier (KM) Method

Mean	0.103
SD	0.227
Standard Error of Mean	0.0382
95% KM (t) UCL	0.168
95% KM (z) UCL	0.166
95% KM (BCA) UCL	0.188
95% KM (Percentile Bootstrap) UCL	0.174
95% KM (Chebyshev) UCL	0.27
97.5% KM (Chebyshev) UCL	0.342
99% KM (Chebyshev) UCL	0.483

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

Benzo(k)fluoranthene

38
32
6
0.068
0.799
84.21%
0.011
0.124
0.314
0.137
0.108
0.328
0.520

CV of Detected Data		1.043
Skewness of Detected Data		1.006
Mean of Detected log data		-1.639
SD of Detected Log data		1.066

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect34Number treated as Detected4Single DL Percent Detection89.47%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean ·	0.107
SD	0.149
Standard Error of Mean	0.0265
95% KM (t) UCL	0.152
95% KM (z) UCL	0.15
95% KM (BCA) UCL	0.67
95% KM (Percentile Bootstrap) UCL	0.18
95% KM (Chebyshev) UCL	0.222
97.5% KM (Chebyshev) UCL	0.272
99% KM (Chebyshev) UCL	0.37

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

** Instead of UCL, EPC is s	elected to be	median =	< 0.0172
a take the large graphed through to all particularly	The triber of the second	รี เราะสมุทธิสัตว์ไม่เก็บได้	
[per recommendation	in ProffCl He	or Guidol	
[hei recommendation	I III FIOUCE US	ei Guidej	

Beryllium

Total Number of Data	39
Number of Non-Detect Data	. 2
Number of Detected Data	37
Minimum Detected	0.066
Maximum Detected	2.88
Percent Non-Detects	5.13%
Minimum Non-detect	0.02
Maximum Non-detect	0.026

Mean of Detected Data	0.75
Median of Detected Data	0.69
Variance of Detected Data	0.202
SD of Detected Data	0.449
CV of Detected Data	0.599
Skewness of Detected Data	3.001
Mean of Detected log data	-0.44
SD of Detected Log data	0.608

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	0.608
Mean	0.671
SD	0.307
95% Winsor (t) UCL	0.754

Kaplan Meier (KM) Method

Mean	0.715
SD	0.457
Standard Error of Mean	0.0742
95% KM (t) UCL	0.84
95% KM (z) UCL	0.837
95% KM (BCA) UCL	0.851
95% KM (Percentile Bootstrap) UCL	0.839
95% KM (Chebyshev) UCL	1.038
97,5% KM (Chebyshev) UCL	1.178
99% KM (Chebyshev) UCL	1.453

Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs

Bis(2-Ethylhexyl)phthalate

Total Number of Data	38
Number of Non-Detect Data	26
Number of Detected Data	12
Minimum Detected	0.0122
Maximum Detected	0.239
Percent Non-Detects	68.42%
Minimum Non-detect	0.013
Maximum Non-detect	0.54
Mean of Detected Data	0.0795
Median of Detected Data	0.0546
Variance of Detected Data	0.00471
SD of Detected Data	0.0686

CV of Detected Data	0.863
Skewness of Detected Data	1.287
Mean of Detected log data	-2.888
SD of Detected Log data	0.918

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect38Number treated as Detected0Single DL Percent Detection100.00%

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0412
SD	0.0472
Standard Error of Mean	0.00871
95% KM (t) UCL	0.0559
95% KM (z) UCL	0.0555
95% KM (BCA) UCL	0.0609
95% KM (Percentile Bootstrap) UCL	0.0584
95% KM (Chebyshev) UCL	0.0792
97.5% KM (Chebyshev) UCL	0.0956
99% KM (Chebyshev) UCL	0.128

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

Boron

Total Number of Data	39
Number of Non-Detect Data	10
Number of Detected Data	29
Minimum Detected	3.14
Maximum Detected	39.2
Percent Non-Detects	25.64%
Minimum Non-detect	1.11
Maximum Non-detect	1.3
Mean of Detected Data	11.22
Median of Detected Data	9.21
Variance of Detected Data	67.05
SD of Detected Data	8.189
CV of Detected Data	0.73
Skewness of Detected Data	1.832
Mean of Detected log data	2.199
SD of Detected Log data	0.668

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

William Westing	0.668 7.644
Mean SD	4.488
95% Winsor (t) UCL	8.89
Kaplan Meier (KM) Method	
Mean	9.152
SD	7.785
Standard Error of Mean	1.269
95% KM (t) UCL ⁻	11.29
95% KM (z) UCL	11.24
95% KM (BCA) UCL	11.42
95% KM (Percentile Bootstrap) UCL	11.44
95% KM (Chebyshev) UCL	14.68
97.5% KM (Chebyshev) UCL	17.07
99% KM (Chebyshev) UCL	21.77

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

Bromoform

Total Number of Data	21
Number of Non-Detect Data	19
Number of Detected Data	2
Minimum Detected	0.011
Maximum Detected	0.018
Percent Non-Detects	90.48%
Minimum Non-detect	1.37E-04
Maximum Non-detect	0.197
Mean of Detected Data	0.0145
Median of Detected Data	0.0145
Variance of Detected Data	2.45E-05
SD of Detected Data	0.00495
CV of Detected Data	0.341
Skewness of Detected Data	N/A
Mean of Detected log data	-4.264

Note: Data have multiple DLs - Use of KM Method is recommended

0.348

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

SD of Detected Log data

Number treated as Non-Detect	21
Number treated as Detected	0
Single DL Percent Detection	100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates. The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0114
SD	0.00153
Standard Error of Mean	4.82E-04
95% KM (t) UCL	0.0122
95% KM (z) UCL	0.0121
95% KM (BCA) UCL	0.018
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.0135
97.5% KM (Chebyshev) UCL	0.0144
99% KM (Chebyshev) UCL	0.0162
Potential UCL to Use	
95% KM (t) UCL	0.0122
95% KM (% Bootstrap) UCL	N/A

**	Instead	of UCL. E	PC is sele	ected to	be media	n =	1.65%	<0.000186
							3 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AN THOMSON IN THE TAKEN
175	lper re	commen	dation ii	ı Prouci	. User Gui	aej 🦠 🦠		

0.151
0.054
2
36
38

0.00913

Page 25 of 66

Butyl benzyl phthalate

Minimum Non-detect

Maximum Non-detect	0.107
Mean of Detected Data	0.103
Median of Detected Data	0.103
Variance of Detected Data	0.0047
SD of Detected Data	0.0686
CV of Detected Data	0.669
Skewness of Detected Data	N/A
Mean of Detected log data	-2.405
SD of Detected Log data	0.727

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect37Number treated as Detected1Single DL Percent Detection97.37%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0566
SD	0.0155
Standard Error of Mean	0.00356
95% KM (t) UCL	0.0626
95% KM (z) UCL	0.0624
95% KM (BCA) UCL	0.151
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.0721
97.5% KM (Chebyshev) UCL	0.0788
99% KM (Chebyshev) UCL	0.092
Potential UCL to Use	
95% KM (t) UCL	0.0626
95% KM (% Bootstrap) UCL	N/A

** Instead o					
*** Instead of	FUCL FPC is	selected to b	e median =		<0.0136
			ca.a		
Inor roc					
DOF FOR	ammandatia	n in Drall/I	Icor Guidal	化物质质 化二氯化镍铁矿	and the same of the same of

.._.

Cadmium

Total Number of Data	39
Number of Non-Detect Data	23
Number of Detected Data	16
Minimum Detected	0.28
Maximum Detected	0.94
Percent Non-Detects	58.97%
Minimum Non-detect	0.006
Maximum Non-detect	0.033
Mean of Detected Data	0.483
Median of Detected Data	0.43
Variance of Detected Data	0.0333
SD of Detected Data	0.183
CV of Detected Data	0.378
Skewness of Detected Data	1.401
Mean of Detected log data	-0.786
SD of Detected Log data	0.338

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A

Kaplan Meier	(KM) Method
--------------	-------------

Mean	0.363
SD	0.151
Standard Error of Mean	0.0249
95% KM (t) UCL	0.405
95% KM (z) UCL	0.404
95% KM (BCA) UCL	0.444
95% KM (Percentile Bootstrap) UCL	0.424
95% KM (Chebyshev) UCL	0.472
97.5% KM (Chebyshev) UCL	0.519
99% KM (Chebyshev) UCL	0.611

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Carbazole

Total Number of Data	38
Number of Non-Detect Data	31
Number of Detected Daťa	. 7
Minimum Detected	0.0108
Maximum Detected	0.128
Percent Non-Detects	81.58%
Minimum Non-detect	0.00965
Maximum Non-detect	0.108
•	
Mean of Detected Data	0.0465
Median of Detected Data	0.019
Variance of Detected Data	0.0025
SD of Detected Data	0.05
CV of Detected Data	1.075
Skewness of Detected Data	1.231
Mean of Detected log data	-3.532
SD of Detected Log data	1.001

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 36
Number treated as Detected 2
Single DL Percent Detection 94.74%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0174
SD	0.0242
Standard Error of Mean	0.00425
95% KM (t) UCL	0.0246
95% KM (z) UCL	0.0244
95% KM (BCA) UCL	0.0314
95% KM (Percentile Bootstrap) UCL	0.0272
95% KM (Chebyshev) UCL	0.036
97.5% KM (Chebyshev) UCL	0.044
99% KM (Chebyshev) UCL	0.0597

Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs

** Instead of UCL, EPC is selected to be median = <0.0110
[per recommendation in ProUCL User Guide]

Carbon disulfide

Total Number of Data	21
Number of Non-Detect Data	18
Number of Detected Data	3
Minimum Detected	0.00757
Maximum Detected	0.0284
Percent Non-Detects	85.71%
Minimum Non-detect	8.80E-05
Maximum Non-detect	0.127
Mean of Detected Data	0.0147
Median of Detected Data	0.00811
Variance of Detected Data	1.41E-04
SD of Detected Data	0.0119
CV of Detected Data	0.808
Skewness of Detected Data	1.728
Mean of Detected log data	-4.42
SD of Detected Log data	0.744

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00864
SD	0.00454
Standard Error of Mean	0.00124
95% KM (t) UCL	0.0108
95% KM (z) UCL	0.0107
95% KM (BCA) UCL	0.0284
95% KM (Percentile Bootstrap) UCL	0.0284
95% KM (Chebyshev) UCL	0.0141

97.5% KM (Chebyshev) UCL		0.0164
99% KM (Chebyshev) UCL		0.021

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.000119 [per recommendation in ProUCL User Guide]	

Chromium			
Number of Valid Observations	39		
Number of Distinct Observations	36		
Minimum	7.76		
Maximum	128		
Mean	18.31		
Median	13.1		
SD	19.72		
Variance	388.8		
Coefficient of Variation	1.077		
Skewness	4.908		
Mean of log data	2.705		
SD of log data	0.522		
Data do not follow a Discernable Distribution			
95% Useful UCLs			
Student's-t UCL	23.64		
95% UCLs (Adjusted for Skewness)			
95% Adjusted-CLT UCL	26.16		
95% Modified-t UCL	24.05		
Non-Parametric UCLs			
95% CLT UCL	23.51		
95% Jackknife UCL	23.64		
95% Standard Bootstrap UCL	23.54		
95% Bootstrap-t UCL	35.49		
95% Hall's Bootstrap UCL	45.31		
95% Percentile Bootstrap UCL	23.87		
95% BCA Bootstrap UCL	27.9		
95% Chebyshev(Mean, Sd) UCL	32.08		
97.5% Chebyshev(Mean, Sd) UCL	38.03		
99% Chebyshev(Mean, Sd) UCL	49.73		
Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 32.08			

Chrysene

	• '	
Total Number of Data	38	
Number of Non-Detect Data	26	
Number of Detected Data	12	
Minimum Detected	0.0104	
Maximum Detected	1.3	
Percent Non-Detects	68.42%	
Minimum Non-detect	0.00816	
Maximum Non-detect	0.0523	
Mean of Detected Data	0.302	
Median of Detected Data	0.122	
Variance of Detected Data	0.181	
SD of Detected Data	0.425	•
CV of Detected Data	1.408	
Skewness of Detected Data	1.711	
Mean of Detected log data	-2.204	
SD of Detected Log data	1.606	
Note: Data have multiple DLs - Use of KM Meti	nod is recommended	
For all methods (except KM, DL/2, and ROS Met		
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	29	
Number treated as Detected	9 ·	
Single DL Percent Detection	76.32%	
Data Dsitribution Test with Detected Values On	· Iv	
Data appear Gamma Distributed at 5% Significa		
Winsorization Method	N/A	
· ·		
Kaplan Meier (KM) Method		
Mean	0.103	
SD	0.266	
Standard Error of Mean	0.0451	
95% KM (t) UCL	0.179	
95% KM (z) UCL	0.177	
95% KM (BCA) UCL	0.206	
95% KM (Percentile Bootstrap) UCL	0.187	
95% KM (Chebyshev) UCL	0.299	
97.5% KM (Chebyshev) UCL	0.384	
99% KM (Chebyshev) UCL	0.551	
Data appear Gamma Distributed (0.05)		
May want to try Gamma UCLs		
cis-1,2-Dichloroethene		
Total Number of Data	21	
Number of Non-Detect Data	19	
Number of Detected Data	2	
Minimum Detected	0.0195	

Maximum Detected	0.999
Percent Non-Detects	90.48%
Minimum Non-detect	1.02E-04
Maximum Non-detect	0.147
Mean of Detected Data	0.509
Median of Detected Data	0.509
Variance of Detected Data	0.48
SD of Detected Data	0.693
CV of Detected Data	1.36
Skewness of Detected Data	N/A
Mean of Detected log data	-1.969
SD of Detected Log data	2.783

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 20
Number treated as Detected 1
Single DL Percent Detection 95.24%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0661
\$D	0.209
Standard Error of Mean	0.0644
95% KM (t) UCL	0.177
95% KM (z) UCL	0.172
95% KM (BCA) UCL	0.999
95% KM (Percentile Bootstrap) UCL	0.999
95% KM (Chebyshev) UCL	0.347
97.5% KM (Chebyshev) UCL	0.468
99% KM (Chebyshev) UCL	0.707

Cobalt		,
Number of Valid Observations	39	
Number of Distinct Observations	39	
Minimum	2.81	
Maximum	. 12	
Mean	6.517	
Median	6.14	
SD	1.938	
/ariance	3.756	
Coefficient of Variation	0.297	
Skewness	0.492	
Mean of log data	1.829	
SD of log data	0.312	
95% Useful UCLs Student's-t UCL	7.04	
95% UCLs (Adjusted for Skewness)	7.052	
95% Adjusted-CLT UCL	7.053	
95% Modified-t UCL	7.044	
Non-Parametric UCLs		
95% CLT UCL	7.027	
95% Jackknife UCL	7.04	
95% Standard Bootstrap UCL	7.019	
95% Bootstrap-t UCL	7.096	
95% Hall's Bootstrap UCL	7.063	
	7.054	
•	7.051	
95% Percentile Bootstrap UCL	7.051 7.051	
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL		
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	7.051	
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	7.051 7.869	
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	7.051 7.869 8.455	
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Data appear Normal (0.05)	7.051 7.869 8.455	
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Data appear Normal (0.05)	7.051 7.869 8.455	
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Data appear Normal (0.05) May want to try Normal UCLs	7.051 7.869 8.455	· — - — - — -
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Data appear Normal (0.05) May want to try Normal UCLs Copper	7.051 7.869 8.455	
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Data appear Normal (0.05) May want to try Normal UCLs Copper Number of Valid Observations	7.051 7.869 8.455 9.605	
95% Percentile Bootstrap UCL	7.051 7.869 8.455 9.605	
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Data appear Normal (0.05) May want to try Normal UCLs Copper Number of Valid Observations Number of Distinct Observations	7.051 7.869 8.455 9.605 39 37	·

Median	11.9
SD	280.4
Variance	78619
Coefficient of Variation	4.273
Skewness	6.117
Mean of log data	2.754
SD of log data	1.077
Data do not follow a Discernable Distribution	
95% Useful UCLs	
Student's-t UCL	141.3
	t .
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	186.5
95% Modified-t UCL	148.6
Non-Parametric UCLs	
95% CLT UCL	139.5
95% Jackknife UCL	141.3
95% Standard Bootstrap UCL	136.1
95% Bootstrap-t UCL	1052
95% Hall's Bootstrap UCL	612.4
95% Percentile Bootstrap UCL	153.8
95% BCA Bootstrap UCL	243.2
95% Chebyshev(Mean, Sd) UCL	261.3
97.5% Chebyshev(Mean, Sd) UCL	346
99% Chebyshev(Mean, Sd) UCL	512.3
Potential UCL to Use	
99% Chebyshev(Mean, Sd) UCL	512.3
Cyclohexane	
Total Number of Data	21
Number of Non-Detect Data	16
Number of Detected Data	5
Minimum Detected	0.000981
Maximum Detected Percent Non-Detects	0.00185 76.19%
Minimum Non-detect	9.62E-04
	1.29
Maximum Non-detect	1.23
Mean of Detected Data	0.00141
Median of Detected Data	0.00141
Wichight of Detected Data	0.00170

1.05E-07

3.25E-04

-0.0112 -6.583

0.238

0.23

Variance of Detected Data

Skewness of Detected Data

Mean of Detected log data SD of Detected Log data

SD of Detected Data

CV of Detected Data

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00113
SD	2.64E-04
Standard Error of Mean	7.65E-05
95% KM (t) UCL	0.00126
95% KM (z) UCL	0.00125
95% KM (BCA) UCL	0.00156
95% KM (Percentile Bootstrap) UCL	0.00152

99% KM (Chebyshev) UCL

Data appear Normal (0.05)

May want to try Normal UCLs

95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL

** Instead of UCL, EPC is selected to be median = <0.00125
[per recommendation in ProUCL User Guide]

Di-Benzo(g,h,i)perylene

Total Number of Data Insufficent Number of Observations to produce Meaningful Statistics.

0.00146

0.0016

0.00189

Dibenz(a,h)anthracene

Total Number of Data	38
Number of Non-Detect Data	31
Number of Detected Data	7
Minimum Detected	0.045
Maximum Detected	0.404
Percent Non-Detects	81.58%
Minimum Non-detect	0.00687

Maximum Non-detect	0.077
Mean of Detected Data	0.174
Median of Detected Data	0.166
Variance of Detected Data	0.0138
SD of Detected Data	0.117
CV of Detected Data	0.676
Skewness of Detected Data	1.29
Mean of Detected log data	-1.955
SD of Detected Log data	0.723

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

33 Number treated as Non-Detect 5 Number treated as Detected 86.84% Single DL Percent Detection

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0688
SD	0.0684
Standard Error of Mean	0.012
95% KM (t) UCL	0.089
95% KM (z) UCL	0.0885
95% KM (BCA) UCL	0.181
95% KM (Percentile Bootstrap) UCL	0.163
95% KM (Chebyshev) UCL	0.121
97.5% KM (Chebyshev) UCL	0.144
99% KM (Chebyshev) UCL	0.188

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC	is selected	to be median	= <0.0108
The second secon	and the control of the second of the control of the	化烷基 墨伯格氏 网络海绵 计可引用 不多有情况的	and the second control of the contro
[per recommenda	tion in Prot	JCL Oser Guiae	31年的特別的主要的特別的

Dibenzofuran

Total Number of Data	38
Number of Non-Detect Data	34
Number of Detected Data	4

Minimum Detected	0.01
Maximum Detected	0.291
Percent Non-Detects	89.47%
Minimum Non-detect	0.00606
Maximum Non-detect	0.083
Mean of Detected Data	0.101
Median of Detected Data	0.0506
Variance of Detected Data	0.0173
SD of Detected Data	0.132
CV of Detected Data	. 1.309
Skewness of Detected Data	1.618
Mean of Detected log data	-3.123
SD of Detected Log data	1.568

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect36Number treated as Detected2Single DL Percent Detection94.74%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

N/A

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method

	•	
Kaplan Meier (KM) Method		
Mean	0.0196	
SD	0.0462	
Standard Error of Mean	0.00867	
95% KM (t) UCL	0.0343	
95% KM (z) UCL	0.0339	
95% KM (BCA) UCL	0.291	
95% KM (Percentile Bootstrap) UCL	0.102	
95% KM (Chebyshev) UCL	0.0574	
97.5% KM (Chebyshev) UCL	0.0738	
99% KM (Chebyshev) UCL	0.106	
Data appear Normal (0.05)		
May want to try Normal UCLs		
	46.6660.00.016.00.016.80.00.18.40.002.00.00	
** Instead of UCL, EPC is selected to be median :	96 (2) (1) (1) (1) (2) (3) (4) (4) (4) (4) (5) (5) (5) (5) (6) (7) (7) (7)	
[per recommendation in ProUCL User Guide		

Dieldrin

Total Number of Data	38
Number of Non-Detect Data	37
Number of Detected Data	1
Minimum Detected	0.00545
Maximum Detected	0.00545
Percent Non-Detects	97.37%
Minimum Non-detect	0.000163
Maximum Non-detect	0.053

Data set has all detected values equal to = 0.00545, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00545

** Instead of UCL; EPC is selected to be median = <0.000184

[per recommendation in ProUCL User Guide]

Diethyl phthalate

Total Number of Data	38
Number of Non-Detect Data	36
Number of Detected Data	2
Minimum Detected	0.00992
Maximum Detected	0.011
Percent Non-Detects	94.74%
Minimum Non-detect	0.00756
Maximum Non-detect	0.0996
Mean of Detected Data	0.0105
Median of Detected Data	0.0105
Variance of Detected Data	5.83E-07
SD of Detected Data	7.64E-04
CV of Detected Data	0.073
Skewness of Detected Data	N/A
Mean of Detected log data	-4.562
SD of Detected Log data	0.0731

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect38Number treated as Detected0Single DL Percent Detection100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0101
SD	3.57E-04
Standard Error of Mean	1.79E-04
95% KM (t) UCL	0.0104
95% KM (z) UCL	0.0103
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.0108
97.5% KM (Chebyshev) UCL	0.0112
99% KM (Chebyshev) UCL	0.0118
Potential UCL to Use	
95% KM (t) UCL	0.0104
95% KM (% Bootstrap) UCL	N/A

** Instead of UCL FPC	is selected to be medi	an = 15 < 0.0185
per recommendat	tion in ProUCL User Gu	ide]

Di-n-butyl phthalate

Total Number of Data	38
Number of Non-Detect Data	36
Number of Detected Data	2
Minimum Detected	0.01
Maximum Detected	0.015
Percent Non-Detects	94.74%
Minimum Non-detect	0.00797
Maximum Non-detect	0.167
Mean of Detected Data	0.0125
Median of Detected Data	0.0125
Variance of Detected Data	1.25E-05
SD of Detected Data	0.00354
CV of Detected Data	0.283
Skewness of Detected Data	N/A
Mean of Detected log data	-4.402
SD of Detected Log data	0.287

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect38Number treated as Detected0Single DL Percent Detection100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0105	
SD	0.0015	
Standard Error of Mean	6.71E-04	
95% KM (t) UCL	0.0116	
95% KM (z) UCL	0.0116	
95% KM (BCA) UCL	N/A	
95% KM (Percentile Bootstrap) UCL	0.015	
95% KM (Chebyshev) UCL	0.0134	
97.5% KM (Chebyshev) UCL	0.0147	
99% KM (Chebyshev) UCL	0.0172	
Potential UCL to Use		
95% KM (t) UCL	0.0116	
95% KM (% Bootstrap) UCL	0.015	
** Instead of UCL, EPC is selected to be median = <0.0307 [per recommendation in ProUCL User Guide]		

Di-n-octyl phthalate

Total Number of Data	38
Number of Non-Detect Data	35
Number of Detected Data	3

Minimum Detected	0.0154
Maximum Detected	0.123
Percent Non-Detects	92.11%
Minimum Non-detect	0.00834
Maximum Non-detect	0.254
Mean of Detected Data	0.0601
Median of Detected Data	0.042
Variance of Detected Data	0.00314
SD of Detected Data	0.056
CV of Detected Data	0.932
Skewness of Detected Data	1.304
Mean of Detected log data	-3.146
SD of Detected Log data	1.039

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect38Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.019	
SD	0.0179	
Standard Error of Mean	0.0036	
95% KM (t) UCL	. 0.0251	
95% KM (z) UCL	0.025	
95% KM (BCA) UCL	0.123	
95% KM (Percentile Bootstrap) UCL	0.123	
95% KM (Chebyshev) UCL	0.0347	
97.5% KM (Chebyshev) UCL	0.0415	
99% KM (Chebyshev) UCL	0.0549	
Data appear Normal (0.05)		

May want to try Normal UCLs

^{**} Instead of UCL, EPC is selected to be median = <0.00952

[per recommendation in ProUCL User Guide]

Endrin

Total Number of Data	38
Number of Non-Detect Data	37
Number of Detected Data	1
Minimum Detected	0.00149
Maximum Detected	0.00149
Percent Non-Detects	97.37%
Minimum Non-detect	0.000198
Maximum Non-detect	0.063

Data set has all detected values equal to = 0.00149, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00149

** Instead of LICL EDC is solect	ed to be median = 👙 💮 💛 <0.0002	224
mateau of oct, LFC is select	eu to be illeulail –	
Increasementation in D	roUCL User Guide]	
iper recommendation in P	TOUCL USER Guide	

Endrin ketone

Total Number of Data	38
Number of Non-Detect Data	37
Number of Detected Data	1
Minimum Detected	0.00966
Maximum Detected	0.00966
Percent Non-Detects	97.37%
Minimum Non-detect	0.00049
Maximum Non-detect	0.064

Data set has all detected values equal to = 0.00966, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00966

** Instead of UCL, EPC is selected to be medi	an = <0.000552
[per recommendation in ProUCL User Gu	iidel 🦠 💮

Ethylbenzene

Total Number of Data	21
Number of Non-Detect Data	15
Number of Detected Data	6
Minimum Detected	0.00114
Maximum Detected	0.023
Percent Non-Detects	71.43%
Minimum Non-detect	1.74E-04

Maximum Non-detect	0.242
Mean of Detected Data	0.00598
Median of Detected Data	0.00244
Variance of Detected Data	7.13E-05
SD of Detected Data	0.00844
CV of Detected Data	1.413
Skewness of Detected Data	2.323
Mean of Detected log data	-5.697
SD of Detected Log data	1.059

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	

Kapian Meier (KiVI) Method	
Mean	0.00269
SD	0.00476
Standard Error of Mean	0.00117
95% KM (t) UCL	0.00471
95% KM (z) UCL	0.00462
95% KM (BCA) UCL	0.00584
95% KM (Percentile Bootstrap) UCL	0.00502
95% KM (Chebyshev) UCL	0.0078
97.5% KM (Chebyshev) UCL	0.01
99% KM (Chebyshev) UCL	0.0144

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

** Instead of UC	L. EPC is selecte	d to be media	ın = 🐪 🗀	< 0.00114
NEW WILLIAM SANGERS FOR			gade on Janes	
per recomn	nendation in Pr	oUCL User Gu	ide]	

Fluoranthene

Total Number of Data	3	8
Number of Non-Detect Data	. 2	8
Number of Detected Data	1	0.

Minimum Detected	0.014	•
Maximum Detected	2.19	
Percent Non-Detects	73.68%	
Minimum Non-detect	0.00676	
Maximum Non-detect	0.075	
Mean of Detected Data	0.508	
Median of Detected Data	0.146	
Variance of Detected Data	0.652	
SD of Detected Data	0.808	•
CV of Detected Data	1.591	
Skewness of Detected Data	1.754	
Mean of Detected log data	-1.863	
SD of Detected Log data	1.68	
Note: Data have multiple DLs - Use of KM Method is re For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	32	
Number treated as Detected	6	
Single DL Percent Detection	84.21%	
Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Leve	al .	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.144	
SD	0.449	
Standard Error of Mean	0.0768	
95% KM (t) UCL	0.274	
95% KM (z) UCL	0.27	
95% KM (BCA) UCL	0.318	
95% KM (Percentile Bootstrap) UCL	0.286	
95% KM (Chebyshev) UCL	0.479	
97.5% KM (Chebyshev) UCL	0.624	
99% KM (Chebyshev) UCL	0.908	
SS/S IIII (GIIGS/SIIGI/ G GZ	0.000	
Data appear Gamma Distributed (0.05)		
May want to try Gamma UCLs	•	
Fluorene		
Total Number of Data	20	
Total Number of Data	38	
Number of Non-Detect Data	32 6	
Number of Detected Data Minimum Detected	=	
Maximum Detected	0.017 1.21	
Percent Non-Detects	84.21%	
Minimum Non-detect	0.00687	

Maximum Non-detect	0.0575
Mean of Detected Data	0.243
Median of Detected Data	0.032
Variance of Detected Data	0.227
SD of Detected Data	0.476
CV of Detected Data	1.959
Skewness of Detected Data	2.4
Mean of Detected log data	-2.732
SD of Detected Log data	1.603

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect36Number treated as Detected2Single DL Percent Detection94.74%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0527
SD	0.191
Standard Error of Mean	0.034
95% KM (t) UCL	0.11
95% KM (z) UCL	0.109
95% KM (BCA) UCL	0.169
95% KM (Percentile Bootstrap) UCL	0.121
95% KM (Chebyshev) UCL	0.201
97.5% KM (Chebyshev) UCL	0.265
99% KM (Chebyshev) UCL	0.391

Data appear Lognormal (0.05) May want to try Lognormal UCLs

** Instead of UCL, EPC is selected to b	
	e median = <0.000392
[per recommendation in ProUCL]	

Indeno(1,2,3-cd)pyrene

Number of Detected Data	13
Number of Non-Detect Data	25
Total Number of Data	38

Minimum Detected	0.02	
Maximum Detected	1.51	
Percent Non-Detects	65.79%	
Minimum Non-detect	0.014	
Maximum Non-detect	0.147	
Maxima World doctor		
Mean of Detected Data	0.295	
Median of Detected Data	0.149	
Variance of Detected Data	0.172	
SD of Detected Data	0.414	
CV of Detected Data	1.403	
Skewness of Detected Data	2.569	
Mean of Detected log data	-1.812	
SD of Detected Log data	1.079	
Note: Data have multiple DLs - Use of KM Method is referred in methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected	commended 31 7	
Single DL Percent Detection	81.58%	
Single DE Percent Detection	81.38%	
Data Dsitribution Test with Detected Values Only		
Data appear Lognormal at 5% Significance Level		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.115	
SD	0.267	
Standard Error of Mean	0.0451	
95% KM (t) UCL	0.191	
95% KM (z) UCL	0.189	
95% KM (BCA) UCL	0.243	
95% KM (Percentile Bootstrap) UCL	0.215	
95% KM (Chebyshev) UCL	0.311	
97.5% KM (Chebyshev) UCL	0.396	
99% KM (Chebyshev) UCL	0.563	
Data appear Lognormal (0.05) May want to try Lognormal UCLs		
Iron		
Number of Valid Observations	39	
Number of Valid Observations Number of Distinct Observations	35	
Minimum	7120	
Maximum	128000	
Mean		
	20887	
Median	20887 15700	
Median SD		

Variance	5.26E+08	
Coefficient of Variation	1.098	
Skewness	4.023	
Mean of log data	9.721	
SD of log data	0.554	
•		
Data do not follow a Discernable Distrib	ution	•
000/ 11-5-4 1101-		
95% Useful UCLs	27077	
Student's-t UCL	27077	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	29453	
95% Modified-t UCL	27471	
3370 (110411104) (1002		
Non-Parametric UCLs		
95% CLT UCL	26926	
95% Jackknife UCL	27077	
95% Standard Bootstrap UCL	26865	
95% Bootstrap-t UCL	46464	
95% Hall's Bootstrap UCL	59416	
95% Percentile Bootstrap UCL	27342	
95% BCA Bootstrap UCL	30966	
95% Chebyshev(Mean, Sd) UCL	36891	
97.5% Chebyshev(Mean, Sd) UCL	43816	
99% Chebyshev(Mean, Sd) UCL	57418	
THE CONTRACT OF THE CONTRACT PROPERTY PROPERTY OF THE CONTRACT PROPERTY OF THE CONTRACT PROPERTY P	g fastalitie ita etien etiniowinasi meng er Dherekoogs Fitoloogs (1900-1911).	
Potential UCL to Use		
Use 95% Chebyshev (Mean, Sd) UCL	36891	
Lead		
Number of Valid Observations	39	
Number of Distinct Observations	34	
Minimum	5.88	
Maximum	630	
Mean	52.97	
Median	16.1	
SD-	122.7	
Variance	15045	•
Coefficient of Variation	2.316	
Skewness	3.977	
Mean of log data	3.054	
SD of log data	1.066	
Data do not follow a Discernable Distrib	ution	
Data do not follow a Discernable Distrib	านแบบ	

86.08

95% UCLs (Adjusted for Skewness)

95% Useful UCLs

Student's-t UCL

95% Adjusted-CLT UCL	98.64	
95% Modified-t UCL	88.16	
	,	
Non-Parametric UCLs		
95% CLT UCL	85.27	
95% Jackknife UCL	86.08	
95% Standard Bootstrap UCL	83.96	
95% Bootstrap-t UCL	173.7	
95% Hall's Bootstrap UCL	218.9	
95% Percentile Bootstrap UCL	89.44	
95% BCA Bootstrap UCL	100.6	
95% Chebyshev(Mean, Sd) UCL	138.6	
97.5% Chebyshev(Mean, Sd) UCL	175.6	
99% Chebyshev(Mean, Sd) UCL	248.4	
Potential UCL to Use		
99% Chebyshev(Mean, Sd) UCL	248.4	
Lithium		
Number of Valid Observations	39	
Number of Distinct Observations	36	
Minimum	2.59	
Maximum	32.2	
Mean	19.22	
Median	19	
SD	5.944	
Variance	35.33	•
Coefficient of Variation	0.309	
Skewness	-0.0688	
Mean of log data	2.892	
SD of log data	0.416	
95% Useful UCLs		
Student's-t UCL	. 20.83	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	20.78	
95% Modified-t UCL	20.83	
	•	
Non-Parametric UCLs		
95% CLT UCL	20.79	
95% Jackknife UCL	20.83	
95% Standard Bootstrap UCL	20.77	
95% Bootstrap-t UCL	20.88	
95% Hall's Bootstrap UCL	20.84	
95% Percentile Bootstrap UCL	20.78	
95% BCA Bootstrap UCL	20.84	
95% Chebyshev(Mean, Sd) UCL	23.37	
97.5% Chebyshev(Mean, Sd) UCL	25.17	
99% Chebyshev(Mean, Sd) UCL	28.69	
5570 Griebyshev(Medily 5d) OCL	20.03	

Data appear Normal (0.05)

May want to try Normal UCLs

m,p-Xylene

Total Number of Data	21
Number of Non-Detect Data	19
Number of Detected Data	2
Minimum Detected	0.00132
Maximum Detected	0.00139
Percent Non-Detects	90.48%
Minimum Non-detect	3.21E-04
Maximum Non-detect	0.465
Mean of Detected Data	0.00136
Median of Detected Data	0.00136
Variance of Detected Data	2.45E-09
SD of Detected Data	4.95E-05
CV of Detected Data	0.0365
Skewness of Detected Data	N/A
Mean of Detected log data	-6.604
SD of Detected Log data	0.0365

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 21
Number treated as Detected 0
Single DL Percent Detection 100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates. The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method

N/A

Kaplan Meier (KM) Method

Mean	0.00132
SD .	1.75E-05
Standard Error of Mean	6.38E-06
95% KM (t) UCL	0.00134
95% KM (z) UCL	0.00134
95% KM (BCA) UCL	0.00139
95% KM (Percentile Bootstrap) UCL	0.00139
95% KM (Chebyshev) UCL	0.00135
97.5% KM (Chebyshev) UCL	0.00136
99% KM (Chebyshev) UCL	0.00139
Potential UCL to Use	
95% KM (t) UCL	0.00134
95% KM (% Bootstrap) UCL	0.00139

** Instead of UCL, EPC is selected to be median = \$\ <0.000422 \\[[per recommendation in ProUCL User Guide]

39

Manganese	
-----------	--

Number of Valid Observations

Number of Distinct Observations	. 39
Minimum	82.3
Maximum	1210
Mean	387
Median	300
SD	251.9
Variance	63467
Coefficient of Variation	0.651
Skewness	1.816
Mean of log data	5.785
SD of log data	0.594
95% Useful UCLs	
Student's-t UCL	455
95% UCLs (Adjusted for Skewness)	
95% Adjusted for Skewness) 95% Adjusted-CLT UCL	465.9
95% Modified-t UCL	457
33% Mounted-t OCL	437
Non-Parametric UCLs	
95% CLT UCL	453.4
95% Jackknife UCL	455
95% Standard Bootstrap UCL	451.9
95% Bootstrap-t UCL	476.4
95% Hall's Bootstrap UCL	480.5
95% Percentile Bootstrap UCL	455
95% BCA Bootstrap UCL	472.4
95% Chebyshev(Mean, Sd) UCL	562.9
97.5% Chebyshev(Mean, Sd) UCL	638.9
99% Chebyshev(Mean, Sd) UCL	788.4

Mercury		
Total Number of Data	39	•
Number of Non-Detect Data	24	
Number of Detected Data	15	
Minimum Detected	0.0034	
Maximum Detected	0.17	
Percent Non-Detects	61.54%	
Minimum Non-detect	0.0023	
Maximum Non-detect	0.028	
Mean of Detected Data	0.0301	
Median of Detected Data	0.015	
Variance of Detected Data	0.0018	
SD of Detected Data	0.0424	
CV of Detected Data	1.409	
Skewness of Detected Data	· 2.922	
Mean of Detected log data	-4.076	
SD of Detected Log data	1.033	
Note: Data have multiple DLs - Use of KM Method is	recommended	
For all methods (except KM, DL/2, and ROS Methods)	in a	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	35	
Number treated as Detected	4	
Single DL Percent Detection	89.74%	
Data Dsitribution Test with Detected Values Only		
Data appear Gamma Distributed at 5% Significance Le	vel	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0143	
SD	0.0284	
Standard Error of Mean	0.00472	
95% KM (t) UCL	0.0223	
95% KM (z) ÚCL	0.0221	
95% KM (BCA) UCL	0.0253	
95% KM (Percentile Bootstrap) UCL	0.0233	
95% KM (Chebyshev) UCL	0.0349	
97.5% KM (Chebyshev) UCL	0.0438	
99% KM (Chebyshev) UCL	0.0613	
Data appear Gamma Distributed (0.05)		
May want to the Commo LICLs		

May want to try Gamma UCLs

Methylcyclohexane

Total Number of Data	21
Number of Non-Detect Data	15
Number of Detected Data	6
Minimum Detected	0.0015
Maximum Detected	0.00278
Percent Non-Detects	71.43%
Minimum Non-detect	2.99E-04
Maximum Non-detect	0.432
Mean of Detected Data	0.00216
Median of Detected Data	0.0022
Variance of Detected Data	3.18E-07
SD of Detected Data	5.64E-04
CV of Detected Data	0.261
Skewness of Detected Data	-0.144
Mean of Detected log data	-6.167
SD of Detected Log data	0.273

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A

Kaplan	Meier	(KM)	Method

Mean	0.00176
SD	4.59E-04
Standard Error of Mean	1.30E-04
95% KM (t) UCL	0.00199
95% KM (z) UCL	0.00198
95% KM (BCA) UCL	0.00242
95% KM (Percentile Bootstrap) UCL	0.00229
95% KM (Chebyshev) UCL	0.00233
97.5% KM (Chebyshev) UCL	0.00258
99% KM (Chebyshev) UCL	0.00306

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of U	CL. EPC is se	lected to	be median =
per recom	mendation	in ProUCL	User Guidel

<0.00154

Molybdenum	
Total Number of Data	39
Number of Non-Detect Data	15
Number of Detected Data	24
Minimum Detected	0.085
Maximum Detected	10.7
Percent Non-Detects	38.46%
Minimum Non-detect	0.074
Maximum Non-detect	0.086
Mean of Detected Data	1.061
Median of Detected Data	0.375
Variance of Detected Data	4.919
SD of Detected Data	2.218
CV of Detected Data	2.09
Skewness of Detected Data	3.957
Mean of Detected log data	-0.858
SD of Detected Log data	1.218
Note: Data have multiple DLs - Use of KM Method is reco	mmended
For all methods (except KM, DL/2, and ROS Methods),	
Observations < Largest DL are treated as NDs	
Number treated as Non-Detect	16
Number treated as Detected	23
Single DL Percent Detection	41.03%
Data Dsitribution Test with Detected Values Only	
Data appear Lognormal at 5% Significance Level	
Winsorization Method	41.03%
Mean .	0.14
SD	0.0294
95% Winsor (t) UCL	0.149
Kaplan Meier (KM) Method	
Mean	0.686
SD	1.768
Standard Error of Mean	0.289
95% KM (t) UCL	1.174
95% KM (z) UCL	1.162
95% KM (BCA) UCL	1.257
95% KM (Percentile Bootstrap) UCL	1.236
95% KM (Chebyshev) UCL	1.947
97.5% KM (Chebyshev) UCL	2.492
99% KM (Chebyshev) UCL	3.564

Naphthalene

Total Number of Data	21
Number of Non-Detect Data	14
Number of Detected Data	7
Minimum Detected	0.0013
Maximum Detected	67.8
Percent Non-Detects	66.67%
Minimum Non-detect	3.16E-04
Maximum Non-detect	0.502
Mean of Detected Data	9.709
Median of Detected Data	0.00374
Variance of Detected Data	656.2
SD of Detected Data	25.62
CV of Detected Data	2.638
Skewness of Detected Data	2.646
Mean of Detected log data	-3.897
SD of Detected Log data	3.916

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect20Number treated as Detected1Single DL Percent Detection95.24%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	3.238
SD	14.44
Standard Error of Mean	3.403
95% KM (t) UCL	9.107
95% KM (z) UCL	8.835
95% KM (BCA) UCL	9.696
95% KM (Percentile Bootstrap) UCL	9.694
95% KM (Chebyshev) UCL	18.07
97.5% KM (Chebyshev) UCL	24.49
99% KM (Chebyshev) UCL	37.09

Potential UCL to Use 99% KM (Chebyshev) UCL

** Instead of UCL, EPC is selected to be median = < <0.00370

37.09

38

Nickel		
Number of Valid Observations	39	
Number of Distinct Observations	35	
Minimum	9.74	
Maximum	51.7	
Mean	17.98	
Median	16.4	
SD	7.815	
Variance	61.08	
Coefficient of Variation	0.435	
Skewness	3.129	
Mean of log data	2.829	
SD of log data	0.321	
Data do not follow a Discernable Distribution		•
95% Useful UCLs		
Student's-t UCL	20.09	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	20.71	
95% Modified-t UCL	20.19	
Non-Parametric UCLs		
95% CLT UCL	20.04	
95% Jackknife UCL	20.09	
95% Standard Bootstrap UCL	20.02	-
95% Bootstrap-t UCL	22.36	
95% Hall's Bootstrap UCL	31.93	
95% Percentile Bootstrap UCL	20.09	
95% BCA Bootstrap UCL	20.82	
95% Chebyshev(Mean, Sd) UCL	23.43	
97.5% Chebyshev(Mean, Sd) UCL	25.79	
99% Chebyshev(Mean, Sd) UCL	30.43	
Potential UCL to Use		
Use 95% Student's-t UCL	20.09	
Or 95% Modified-t UCL	20.19	

Total Number of Data

Number of Non-Detect Data	26	
Number of Detected Data	12	
Minimum Detected	0.018	
Maximum Detected	1.83	
Percent Non-Detects	68.42%	
Minimum Non-detect	0.00729	
Maximum Non-detect	0.0727	
		·
Mean of Detected Data	0.437	
Median of Detected Data	0.107	
Variance of Detected Data	0.413	
SD of Detected Data	0.642	
CV of Detected Data	1.471	
Skewness of Detected Data	1.452	
Mean of Detected log data	-2.039	
SD of Detected Log data	1.689	
Note: Data have multiple DLs - Use of KM Method is re	commended	
For all methods (except KM, DL/2, and ROS Methods),		
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	32	
Number treated as Detected	6	
Single DL Percent Detection	84.21%	
		•
Data Dsitribution Test with Detected Values Only		
Data Follow Appr. Gamma Distribution at 5% Significance	e Level	
	C ECVC!	
Winsorization Method	N/A	
Winsorization Method		
Winsorization Method Kaplan Meier (KM) Method	N/A	
Winsorization Method Kaplan Meier (KM) Method Mean	N/A 0.15	
Winsorization Method Kaplan Meier (KM) Method Mean SD	N/A 0.15 0.397	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean	N/A 0.15 0.397 0.0672	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL	N/A 0.15 0.397 0.0672 0.264	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL	N/A 0.15 0.397 0.0672 0.264 0.261	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL	N/A 0.15 0.397 0.0672 0.264 0.261 0.284	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05)	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05)	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05)	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs	0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs Pyrene Total Number of Data	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57 0.819	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57 0.819	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs Pyrene Total Number of Data Number of Detected Data	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57 0.819	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs Pyrene Total Number of Data Number of Non-Detect Data	N/A 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57 0.819	

		-
Percent Non-Detects	64.10%	
Minimum Non-detect	0.00882	
Maximum Non-detect	0.0702	
Mean of Detected Data	0.704	
Median of Detected Data	0.16	
Variance of Detected Data	1.713	
SD of Detected Data	1.309	
CV of Detected Data	1.859	
Skewness of Detected Data	2.492	
Mean of Detected log data	-1.838	
SD of Detected Log data	1.841	
		•
Note: Data have multiple DLs - Use of KM Metho		
For all methods (except KM, DL/2, and ROS Metho	oas),	
Observations < Largest DL are treated as NDs	20	
Number treated as Non-Detect	29	
Number treated as Detected	10	
Single DL Percent Detection	74.36%	
Data Dsitribution Test with Detected Values Only		
Data appear Lognormal at 5% Significance Level		
Winsorization Method	N/A	
Willsonzation Metriod	N/A	
Kaplan Meier (KM) Method		
Mean	0.262	
SD	0.825	
Standard Error of Mean	0.137	
95% KM (t) UCL	0.493	
95% KM (z) UCL	0.488	
95% KM (BCA) UCL	0.521	
95% KM (Percentile Bootstrap) UCL	0.492	
95% KM (Chebyshev) UCL	0.86	
97.5% KM (Chebyshev) UCL	1.118	
99% KM (Chebyshev) UCL	1.626	
Data annear Lagnarmal (0.05)		
Data appear Lognormal (0.05)		
May want to try Lognormal UCLs	•	
Silver		
Total Number of Data	39	
Number of Non-Detect Data	36	
Number of Detected Data	3	*
Minimum Detected	0.092	
Maximum Detected	0.41	
Percent Non-Detects	92.31%	
Minimum Non-detect	0.027	
Maximum Non-detect	0.15	

Mean of Detected Data	0.264
Median of Detected Data	0.29
Variance of Detected Data	0.0258
SD of Detected Data	0.161
CV of Detected Data	0.608
Skewness of Detected Data	-0.709
Mean of Detected log data	-1.505
SD of Detected Log data	0.782

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect37Number treated as Detected2Single DL Percent Detection94.87%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean Mean	0.105	
SD	0.0585	
Standard Error of Mean	0.0115	
95% KM (t) UCL	0.125	
95% KM (z) UCL	0.124	
95% KM (BCA) UCL	N/A	
95% KM (Percentile Bootstrap) UCL	0.41	
95% KM (Chebyshev) UCL	0.155	
97.5% KM (Chebyshev) UCL	0.177	
99% KM (Chebyshev) UCL	0.219	
Data appear Normal (0.05)		
May want to try Normal UCLs		
** Instead of UCL, EPC is selected to be [per recommendation in ProUCL Us		
Strontium		

39

Page 58 of 66

Number of Valid Observations

Number of Distinct Observations	38	
Minimum	22.1	
Maximum	96.2	
Mean	56.35	
Median	53.4	
SD	20.89	
Variance	436.3	
Coefficient of Variation	0.371	
Skewness	0.0857	*
Mean of log data	3.955	
SD of log data	0.412	
95% Useful UCLs		
Student's-t UCL	61,99	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	61.9	
95% Modified-t UCL	61.99	
Non-Parametric UCLs	.'	
95% CLT UCL	61.85	
95% Jackknife UCL	61.99	
95% Standard Bootstrap UCL	61.62	
95% Bootstrap-t UCL	62.37	
95% Hall's Bootstrap UCL	61.9	
95% Percentile Bootstrap UCL	61.86	
95% BCA Bootstrap UCL	61.78	
95% Chebyshev(Mean, Sd) UCL	70.93	
97.5% Chebyshev(Mean, Sd) UCL	77.23	
99% Chebyshev(Mean, Sd) UCL	89.63	
Data appear Normal (0.05)		
May want to try Normal UCLs		
Tetrachloroethene		
Total Number of Data	21	
Number of Non-Detect Data	18	
Number of Detected Data	3	
Minimum Detected	0.00135	
Maximum Detected	0.223	
Percent Non-Detects	85.71%	
Minimum Non-detect	1.55E-04	
Maximum Non-detect	0.224	
Mean of Detected Data	0.076	
Median of Detected Data	0.00362	
w.t. (b lb.)	0.0163	

0.0162

0.127

1.675 1.731

Variance of Detected Data

Skewness of Detected Data

SD of Detected Data CV of Detected Data

Mean of Detected log data -4.577
SD of Detected Log data 2.709

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0126
SD	0.0483
Standard Error of Mean	0.0132
95% KM (t) UCL	0.0354
95% KM (z) UCL	0.0343
95% KM (BCA) UCL	0.223
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.0702
97.5% KM (Chebyshev) UCL	0.0951
99% KM (Chebyshev) UCL	0.144

May want to try Lognormal UCLs

** Instead of UCL, EPC is selected to be median = <0.000211

[per recommendation in ProUCL User Guide]

Thal	lium
------	------

Total Number of Data	39
Number of Non-Detect Data	38
Number of Detected Data	1
Minimum Detected	0.63
Maximum Detected	0.63
Percent Non-Detects	97.37%
Minimum Non-detect	0.09

Page 60 of 66

0.89

Data set has all detected values equal to = 0.63, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.63

 But display to the contraction of the property of the contraction of the con	建饱热电池的过去分词形成电池	网络特殊的 医特别病毒性肾		CONTRACTOR STATE
** Instead of UCL, EPC is sele	cted to be	median -	Contract of the state of the	< 0.100
illisteau of oct, Lr c is sele	cted to be	. IIICulali –		
	nacentral engine			TOTAL TOWNS OF RESE
[per recommendation in	ProUCLU	ser Guidel	March History How	Control of the State of the Sta
per recommendation in		JCI CUIUCI	100000000000000000000000000000000000000	

	11

Total Number of Data	39
Number of Non-Detect Data	33
Number of Detected Data	6
Minimum Detected	0.68
Maximum Detected	178
Percent Non-Detects	84.62%
Minimum Non-detect	0.39
Maximum Non-detect	2.17
Mean of Detected Data	30.97
Median of Detected Data	1.385
Variance of Detected Data	5189
SD of Detected Data	72.04
CV of Detected Data	2.326
Skewness of Detected Data	2.448
Mean of Detected log data	1.065
SD of Detected Log data	2.109

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect37Number treated as Detected2Single DL Percent Detection94.87%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	5.342
SD	28.01
Standard Error of Mean	4.914

95% KM (t) UCL	13.63	
95% KM (z) UCL	13.42	
95% KM (BCA) UCL	14.63	
95% KM (Percentile Bootstrap) UCL	14.44	
95% KM (Chebyshev) UCL	26.76	
97.5% KM (Chebyshev) UCL	36.03	
99% KM (Chebyshev) UCL	54.23	
Potential UCL to Use		
99% KM (Chebyshev) UCL	54.23	
** Instead of UCL, EPC is selected to be median = <0.57 [per recommendation in ProUCL User Guide]		

Tita	niı	ım

Number of Valid Observations	39
Number of Distinct Observations	36
Minimum	3.41
Maximum	87.4
Mean	23.33
Median	18.9
SD	17
Variance	289
Coefficient of Variation	0.729
Skewness	1.934
Mean of log data	2.928
SD of log data	0.688
95% Useful UCLs	
Student's-t UCL	27.92
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	28.71
95% Modified-t UCL	28.06
Non-Parametric UCLs	
95% CLT UCL	27.81
95% Jackknife UCL	27.92
95% Standard Bootstrap UCL	27.67
95% Bootstrap-t UCL	29.04
95% Hall's Bootstrap UCL	29.8
95% Percentile Bootstrap UCL	28
95% BCA Bootstrap UCL	28.5
95% Chebyshev(Mean, Sd) UCL	35.2
97.5% Chebyshev(Mean, Sd) UCL	40.33
99% Chebyshev(Mean, Sd) UCL	50.42
Data appear Gamma Distributed (0.05)	

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Toluene

Total Number of Data	21
Number of Non-Detect Data	13
Number of Detected Data	8
Minimum Detected	0.00134
Maximum Detected	0.0122
Percent Non-Detects	61.90%
Minimum Non-detect	4.78E-04
Maximum Non-detect	0.642
Mean of Detected Data	0.00491
Median of Detected Data	0.00445
Variance of Detected Data	1.06E-05
SD of Detected Data	0.00325
CV of Detected Data	0.662
Skewness of Detected Data	1.816
Mean of Detected log data	-5.488
SD of Detected Log data	0.635

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
----------------------	-----

Kaplan Meier (KM) Method

Rupium Meler (Rivi) Method	
Mean	0.00324
SD	0.00285
Standard Error of Mean	7.86E-04
95% KM (t) UCL	0.0046
95% KM (z) UCL	0.00454
95% KM (BCA) UCL	0.00561
95% KM (Percentile Bootstrap) UCL	0.00515
95% KM (Chebyshev) UCL	0.00667
97.5% KM (Chebyshev) UCL	0.00815
99% KM (Chebyshev) UCL	0.0111

Data appear Normal (0.05)
May want to try Normal UCLs

_,	
Vanadium	
Number of Valid Observations	39
Number of Distinct Observations	35
Minimum .	7.85
Maximum ·	45.8
Mean	21.04
Median	20.2
SD	8.325
Variance	69.31
Coefficient of Variation	0.396
Skewness	0.511
Mean of log data	2.963
SD of log data	0.429
95% Useful UCLs	
Student's-t UCL	23.29
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	23.35
95% Modified-t UCL	23.31
Non-Parametric UCLs	
95% CLT UCL	23.23
95% Jackknife UCL	23.29
95% Standard Bootstrap UCL	23.19
95% Bootstrap-t UCL	23.43
95% Hall's Bootstrap UCL	23.54
95% Percentile Bootstrap UCL	23.34
95% BCA Bootstrap UCL	23.3
95% Chebyshev(Mean, Sd) UCL	26.85
97.5% Chebyshev(Mean, Sd) UCL	29.36
99% Chebyshev(Mean, Sd) UCL	34.3
Data appear Normal (0.05)	
May want to try Normal UCLs	
Xylene (total)	
Total Number of Data	21
Number of Non-Detect Data	12
Number of Detected Data	9
Minimum Detected	0.00139
Maximum Detected	1.76
Percent Non-Detects	57.14%
Minimum Non-detect	4.62E-04
Maximum Non-detect	0.668
Mean of Detected Data	0.41

Median of Detected Data	0.069
Variance of Detected Data	0.475
SD of Detected Data	0.689
CV of Detected Data	1.682
Skewness of Detected Data	1.647
Mean of Detected log data	-2.638
SD of Detected Log data	2.381

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect19Number treated as Detected2Single DL Percent Detection90.48%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.178
SD	0.47
Standard Error of Mean	0.109
95% KM (t) UCL	0.365
95% KM (z) UCL	0.357
95% KM (BCA) UCL	0.406
95% KM (Percentile Bootstrap) UCL	0.372
95% KM (Chebyshev) UCL	0.652
97.5% KM (Chebyshev) UCL	0.858
99% KM (Chebyshev) UCL	1.261

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Zi	n	c

39
39
21.1
5640
282.5
56.7
939.6
882844
3.326

Skewness	5.321
Mean of log data	4.392
SD of log data	1.135
Data do not follow a Discernable Distribution	
95% Useful UCLs	
Student's-t UCL	536.1
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	666.9
95% Modified-t UCL	557.5
Non-Parametric UCLs	
95% CLT UCL	530
95% Jackknife UCL	536.1
95% Standard Bootstrap UCL	532.5
95% Bootstrap-t UCL	2465
95% Hall's Bootstrap UCL	1561
95% Percentile Bootstrap UCL	560.5
95% BCA Bootstrap UCL	721
95% Chebyshev(Mean, Sd) UCL	938.3
97.5% Chebyshev(Mean, Sd) UCL	1222
99% Chebyshev(Mean, Sd) UCL	1779
Potential UCL to Use	
99% Chebyshev (Mean, Sd) UCL	1779

APPENDIX A-5

BACKGROUND SOIL

Nonparametric UCL Statistics for Data Sets with Non-Detects

User Selected Options

 $C: \label{lem:condition} C: \label{lem:condi$ From File

Full Precision

OFF

Confidence Coefficient

95%

Number of Bootstrap Operations

2000

Antimony

10
5
5
1.48
2.19
50.00%
0.25
0.3
1.768
1.69
0.0732
0.271
0.153
1.024
0.561
0.148

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

N/A
1.624
0.224
0.0791
1.769
1.754
1.89
1.815
1.969
2.118

2.411

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.890 [per recommendation in ProUCL User Guide]

Arsenic

Total Number of Data	10
Number of Non-Detect Data	1
Number of Detected Data	9
Minimum Detected	1.69
Maximum Detected	5.9
Percent Non-Detects	10.00%
Minimum Non-detect	0.24
Maximum Non-detect	0.24
Mean of Detected Data	3.793
Median of Detected Data	3.72
Variance of Detected Data	2.191
SD of Detected Data	1.48
CV of Detected Data	0.39
Skewness of Detected Data	-0.0437
Mean of Detected log data	1.253
SD of Detected Log data	0.448

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Winsorization Method	0.448
Mean	3.566
SD	1.518
95% Winsor (t) UCL	4.476
Kaplan Meier (KM) Method	
Mean	3.583
SD	1.467
Standard Error of Mean	0.492
95% KM (t) UCL	4.485
95% KM (z) UCL	4.392
95% KM (BCA) UCL	4.441
95% KM (Percentile Bootstrap) UCL	4.423
95% KM (Chebyshev) UCL	5.727
97.5% KM (Chebyshev) UCL	6.655

Data appear Normal (0.05)

May want to try Normal UCLs

Barium		
Number of Valid Observations	10	
Number of Distinct Observations	8	
Minimum	150	
Maximum	1130	
Mean	333.1	
Median	259	
SD	288.1	
Variance	82980	
Coefficient of Variation	0.865	
Skewness	2.844	
Mean of log data	5.617	
SD of log data	0.571	
•		
95% Useful UCLs		
Student's-t UCL	500.1	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	570.5	
95% Modified-t UCL	513.7	
Non-Parametric UCLs		
95% CLT UCL	482.9	
95% Jackknife UCL	500.1	
95% Standard Bootstrap UCL	476.8	
95% Bootstrap-t UCL	864.1	
95% Hall's Bootstrap UCL	1100	
95% Percentile Bootstrap UCL	497.6	
95% BCA Bootstrap UCL	584.8	
95% Chebyshev(Mean, Sd) UCL	730.2	
97.5% Chebyshev(Mean, Sd) UCL	902	
99% Chebyshev(Mean, Sd) UCL	1239	
55% Chebyshev(Weall, 5d) 662	1200	
Data follow Appr. Gamma Distribution (0.05)		
May want to try Gamma UCLs		
Way wate to dry damina octs		
Benzo(a)anthracene		
Denzo(a)antinacene		
Total Number of Data	.10	9
Number of Non-Detect Data	9	
Number of Detected Data	1	
Minimum Detected	0.082	
Maximum Detected	0.082	
Percent Non-Detects	90.00%	

Minimum Non-detect 0.00646
Maximum Non-detect 0.00908

Data set has all detected values equal to = 0.082, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.082

** Instead of UCL, EPC is selected to be median = <0.00761

[per recommendation in ProUCL User Guide]

Benzo(a)pyrene

Total Number of Data	10
Number of Non-Detect Data	9
Number of Detected Data	1
Minimum Detected	0.076
Maximum Detected	0.076
Percent Non-Detects	90.00%
Minimum Non-detect	0.00868
Maximum Non-detect	0.012

Data set has all detected values equal to = 0.076, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.076

** Instead of UCL, EPC is selected to be median = <0.0100
[per recommendation in ProUCL User Guide]

Benzo(b)fluoranthene

Total Number of Data	10
Number of Non-Detect Data	9
Number of Detected Data	1
Minimum Detected	0.057
Maximum Detected	0.057
Percent Non-Detects	90.00%
Minimum Non-detect	0.00698
Maximum Non-detect	0.00981
Maximum Non-uctect	0.0030

Data set has all detected values equal to = 0.057, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.057

.

** Instead of UCL, EPC is selected to be median = <0.00822

[per recommendation in ProUCL User Guide]

Page 4 of 15

Benzo(g,h,i)perylene

Total Number of Data	10
Number of Non-Detect Data	9
Number of Detected Data	1
Minimum Detected	0.083
Maximum Detected	0.083
Percent Non-Detects	90.00%
Minimum Non-detect	0.03
Maximum Non-detect	0.042

Data set has all detected values equal to = 0.083, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.083

** Instead of UCL, EPC is selected to be median = <0.035 [per recommendation in ProUCL User Guide]

Benzo(k)fluoranthene

Total Number of Data	10
Number of Non-Detect Data	9
Number of Detected Data	1
Minimum Detected	0.106
Maximum Detected	0.106
Percent Non-Detects	90.00%
Minimum Non-detect	0.00985
Maximum Non-detect	0.014

Data set has all detected values equal to = 0.106, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.106

Cadmium

Total Number of Data	10
Number of Non-Detect Data	7
Number of Detected Data	3
Minimum Detected	0.041
Maximum Detected	0.11
Percent Non-Detects	70.00%
Minimum Non-detect	0.015
Maximum Non-detect	0.02
Mean of Detected Data	0.083

Median of Detected Data	0.098
Variance of Detected Data	0.00136
SD of Detected Data	0.0369
CV of Detected Data	0.444
Skewness of Detected Data	-1,528
Mean of Detected log data	-2.575
SD of Detected Log data	0.54

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0536
SD	0.0253
Standard Error of Mean	0.00982
95% KM (t) UCL	0.0716
95% KM (z) UCL	0.0697
95% KM (BCA) UCL	0.11
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.0964
97.5% KM (Chebyshev) UCL	0.115
99% KM (Chebyshev) UCL	0.151

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]

Carbazole

Total Number of Data	10
Number of Non-Detect Data .	9
Number of Detected Data	1
Minimum Detected	0.011
Maximum Detected	0.011
Percent Non-Detects	90.00%

Minimum Non-detect 0.00752
Maximum Non-detect 0.011

Data set has all detected values equal to = 0.011, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.011

** Instead of UCL, EPC is selected to be median = <0.00886 [per recommendation in ProUCL User Guide]

Chromium	•	
Number of Valid Observations	10	
Number of Distinct Observations	9	
Minimum	10.7	
Maximum	20.1	
Mean	15.2	
Median	14.15	
SD	3.02	
Variance	9.12	
Coefficient of Variation	0.199	
Skewness	0.27	
Mean of log data	2.703	
SD of log data	0.199	
95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness)	16.86	
95% Adjusted-CLT UCL	16.96	
95% Modified-t UCL	16.96	
Non-Parametric UCLs		
95% CLT UCL	16.77	
95% Jackknife UCL	16.95	
95% Standard Bootstrap UCL	16.68	
95% Bootstrap-t UCL	17.21	
95% Hall's Bootstrap UCL	16.78	
95% Percentile Bootstrap UCL	16.65	
95% BCA Bootstrap UCL	16.72	
95% Chebyshev(Mean, Sd) UCL	19.36	
97.5% Chebyshev(Mean, Sd) UCL	21.16	
99% Chebyshev(Mean, Sd) UCL	24.7	
Data appear Normal (0.05)		
May want to try Normal UCLs		
,		

Total Number of Data	10
Number of Non-Detect Data	9
Number of Detected Data	1
Minimum Detected	0.083
Maximum Detected	0.083
Percent Non-Detects	90.00%
Minimum Non-detect	0.012
Maximum Non-detect	0.016

Data set has all detected values equal to = 0.083, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.083

** Instead of UCL, EPC is selected to be median = \$\frac{1}{2} = <0.014

[per recommendation in ProUCL User Guide]

Copper		
Number of Valid Observations	10	
Number of Distinct Observations	10	
Minimum	7.68	
Maximum	19.3	
Mean	12.12	
Median	10.8	
SD	3.955	
Variance	15.64	
Coefficient of Variation	0.326	
Skewness	0.802	
Mean of log data	2.449	
SD of log data	0.313	
95% Useful UCLs		
Student's-t UCL	14.41	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	14.51	
95% Modified-t UCL	14.46	
Non-Parametric UCLs		
95% CLT UCL	14.17	
95% Jackknife UCL	14.41	
95% Standard Bootstrap UCL	14.1	
95% Bootstrap-t UCL	15.2	
95% Hall's Bootstrap UCL	14.64	
95% Percentile Bootstrap UCL	14.27	
95% BCA Bootstrap UCL	14.33	
95% Chebyshev(Mean, Sd) UCL	17.57	
97.5% Chebyshev(Mean, Sd) UCL	19.93	
99% Chebyshev(Mean, Sd) UCL	24.56	

Data appear Normal (0.05)

May want to try Normal UCLs

Fluoranthene

Total Number of Data	10
Number of Non-Detect Data	9
Number of Detected Data	1
Minimum Detected	0.156
Maximum Detected	0.156
Percent Non-Detects	90.00%
Minimum Non-detect	0.00971
Maximum Non-detect	0.014

Data set has all detected values equal to = 0.156, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.156

** Instead of UCL, EPC is selected to be median = <0.0115
[per recommendation in ProUCL User Guide]

Indeno(1,2,3-cd)pyrene

Total Number of Data	10
Number of Non-Detect Data	9
Number of Detected Data	1
Minimum Detected	0.417
Maximum Detected	0.417
Percent Non-Detects	90.00%
Minimum Non-detect	0.025
Maximum Non-detect	0.035

Data set has all detected values equal to = 0.417, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.417

** Instead of UCL, EPC is selected to be median =<0.0295

[per recommendation in ProUCL User Guide]

Lead

Number of Valid Observations	10
Number of Distinct Observations	. 9
Minimum	11
Maximum	15.2
Mean	13.43
Median	13.35

SD	1.547
Variance	2.393
Coefficient of Variation	0.115
Skewness	-0.326
Mean of log data	2.591
SD of log data	0.118
95% Useful UCLs Student's-t UCL	14.33
95% UCLs (Adjusted for Skewness)	<i>,</i>
• •	14.18
95% Adjusted-CLT UCL 95% Modified-t UCL	
95% Woamea-t OCL	14.32
Non-Parametric UCLs	
95% CLT UCL	14.23
95% Jackknife UCL	14.33
95% Standard Bootstrap UCL	14.18
95% Bootstrap-t UCL	14.22
	14.12
95% Hall's Bootstrap UCL	
95% Percentile Bootstrap UCL	14.16
95% BCA Bootstrap UCL	14.14
95% Chebyshev(Mean, Sd) UCL	15.56
97.5% Chebyshev(Mean, Sd) UCL	16.49
99% Chebyshev(Mean, Sd) UCL	18.3
Data anneau Neumal (0.05)	•
Data appear Normal (0.05)	•
Data appear Normal (0.05) May want to try Normal UCLs	
· ·	
· ·	
May want to try Normal UCLs	
May want to try Normal UCLs	10
May want to try Normal UCLs Lithium	10 10
May want to try Normal UCLs Lithium Number of Valid Observations	
May want to try Normal UCLs Lithium Number of Valid Observations Number of Distinct Observations	10
May want to try Normal UCLs Lithium Number of Valid Observations Number of Distinct Observations Minimum	10 14.4
May want to try Normal UCLs Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum	10 14.4 32.5
May want to try Normal UCLs Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean	10 14.4 32.5 21.14
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD	10 14.4 32.5 21.14 19.9 5.166
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance	10 14.4 32.5 21.14 19.9 5.166 26.68
Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation	10 14.4 32.5 21.14 19.9 5.166 26.68 0.244
Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214
Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data	10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214
Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214
Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214 3.027 0.229
Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214 3.027 0.229
Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214 3.027 0.229
Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214 3.027 0.229
Lithium Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214 3.027 0.229

Non-Parametric UCLs	
95% CLT UCL	23.83
95% Jackknife UCL	24.13
95% Standard Bootstrap UCL	23.69
95% Bootstrap-t UCL	25.68
95% Hall's Bootstrap UCL	40.06
95% Percentile Bootstrap UCL	23.85
95% BCA Bootstrap UCL	24.34
95% Chebyshev(Mean, Sd) UCL	28.26
97.5% Chebyshev(Mean, Sd) UCL	31.34
99% Chebyshev(Mean, Sd) UCL	37.39

Data appear Normal (0.05)

May want to try Normal UCLs

M	а	ns	72	n	es	ρ

Number of Valid Observations	. 10
Number of Distinct Observations	9
Minimum	284
Maximum	551
Mean	377.4
Median	333
SD	93.76
Variance	8791
Coefficient of Variation	0.248
Skewness	1.28
Mean of log data	5.909
SD of log data	0.227
95% Useful UCLs	
Student's-t UCL	431.8
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	439
95% Modified-t UCL	433.8
Non-Parametric UCLs	
95% CLT UCL	426.2
95% Jackknife UCL	431.8
95% Standard Bootstrap UCL	424.1
95% Bootstrap-t UCL	499.4
95% Hall's Bootstrap UCL	650.1
95% Percentile Bootstrap UCL	425.8
95% BCA Bootstrap UCL	435.2
95% Chebyshev(Mean, Sd) UCL	506.6
97.5% Chebyshev(Mean, Sd) UCL	562.6
99% Chebyshev(Mean, Sd) UCL	672.4

Data appear Lognormal (0.05)

May want to try Lognormal UCLs

Mercury		
Number of Valid Observations	10	
Number of Distinct Observations	8	
Minimum	0.015	
Maximum	0.03	
Mean	0.0213	•
Median	0.0195	
SD	0.00479	
Variance	2.29E-05	
Coefficient of Variation	0.225	
Skewness	0.734	
Mean of log data	-3.871	
SD of log data	0.217	
3D of log data	0.217	
95% Useful UCLs		
Student's-t UCL	0.0241	
ार होता से द्राप्तिक विश्व विद्यालया है। यह स्थापन के स्थापन के स्थापन के स्थापन के स्थापन के स्थापन के स्थापन 		
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	0.0242	
95% Modified-t UCL	0.0241	
Non-Parametric UCLs		
95% CLT UCL	0.0238	
95% Jackknife UCL	0.0241	
95% Standard Bootstrap UCL	0.0237	
95% Bootstrap-t UCL	0.0247	
95% Hall's Bootstrap UCL	0.0242	
95% Percentile Bootstrap UCL	0.0238	
95% BCA Bootstrap UCL	0.0238	
95% Chebyshev(Mean, Sd) UCL	0.0279	
97.5% Chebyshev(Mean, Sd) UCL	0.0308	
99% Chebyshev(Mean, Sd) UCL	0.0364	
, , ,		
Data appear Normal (0.05)		
May want to try Normal UCLs		
Molybdenum		
Number of Valid Observations	10	
Number of Distinct Observations	10	
Minimum	0.42	
Maximum	0.68	
Mean	0.522	
Median	0.505	
SD	0.0739	
Variance	0.00546	
Coefficient of Variation	0.142	
Skewness	0.94	

Mean of log data SD of log data	-0.659 0.137
95% Useful UCLs Student's-t UCL	0.565
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	0.568
95% Modified-t UCL	0.566
Non-Parametric UCLs	
95% CLT UCL	0.56
95% Jackknife UCL	0.565
95% Standard Bootstrap UCL	0.559
95% Bootstrap-t UCL	0.578
95% Hall's Bootstrap UCL	0.582
95% Percentile Bootstrap UCL	0.561
95% BCA Bootstrap UCL	0.563
95% Chebyshev(Mean, Sd) UCL	0.624
97.5% Chebyshev(Mean, Sd) UCL	0.668
99% Chebyshev(Mean, Sd) UCL	0.755
Data appear Normal (0.05) May want to try Normal UCLs	

Phenanthrene

Total Number of Data	10
Number of Non-Detect Data	9
Number of Detected Data	1
Minimum Detected	0.137
Maximum Detected	0.137
Percent Non-Detects	90.00%
Minimum Non-detect	0.00571
Maximum Non-detect	0.00803

Data set has all detected values equal to = 0.137, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.137

** Instead of UCL, EPC is selected to be median =

[per recommendation in ProUCL User Guide]

Pyrene

Total Number of Data	10
Number of Non-Detect Data	9
Number of Detected Data	1
Minimum Detected	0.127

Maximum Detected	0.127
Percent Non-Detects	90.00%
Minimum Non-detect	0.017
Maximum Non-detect	0.024

Data set has all detected values equal to = 0.127, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.127

** Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]

Zinc		
Number of Valid Observations	10	
Number of Distinct Observations	10	
Minimum	36.6	
Maximum	969	
Mean	247	
Median	75.5	
SD	364.6	
Variance	132938	
Coefficient of Variation	1.476	
Skewness	1.694	
Mean of log data	4.667	
SD of log data	1.272	
Data do not follow a Discernable Distribu	tion	
95% Useful UCLs		
Student's-t UCL	458.3	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	502.6	
95% Modified-t UCL	468.6	
Non-Parametric UCLs	_	
95% CLT UCL	436.6	
95% Jackknife UCL	458.3	
95% Standard Bootstrap UCL	424.9	
95% Bootstrap-t UCL	1356	
95% Hall's Bootstrap UCL	1731	
95% Percentile Bootstrap UCL	432.1	
95% BCA Bootstrap UCL	507.2	
95% Chebyshev(Mean, Sd) UCL	749.5	
97.5% Chebyshev(Mean, Sd) UCL	967	
99% Chebyshev(Mean, Sd) UCL	1394	
Potential UCL to Use		
99% Chebyshev(Mean, Sd) UCL	1394	
22.2 223/3/103(11) 54/ 552	105.	

Recommended UCL excee	ds the maximun	n observation	

APPENDIX A-6

INTRACOASTAL WATERWAY SEDIMENT

Nonparametric UCL Statistics for Data Sets with Non-Detects

User Selected Options

From File c:\Users

c:\Users\Michael\....\ProUCL data analysis\ICWsed - Just site data\ICWsed - Just site data_ProUCL sheets.xls

Full Precision

OFF 95%

Confidence Coefficient Number of Bootstrap Operations

2000

1,2-Dichloroethane

Total Number of Data	16
Number of Non-Detect Data	15
Number of Detected Data	1
Minimum Detected	0.00302
Maximum Detected	0.00302
Percent Non-Detects	93.75%
Minimum Non-detect	0.000184
Maximum Non-detect	0.000877

Data set has all detected values equal to = 0.00302, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00302

,这是我们的时间,我们就是一个人的时间,我们就是我们的,我们就是我们的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的	46.
** Instead of UCL, EPC is selected to be median = < <0.000358	•
TT Instead of Hill EPI is selected to be median = *** SUJUDISSE	
The control of the co	60
	15
[per recommendation in ProUCL User Guide]	
- Control of the second control of the Control of t	4.5
The recommendation in Prouce User duider was a second	30

1,2-Diphenylhydrazine/Azobenzen

Total Number of Data	16
Number of Non-Detect Data	15
Number of Detected Data	1
Minimum Detected	0.0317
Maximum Detected	0.0317
Percent Non-Detects	93.75%
Minimum Non-detect	0.0101
Maximum Non-detect	0.0146

Data set has all detected values equal to = 0.0317, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0317

** Instead of U	CL. EPC is selec	ted to be me	edian =	<0.0110
· · · · · · · · · · · · · · · · · · ·		the transfer of the state of th		
lper recom	mendation in	Prouct User	Guidei	

2-Methylnaphthalene

Total Number of Data	16
Number of Non-Detect Data	15
Number of Detected Data	1
Minimum Detected	0.0188
Maximum Detected	0.0188
Percent Non-Detects	93.75%
Minimum Non-detect	0.0132
Maximum Non-detect	0.0191

Data set has all detected values equal to = 0.0188, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0188

** Instead of UCL, EPC is selected to be median = <0.0146 [per recommendation in ProUCL User Guide]

3,3'-Dichlorobenzidine

Total Number of Data	16
Number of Non-Detect Data	15
Number of Detected Data	1
Minimum Detected	0.151
Maximum Detected	0.151
Percent Non-Detects	93.75%
Minimum Non-detect	0.0586
Maximum Non-detect	0.0846

Data set has all detected values equal to = 0.151, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.151

		A STATE OF STREET	Service Manager	
** Instead of U	CL. EPC is sele	ected to be m	edian =	<0.0632
Section and waster and Section		reches establishment in soft fire		THE STATE OF
THE STREET STREET, THE STREET, THE			2 - 1 - 1 - 2 - 2 - 3 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	and the figure for the
i per recom	mendation ir	n ProUCL User	Guidei	Section of the second state of

4,4'-DDT

Total Number of Data	17
Number of Non-Detect Data	13
Number of Detected Data	4
Minimum Detected	4.81E-04
Maximum Detected	0.00332
Percent Non-Detects	76.47%
Minimum Non-detect	1.77E-04
Maximum Non-detect	6.31E-04
Mean of Detected Data	0.00137
Median of Detected Data	8.38E-04
Variance of Detected Data	1.77E-06
SD of Detected Data	0.00133
CV of Detected Data	0.971
Skewness of Detected Data	1.763
Mean of Detected log data	-6.905
SD of Detected Log data	0.874

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 15 Number treated as Detected 2 Single DL Percent Detection 88.24%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method

N/A

Kaplan Meier (KM) Method

Mean ·	6.90E-04
SD	6.73E-04
Standard Error of Mean	1.89E-04
95% KM (t) UCL	0.00102
95% KM (z) UCL	0.001
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	0.00136
95% KM (Chebyshev) UCL	0.00151
97.5% KM (Chebyshev) UCL	0.00187
99% KM (Chebyshev) UCL	0.00257

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of	IICI EDC ic	colocted t	o he medi	an -	へい いいいろいろ
ilistead OI	OCL, LFC 13	selected i	.u be illeui		~U.UUUZU3
一 医安全性肾盂炎性皮肤病的	经自然权益 医多克特氏病				47304 FEE SE
[per reco	mmendatio	n in ProU	CL User Gi	ıidel	a balana ta sa sa sa sa
	Arthur Charles to the Car	and the second second	and the standard and th	35.4 66.75.20	and the second second

4,6-Dinitro-2-methylphenol

Total Number of Data	16
Number of Non-Detect Data	15
Number of Detected Data	1
Minimum Detected	0.0627
Maximum Detected	0.0627
Percent Non-Detects	93.75%
Minimum Non-detect	0.0245
Maximum Non-detect	0.0353

Data set has all detected values equal to = 0.0627, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UTLs are all less than the maximum detection limit = 0.0627

一种医疗精神病 化物的过程系统 医多次性神经炎 医血栓检验 医电视管检验管 医眼膜管外腺管	整个数据的数据 医重整性硬化的现在分词 医抗原毒素 化二甲基磺胺甲基氏法 化二氯化甲基甲基甲基
** Instead of UCL, EPC is selected to	be median = <0.0264
motedu of oct, Li Cio sciected to	DC IIICUIAII
[per recommendation in ProUCL	User Guidel

Acenaphthene

Total Number of Data	16
Number of Non-Detect Data	14
Number of Detected Data	2
Minimum Detected	0.0239
Maximum Detected	0.0631
Percent Non-Detects	87.50%
Minimum Non-detect	0.0122
Maximum Non-detect	0.0176
Mean of Detected Data	0.0435
Median of Detected Data	0.0435
Variance of Detected Data	7.68E-04
SD of Detected Data	0.0277
CV of Detected Data	0.637
Skewness of Detected Data	N/A
Mean of Detected log data	-3.248
SD of Detected Log data	0.686

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0264	
SD	0.00949	
Standard Error of Mean	0.00335	
95% KM (t) UCL	0.0322	
95% KM (z) UCL	0.0319	
95% KM (BCA) UCL	6.31%	
95% KM (Percentile Bootstrap) UCL	N/A	
95% KM (Chebyshev) UCL	0.041	
97.5% KM (Chebyshev) UCL	0.0473	
99% KM (Chebyshev) UCL	0.0597	
Potential UCL to Use		
95% KM (t) UCL	0.0322	
95% KM (% Bootstrap) UCL	N/A	
** Instead of UCL, EPC is selected to be median = <0.0135 [per recommendation in ProUCL User Guide]		

Aluminum

Number of Valid Observations	16
Number of Distinct Observations	16
Minimum	3900
Maximum	12500
Mean	6854
Median	6345
SD .	2346
Variance	5502706
Coefficient of Variation	0.342
Skewness	0.876
Mean of log data	8.781
SD of log data	0.331
95% Useful UCLs	
Student's-t UCL	7882
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	7956
95% Modified-t UCL	7904

Non-Parametric UCLs	
95% CLT UCL	7819
95% Jackknife UCL	7882
95% Standard Bootstrap UCL	7734
95% Bootstrap-t UCL	8049
95% Hall's Bootstrap UCL	8144
95% Percentile Bootstrap UCL	7782
95% BCA Bootstrap UCL	7899
95% Chebyshev(Mean, Sd) UCL	9411
97.5% Chebyshev(Mean, Sd) UCL	10517
99% Chebyshev(Mean, Sd) UCL	12689

Data appear Normal (0.05)

May want to try Normal UCLs

Anthracene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	16 10 6 0.0236 0.0753 62.50% 0.0134 0.019
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.0407 0.0333 4.37E-04 0.0209 0.513 1.021 -3.304 0.487

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL	0.03 0.0143 0.00392 0.0369
95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0365 0.0431 0.0397 0.0471 0.0545 0.069

Data appear Normal (0.05)

May want to try Normal UCLs

Antimony		
Number of Valid Observations	16	
Number of Distinct Observations	16	
Minimum	0.74	
Maximum	8.14	
Mean	2.245	
Median	1.75	
SD	1.751	
√ariance	3.066	
Coefficient of Variation	0.78	
Skewness	2.813	
Mean of log data	0.629	•
SD of log data	0.57	
SD of log data	0.07	
95% Useful UCLs Student's-t UCL	3.012	
Students-t OCL	3.012	
95% UCLs (Adjusted for Skewness)	0.004	
95% Adjusted-CLT UCL	3.294	
95% Modified-t UCL	3.064	
Non-Parametric UCLs		
95% CLT UCL	2.965	
95% Jackknife UCL	3.012	
95% Standard Bootstrap UCL	2.932	
95% Bootstrap-t UCL	3.876	
95% Hall's Bootstrap UCL	5.819	
95% Percentile Bootstrap UCL	3.012	
95% BCA Bootstrap UCL	3.276	
95% Chebyshev(Mean, Sd) UCL	4.153	
97.5% Chebyshev(Mean, Sd) UCL	4.979	
99% Chebyshev(Mean, Sd) UCL	6.601	
Data appear Gamma Distributed (0.05)		
May want to try Gamma UCLs		
Arsenic		
Number of Valid Observations	16	
Number of Distinct Observations	16	
Minimum .	2.41	
Maximum	7.62	
Mean	4.026	
Median	3.805	
SD	1.4	
<i>V</i> ariance	1.96	
Coefficient of Variation	0.348	
Skewness	1.175	
Mean of log data	1.341	
SD of log data	0.327	

95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	4.712
95% Modified-t UCL	4.657
Non Doromotrio IICI a	
Non-Parametric UCLs	
95% CLT UCL	4.602
95% Jackknife UCL	4.64
95% Standard Bootstrap UCL	4.577
95% Bootstrap-t UCL	4.825
95% Hall's Bootstrap UCL	4.993
95% Percentile Bootstrap UCL	4.638
95% BCA Bootstrap UCL	4.73
95% Chebyshev(Mean, Sd) UCL	5.552
97.5% Chebyshev(Mean, Sd) UCL	6.212
99% Chebyshev(Mean, Sd) UCL	7.508
Data appear Normal (0.05)	
()	

May want to try Normal UCLs

Atrazine (Aatrex)

Total Number of Data	16
Number of Non-Detect Data	15
Number of Detected Data	1
Minimum Detected	0.0814
Maximum Detected	0.0814
Percent Non-Detects	93.75%
Minimum Non-detect	0.024
Maximum Non-detect	0.0346

Data set has all detected values equal to = 0.0814, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0814

** Instead of UCL, EPC is selected to be median = <0.0259
[per recommendation in ProUCL User Guide]

Barium

Number of Valid Observations	16
Number of Distinct Observations	14
Minimum	116
Maximum	377
Mean	215.3
Median	198
SD	59.65
Variance	3558
Coefficient of Variation	0.277
Skewness	1.296
Mean of log data	5.339
SD of log data	0.263
95% Useful UCLs	
Student's-t UCL	241.4
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	244.9
95% Modified-t UCL	242.2

239.8
241.4
238.7
250
263.8
241.7
244.2
280.3
308.4
363.6

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Benzo(a)anthracene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	16 13 3 0.0675 0.395 81.25% 0.0125 0.018
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.212 0.172 0.028 0.167 0.791 1.003 -1.795 0.884

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0945
SD	0.0816
Standard Error of Mean	0.025
95% KM (t) UCL	0.138
95% KM (z) UCL	0.136
95% KM (BCA) UCL	0.395
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.203

97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL

Data appear Normal (0.05)
May want to try Normal UCLs

0.251

0.343

Benzo(a)pyrene

Total Number of Data	16
Number of Non-Detect Data	10
Number of Detected Data	6
Minimum Detected	0.0525
Maximum Detected	0.445
Percent Non-Detects	62.50%
Minimum Non-detect	0.0124
Maximum Non-detect	0.0176
Mean of Detected Data	0.165
Median of Detected Data	0.122
Variance of Detected Data	0.0209
SD of Detected Data	0.145
CV of Detected Data	0.879
Skewness of Detected Data	1.933
Mean of Detected log data	-2.063
SD of Detected Log data	0.755

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

N/ <i>A</i>

Kaplan Meier (KM) Method	
Mean	0.0946
SD	0.0974
Standard Error of Mean	0.0267
95% KM (t) UCL	0.141
95% KM (z) UCL	0,138
95% KM (BCA) UCL	0.189
95% KM (Percentile Bootstrap) UCL	0.158
95% KM (Chebyshev) UCL	0.211
97.5% KM (Chebyshev) UCL	0.261
99% KM (Chebyshev) UCL	0.36

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

** Instead of UCL, EPC is selected to be median = <0.0158

[per recommendation in ProUCL User Guide]

Benzo(b)fluoran	thene	
-----------------	-------	--

Total Number of Data	16
Number of Non-Detect Data	7
Number of Detected Data	9
Minimum Detected	0.0324
Maximum Detected	0.611
Percent Non-Detects	43.75%
Minimum Non-detect	0.00865
Maximum Non-detect	0.0123
Mean of Detected Data	0.174
Median of Detected Data	0.131
Variance of Detected Data	0.0321
SD of Detected Data	0.179
CV of Detected Data	1.028
Skewness of Detected Data	2.123
Mean of Detected log data	-2.149
SD of Detected Log data	0.957

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

N/A

Kaplan Meier (KM) Method	
Mean	0.112
SD	0.145
Standard Error of Mean	0.0384
95% KM (t) UCL	0.18
95% KM (z) UCL	0.175
95% KM (BCA) UCL	0.196
95% KM (Percentile Bootstrap) UCL	0.185
95% KM (Chebyshev) UCL	0.28
97.5% KM (Chebyshev) UCL	0.352
99% KM (Chebyshev) UCL	0.495

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Benzo(g,h,i)perylene

Total Number of Data	16
Number of Non-Detect Data	9
Number of Detected Data	7
Minimum Detected	0.0173
Maximum Detected	0.442
Percent Non-Detects	56.25%
Minimum Non-detect	0.0124
Maximum Non-detect	0.0176

Page 10 of 37

Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data	0.142 0.069 0.0221 0.149 1.046 1.69
Mean of Detected log data SD of Detected Log data	-2.409 1.064

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 10
Number treated as Detected 6
Single DL Percent Detection 62.50%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0719
SD	0.11
Standard Error of Mean	0.0297
95% KM (t) UCL	0.124
95% KM (z) UCL	0.121
95% KM (BCA) UCL	0.162
95% KM (Percentile Bootstrap) UCL	0.136
95% KM (Chebyshev) UCL	0.202
97.5% KM (Chebyshev) UCL	0.258
99% KM (Chebyshev) UCL	0.368

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC	s selected to be	median =	<0.0172
[18] [18] [18] [18] [18] [18] [18] [18]	2007年1月1日 (1986年) 12		
per recommendat	ion in ProUCL U	ser Guidej	

Benzo(k)fluoranthene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects	16 10 6 0.0474 0.318 62.50 %
Minimum Non-detect Maximum Non-detect	0.0191 0.0272
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data	0.139 0.118 0.00945 0.0972 0.699 1.495

Mean of Detected log data -2.16 SD of Detected Log data 0.666

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0818
SD	0.0702
Standard Error of Mean	0.0192
95% KM (t) UCL	0.115
95% KM (z) UCL	0.113
95% KM (BCA) UCL	0.159
95% KM (Percentile Bootstrap) UCL	0.142
95% KM (Chebyshev) UCL	0.166
97.5% KM (Chebyshev) UCL	0.202
99% KM (Chebyshev) UCL	0.273
Data appear Normal (0.05)	

** Instead of UCL, EPC is selected to be median = <0.0243

[per recommendation in ProUCL User Guide]

May want to try Normal UCLs

Number of Valid Observations	16
Number of Distinct Observations	12
Minimum	0.29
Maximum	0.82
Mean	0.463
Median	0.42
SD	0.149
Variance	0.0222
Coefficient of Variation	0.322
Skewness	0.894
Mean of log data	-0.815
SD of log data	0.307
95% Useful UCLs Student's-t UCL	0.528
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	0.533 0.53
Non-Parametric UCLs 95% CLT UCL	0.524

0.528

0.524

0.54

95% Jackknife UCL

95% Bootstrap-t UCL

95% Standard Bootstrap UCL

95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	0.54 0.524 0.533 0.625 0.696 0.834	
Data appear Normal (0.05) May want to try Normal UCLs		
Boron		
Total Number of Data	16	
Number of Non-Detect Data	6	
Number of Detected Data	10	
Minimum Detected	12.5	
Maximum Detected	27.2	
Percent Non-Detects	37.50% 1.35	
Minimum Non-detect Maximum Non-detect	1.92	
Maximum Non-detect	1.52	
Mean of Detected Data	18.82	
Median of Detected Data	19.7	
Variance of Detected Data	27.9	
SD of Detected Data	5.282	
CV of Detected Data	0.281	
Skewness of Detected Data	0.171	
Mean of Detected log data	2.898	
SD of Detected Log data	0.287	
Note: Data have multiple DLs - Use of KM Meth- For all methods (except KM, DL/2, and ROS Metho the Largest DL value is used for all NDs		
Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level		
Winsorization Method	0.287	
Mean	13.19	
SD	0.643	
95% Winsor (t) UCL	13.57	
Vanlan Major (VMA) Mathed		
Kaplan Meier (KM) Method Mean	16.45	
SD	5.006	
Standard Error of Mean	1.319	
95% KM (t) UCL	18.76	
95% KM (z) UCL	18.62	
95% KM (BCA) UCL	19.25	
95% KM (Percentile Bootstrap) UCL	18.86	
95% KM (Chebyshev) UCL	22.2	
97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	24.69 29.58	
Data appear Normal (0.05)		
May want to try Normal UCLs		
Butyl benzyl phthalate		
Total Number of Data	16	
Total Number of Data Number of Non-Detect Data	16 15	

Number of Detected Data	1
Minimum Detected	0.202
Maximum Detected	0.202
Percent Non-Detects	93.75%
Minimum Non-detect	0.0153
Maximum Non-detect	0.0221

Data set has all detected values equal to = 0.202, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.202

	2 Fig. 12 Company of the Company of	Light of the man of the facility of the section of the facility of the Land of the facility of
** Instead of UCL, EPC	is solosted to be med	ian = <0.0165
IIISLEAU OI OCL. EPC	is selected to be illed	1411 =
A Company of the Comp	many control of the state of the state of the state of the state of	
THE SECOND COME AS INCIDENCE OF A PARTY OF A SECOND COME.	and the second of the second o	
and the state of t		of the control of the
Inor recommends	rion in Droi II i i icar (-	I II CO I STORE AND THE REAL PROPERTY OF THE PROPERTY OF
i per i ecommenua	tion in ProUCL User G	UIUCI III ALIANIA III III III III III III III III II
The state of the first of the state of the s	na kalang 1942 di ladar Marang Salam Salam di Ladar A Filip dalah sebagai da	To the state of the control of the c

ഭാ		

Total Number of Data	16
Number of Non-Detect Data	13
Number of Detected Data	3
Minimum Detected	0.0195
Maximum Detected	0.0861
Percent Non-Detects	81.25%
Minimum Non-detect	0.0121
Maximum Non-detect	0.0174
Mean of Detected Data	0.0504
Median of Detected Data	0.0457
Variance of Detected Data	0.00113
SD of Detected Data	0.0336
CV of Detected Data	0.665
Skewness of Detected Data	0.622
Mean of Detected log data	-3.158
SD of Detected Log data	0.745

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0253
SD	0.0169
Standard Error of Mean	0.00518
95% KM (t) UCL	0.0344
95% KM (z) UCL	0.0338
95% KM (BCA) UCL	0.0861
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshey) UCL	0.0479

97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL

0.0577 0.0769

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.0138 [per recommendation in ProUCL User Guide]

Chloroform

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect	16 14 2 0.00504 0.00527 87.50% 2.28E-04
Maximum Non-detect	0.00108
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.00516 0.00516 2.65E-08 1.63E-04 0.0315 N/A -5.268 0.0316

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	ě
Mean	0.00505
SD	5.57E-05
Standard Error of Mean	1.97E-05
95% KM (t) UCL	0.00509
95% KM (z) UCL	0.00509
95% KM (BCA) UCL	0.00527
95% KM (Percentile Bootstrap) UCL	0.00527
95% KM (Chebyshev) UCL	0.00514
97.5% KM (Chebyshev) UCL	0.00518

99% KM (Chebyshev) UCL	0.00525	
Potential UCL to Use		
95% KM (t) UÇL	0.00509	
95% KM (% Bootstrap) UCL	0.00527	
** Instead of UCL, EPC is selected to be median		
[per recommendation in ProUCL User Guide	등보다(B) 실망하고 우리가게 무겁하고 반짝되어 안	
Securities - Constant and the security and constant and the security and the security of the s	ta origina ilganosisi kitalografi origi	
Chromium		
Number of Valid Observations	16	
Number of Distinct Observations	15	
Minimum	5.01	
Maximum	14.4	
Mean	9.214	
Median SD	10.19 2.644	
Variance	6,989	
Coefficient of Variation	0,287	
Skewness	-0.17	
Mean of log data	2.177	
SD of log data	0.314	
95% Useful UCLs Student's-t UCL	10.37	
050(110) (4.11 + 14.04		
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	10.27	
95% Modified-t UCL	10.27	
35 % Modified-t GGE	10.07	
Non-Parametric UCLs		
95% CLT UCL	10.3	
95% Jackknife UCL	10.37	
95% Standard Bootstrap UCL 95% Bootstrap-t UCL	10.29 10.31	
95% Hall's Bootstrap UCL	10.31	
95% Percentile Bootstrap UCL	10.29	
95% BCA Bootstrap UCL	10.16	
95% Chebyshev(Mean, Sd) UCL	12.09	
97.5% Chebyshev(Mean, Sd) UCL	13.34	
99% Chebyshev(Mean, Sd) UCL	15.79	
Data appear Normal (0.05) May want to try Normal UCLs		
Chrysene		
Total Number of Data	16	
Number of Non-Detect Data	6	
Number of Detected Data	10	
Minimum Detected	0.0137	
Maximum Detected Percent Non-Detects	0.475 37.50%	
Minimum Non-detect	0.0109	
Maximum Non-detect	0.0151	
Mean of Detected Data	0.12	
Median of Detected Data	0.0825	
Variance of Detected Data	0.0196	

SD of Detected Data	0.14	
CV of Detected Data	1.166	
Skewness of Detected Data	2.074	
Mean of Detected log data	-2.711	
SD of Detected Log data	1.199	
Note: Data have multiple DLs - Use of KM Meth	od is recommended	
For all methods (except KM, DL/2, and ROS Methods)	ods),	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	8	
Number treated as Detected	8	
Single DL Percent Detection	50.00%	
D. C. D. William To at with Detected Values Only		
Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance	o Level	
Data appear Gamma Distributed at 5% Significant	e Level	
Winsorization Method	N/A	
VVIIISONZALION WELLIOG		
Kaplan Meier (KM) Method		
Mean	0.0803	
SD	0.117	
Standard Error of Mean	0.0308	
95% KM (t) UCL	0.134	
95% KM (z) UCL	0.131	
95% KM (BCA) UCL	0.141	
95% KM (Percentile Bootstrap) UCL	0.135	
95% KM (Chebyshev) UCL	0.215	
97.5% KM (Chebyshev) UCL	0.273	
99% KM (Chebyshev) UCL	0.387	
D (D) (T) (D) (O)	•	
Data appear Gamma Distributed (0.05)		
May want to try Gamma UCLs		
Cobalt		
Cobalt		
Cobalt Number of Valid Observations	16	
	16	
Number of Valid Observations	16 3.05	
Number of Valid Observations Number of Distinct Observations Minimum Maximum	16 3.05 7.16	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean	16 3.05 7.16 4.385	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median	16 3.05 7.16 4.385 4.06	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD	16 3.05 7.16 4.385 4.06 1.131	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance	16 3.05 7.16 4.385 4.06 1.131 1.279	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245 4.881	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245 4.881	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245 4.881	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245 4.881 4.922 4.892 4.85 4.881 4.83	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% HOLLS (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245 4.881 4.922 4.892 4.85 4.881 4.83 4.957	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245 4.881 4.922 4.892 4.85 4.881 4.83 4.957 5.007	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% HOLLS (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	16 3.05 7.16 4.385 4.06 1.131 1.279 0.258 0.956 1.449 0.245 4.881 4.922 4.892 4.85 4.881 4.83 4.957	

95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	4.876 5.618 6.151 7.198	
Data appear Normal (0.05) May want to try Normal UCLs		
Copper	•	
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD	16 16 3.28 12.6 7.112 6.655 2.997	
Variance	8.98	•
Coefficient of Variation Skewness	0.421 0.299	
Mean of log data	1.87	
SD of log data	0.456	
95% Useful UCLs Student's-t UCL	88.425	
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	8.404 8.435	
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Data appear Normal (0.05) May want to try Normal UCLs	8.344 8.425 8.306 8.514 8.371 8.295 8.335 10.38 11.79 14.57	
Cyclohexane		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Data set has all detected values equal to = 0.001 No reliable or meaningful statistics and estimates All relevant statistics such as background statistic Specifically, UPLs, UCLs, UTLs are all less the	s can be computed using such a data set. cs (UPLs, UTLs) and UCLs should also be	
The second secon		_

の場合を打ちて下げると考えられる。対象をはないできる。いから、いから、ロードングを発せされ、多点ではあった。対象をものがあり、受験を含むされたいによるという。	 Integration of a property of the contract of the
** Instead of UCL, EPC is selected to be median =	~A AA22A
instead of OCL, EPC is selected to be inegian =	\U.UU329
[per recommendation in ProUCL User Guide]	和4.000 (10.00 (
Iner recommendation in Prof.C. User Guidel	(2) (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4

Dibenza	'a h\	anth.	

Total Number of Data	16
Number of Non-Detect Data	10
Number of Detected Data	6
Minimum Detected	0.0511
Maximum Detected	0.235
Percent Non-Detects	62.50%
Minimum Non-detect	0.0118
Maximum Non-detect	0.0168
Mean of Detected Data	0.105
Median of Detected Data	0.0659
Variance of Detected Data	0.00541
SD of Detected Data	0.0735
CV of Detected Data	0.701
Skewness of Detected Data	1.464
Mean of Detected log data	-2.428
SD of Detected Log data	0.612

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

Wine.	orization	Method	

N	11

0.0740

Kaplan Meier	(KM)	Method
Mean		

Mean	0.0712
SD	0.0486
Standard Error of Mean	0.0133
95% KM (t) UCL	0.0946
95% KM (z) UCL	0.0932
95% KM (BCA) UCL	0.111
95% KM (Percentile Bootstrap) UCL	0.0989
95% KM (Chebyshev) UCL	0.129
97.5% KM (Chebyshev) UCL	0.154
99% KM (Chebyshev) UCL	0.204

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

** Instead of I	UCL. EPC is se	elected to b	e median =	<0.0157
可不能的 经基础公司	nmendation	1 5 1161	6. 图片中央	
I per recor	mmendation	IN Profit I	JSEL GUIDEL	The state of the s

Dibenzofuran

Total Number of Data	16
Number of Non-Detect Data	14
Number of Detected Data	2

Median of Detected Data0.028Variance of Detected Data6.85E-0SD of Detected Data0.0026	Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	0.0268 0.0305 87.50 % 0.0173 0.025
Mean of Detected log data -3.55	Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data	0.0287 0.0287 6.85E-06 0.00262 0.0913 N/A -3.555

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.027	
SD	8.96E-04	
Standard Error of Mean	3.17E-04	
95% KM (t) UCL	0.0276	
95% KM (z) UCL	0.0276	
95% KM (BCA) UCL	0.0305	
95% KM (Percentile Bootstrap) UCL	0.0305	
95% KM (Chebyshev) UCL	0.0284	
97.5% KM (Chebyshev) UCL	0.029	
99% KM (Chebyshev) UCL	0.0302	
Potential UCL to Use		
95% KM (t) UCL	0.0276	
95% KM (% Bootstrap) UCL	0.0305	
** Instead of UCL, EPC is selected to be median =	<0.0192	
[per recommendation in ProUCL User Guide]	- 技能を行ってはよる特別では、特別では、	
Diethyl phthalate		
Total Number of Data	16	
Number of Non-Detect Data	15	
Number of Detected Data	1	

Page 20 of 37

Minimum Detected	0.0389
Maximum Detected	0.0389
Percent Non-Detects	93.75%
Minimum Non-detect	0.0208
Maximum Non-detect	0.03

Data set has all detected values equal to = 0.0389, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0389

** Instead of UCL, EPC is selected to be median =	<0.0224
for the symmetry party and a security and property.	
[per recommendation in ProUCL User Guide]	4341-2018-1-0-15

וטו-n-octyı	pntnaiate

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	16 14 2 0.0147 0.192 87.50% 0.0102 0.0147
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.103 0.103 0.0157 0.125 1.213 N/A -2.935 1.817

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method Mean	0.0258
SD	0.0429
Standard Error of Mean 95% KM (t) UCL	0.0152 0.0524

049150

95% KM (z) UCL	0.0507
95% KM (BCA) UCL	0.192
95% KM (Percentile Bootstrap) UCL	0.192
95% KM (Chebyshev) UCL	0.0919
97.5% KM (Chebyshev) UCL	0.121
99% KM (Chebyshev) UCL	0.177

Potential UCL to Use

** Instead of UCL, EPC is selected to be median = 100 300 300 00113 [per:recommendation in ProUCL User Guide]

Fluoranthene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	16 8 8 0.0222 0.804 50.00% 0.0137 0.0196
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.218 0.161 0.0618 0.249 1.143 2.315 -2.036 1.143

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.12
SD	0.191
Standard Error of Mean	0.0511
95% KM (t) UCL	0.209
95% KM (z) UCL	0.204
95% KM (BCA) UCL	0.251
95% KM (Percentile Bootstrap) UCL	0.223
95% KM (Chebyshev) UCL	0.343
97.5% KM (Chebyshev) UCL	0.439
99% KM (Chebyshev) UCL	0.628

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

Total Number of Data	

Fluorene

Number of Non-Detect Data 12

Number of Detected Data 4

Minimum Detected 0.0124

Maximum Detected 0.046

Percent Non-Detects 75.00%

Minimum Non-detect 0.012

Maximum Non-detect 0.0173

0.0276 Mean of Detected Data Median of Detected Data 0.0259 Variance of Detected Data 1.94E-04 SD of Detected Data 0.0139 CV of Detected Data 0.506 Skewness of Detected Data 0.682 Mean of Detected log data -3.695 0.54 SD of Detected Log data

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 13
Number treated as Detected 3
Single DL Percent Detection 81.25%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

16

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method Mean 0.0162 0.00891 SD Standard Error of Mean 0.00257 0.0207 95% KM (t) UCL 95% KM (z) UCL 0.0204 95% KM (BCA) UCL N/A 0.03 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 0.0274 97.5% KM (Chebyshev) UCL 0.0323 99% KM (Chebyshev) UCL 0.0418

Data appear Normal (0.05)
May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.0138
[per recommendation in ProUCL User Guide]

gamma-Chlordane

Total Number of Data 16 Number of Non-Detect Data 12

Number of Detected Data	4
Minimum Detected	6.38E-04
Maximum Detected	8.26E-04
Percent Non-Detects	75.00%
Minimum Non-detect	3.19E-04
Maximum Non-detect	4.51E-04
Mean of Detected Data	7.02E-04
Median of Detected Data	6.72E-04
Variance of Detected Data	7.22E-09
SD of Detected Data	8.50E-05
CV of Detected Data	0.121
Skewness of Detected Data	1.69
Mean of Detected log data	-7.267
SD of Detected Log data	0.116

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	6.54E-04
SD	4.61E-05
Standard Error of Mean	1.33E-05
95% KM (t) UCL	6.77E-04
95% KM (z) UCL	6.76E-04
95% KM (BCA) UCL	8.26E-04
95% KM (Percentile Bootstrap) UCL	7.04E-04
95% KM (Chebyshev) UCL	7.12E-04
97.5% KM (Chebyshev) UCL	7.37E-04
99% KM (Chebyshev) UCL	7.86E-04
Data appear Normal (0.05)	
May want to try Normal UCLs	
** Instead of UCL, EPC is selected to be median =	<0.000391

** Instead of UCL, EPC is selected to be	median = <0.000391
[per recommendation in ProUCL U	ser Guidej

Hexachlorobenzene

Total Number of Data	16
Number of Non-Detect Data	15
Number of Detected Data	1
Minimum Detected	0.0319
Maximum Detected	0.0319
Percent Non-Detects	93.75%
Minimum Non-detect	0.015
Maximum Non-detect	0.0217

Data set has all detected values equal to = 0.0319, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0319

** Instead of UCL. EPC is selected to be median =	<0.0162
 All Printers Caralla Sector Committee Control of the Control of the	
[per recommendation in ProUCL User Guide	

Indeno(1,2,3-cd)pyrene		
Total Number of Data	16	
Number of Non-Detect Data	10	
Number of Detected Data	6	
Minimum Detected	0.0556	
Maximum Detected	0.405	
Percent Non-Detects	62.50%	
Minimum Non-detect	0.0198	
Maximum Non-detect	0.0282	
Mean of Detected Data	0.174	
Median of Detected Data	0.147	
Variance of Detected Data	0.0169	
SD of Detected Data	0.13	
CV of Detected Data	0.747	
Skewness of Detected Data	1.29	
Mean of Detected log data	-1.976	
SD of Detected Log data	0.739	

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data
Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0999	
SD	0.0925	
Standard Error of Mean	0.0253	
95% KM (t) UCL	0.144	
95% KM (z) UCL	0.142	
95% KM (BCA) UCL	0.225	
95% KM (Percentile Bootstrap) UCL	0.167	
95% KM (Chebyshev) UCL	0.21	
97.5% KM (Chebyshev) UCL	0.258	
99% KM (Chebyshev) UCL	0.352	
Data appear Normal (0.05)		
May want to try Normal UCLs		
** Instead of UCL, EPC is selected to be medi	an = <0.0253	
[per recommendation in ProUCL User Gu	DOS STORE AND THE WIND OF STORE AND	
Iron		
Number of Valid Observations	16	

Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	16 6750 28200 13352 13200 5546 30754190 0.415 1.341 9.427 0.389
95% Useful UCLs	
Student's-t UCL	15782
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	16129 15860
95% Woulled-t OCL	15000
Non-Parametric UCLs	
95% CLT UCL	15632
95% Jackknife UCL	15782
95% Standard Bootstrap UCL	15594
95% Bootstrap-t UCL	16690
95% Hall's Bootstrap UCL	18534
95% Percentile Bootstrap UCL	15569
95% BCA Bootstrap UCL	16013
95% Chebyshev(Mean, Sd) UCL	19395
97.5% Chebyshev(Mean, Sd) UCL	22010
99% Chebyshev(Mean, Sd) UCL	27146
Data annear Camma Distributed (0.05)	

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Isopropylbenzene (Cumene)

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	16 14 2 0.00464 0.00704 87.50% 2.48E-04 0.00118
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.00584 0.00584 2.88E-06 0.0017 0.291 N/A -5.165 0.295

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable. It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A	
Kaplan Meier (KM) Method	•	
Mean	0.00479	
SD	5.81E-04	
Standard Error of Mean	2.05E-04	
95% KM (t) UCL	0.00515	
95% KM (z) UCL	0.00513	
95% KM (BCA) UCL	0.00704	
95% KM (Percentile Bootstrap) UCL	N/A	
95% KM (Chebyshev) UCL	0.00569	
97.5% KM (Chebyshev) UCL	0.00607	
99% KM (Chebyshev) UCL	0.00683	
Potential UCL to Use		
95% KM (t) UCL	0.00515	
95% KM (% Bootstrap) UCL	N/A	
** Instead of UCL_EPC is selected to be media	n = <0.000480	

[per recommendation in ProUCL User Guide]

Number of Valid Observations	16
Number of Distinct Observations	16
Minimum	5
Maximum	32.3
Mean	11.56
Median	10.03
SD	7.161
Variance	51.28
Coefficient of Variation	0.62
Skewness	2.013
Mean of log data	2.311
SD of log data	0.512
•	
95% Useful UCLs	
Student's-t UCL	14.69
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	15.46
95% Modified-t UCL	14.84
Non-Parametric UCLs	
95% CLT UCL	14.5

14.69

14.34

18.14

31.58

95% Jackknife UCL

95% Bootstrap-t UCL

95% Hall's Bootstrap UCL

95% Standard Bootstrap UCL

Lead

95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	14.62 15.47 19.36 22.74 29.37	
Data appear Gamma Distributed (0.05) May want to try Gamma UCLs		
Lithium		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	16 15 6.4 20 10.53 9.88 3.559 12.67 0.338 1.247 2.306 0.314	
95% Useful UCLs Student's-t UCL	12.09	
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	12.29 12.14	
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	12 12.09 11.96 12.73 12.79 12.04 12.17 14.41 16.09 19.39	
Data appear Normal (0.05) May want to try Normal UCLs		
Manganese		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	16 15 192 474 283.3 275 87.59 7673 0.309 0.667 5.603 0.301	

95% Useful UCLs Student's-t UCL	321.6	
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	323.2 322.2	
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	319.3 321.6 317.6 331.6 322.6 322.1 324 378.7 420 501.1	
Data appear Normal (0.05) May want to try Normal UCLs		
Mercury		
Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	16 13 0.011 0.036 0.0201 0.02 0.00739 5.46E-05 0.368 0.618 -3.972 0.367	
95% Useful UCL's Student's-t UCL	0.0233	
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	0.0234 0.0233	
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	0.0231 0.0233 0.0236 0.0236 0.0231 0.023 0.0281 0.0316 0.0384	
Data appear Normal (0.05) May want to try Normal UCLs		
Methylcyclohexane		

Total Number of Data	16
Number of Non-Detect Data	15
Number of Detected Data	1
Minimum Detected	0.0037
Maximum Detected	0.0037
Percent Non-Detects	93.75%
Minimum Non-detect	0.000599
Maximum Non-detect	0.00285

Data set has all detected values equal to = 0.0037, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects.

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0037

** Instead of	UCL. EPC is s	elected t	o be media	n =	<0.00117
The contract of the contract o	many 1 to 100 April 2 LANS 2014 Pt. Vo.	The state of the s	CARLES CONTRACTOR AND ARREST	and the state of t	
[per reco	mmendatio	n in ProU	CL User Gu	ide]	

		_
Molybdenum		
Number of Valid Observations	16	
Number of Distinct Observations	15	
Minimum	0.14	
Maximum	5.66	
Mean	0.667	
Median	0.24	
SD	1.358	
Variance	1.843	
Coefficient of Variation	2.036	
Skewness	3.761	
Mean of log data	-1.108	
SD of log data	0.95	
Data do not follow a Discernable Dist	ribution	
95% Useful UCLs		
Student's-t UCL	1.262	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	1.566	
95% Modified-t UCL	1.315	
Non-Parametric UCLs		
95% CLT UCL	1.225	
95% Jackknife UCL	1.262	
95% Standard Bootstrap UCL	1.206	
95% Bootstrap-t UCL	4.6	
95% Hall's Bootstrap UCL	3.351	
95% Percentile Bootstrap UCL	1.312	
95% BCA Bootstrap UCL	1.703	
95% Chebyshev(Mean, Sd) UCL	2.146	
97.5% Chebyshev(Mean, Sd) UCL	2.786	
99% Chebyshev(Mean, Sd) ÚCL	4.044	
Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL	2.146	
		_
Nickel		
Number of Valid Observations	16	
Number of Distinct Observations	15	

Number of Valid Observations	16
Number of Distinct Observations	15

Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	5.8 16.7 9.589 9.93 2.741 7.512 0.286 0.821 2.223 0.283	
Student's-t UCL	10.79	
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	10.87 10.81	
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	10.72 10.79 10.68 10.9 11.23 10.74 10.87 12.58 13.87 16.41	
Data appear Normal (0.05) May want to try Normal UCLs		
n-Nitrosodiphenylamine Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	16 15 1 0.0434 0.0434 93.75 % 0.0139 0.0201	
Data set has all detected values equal to = 0.0434 No reliable or meaningful statistics and estimates All relevant statistics such as background statistics Specifically, UPLs, UCLs, UTLs are all less tha	can be computed using such a d s (UPLs, UTLs) and UCLs shoul	d also be nondetects
** Instead of UCL, EPC is selected to be median [per recommendation in ProUCL User Guide		
Phenanthrene		
Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects	16 8 8 0.0311 0.508 50.00 %	

Minimum Non-detect Maximum Non-detect	0.0152 0.0216
Mean of Detected Data	0.14
Median of Detected Data	0.0953
Variance of Detected Data	0.0242
SD of Detected Data	0.155
CV of Detected Data	1.107
Skewness of Detected Data	2.358
Mean of Detected log data	-2.349
SD of Detected Log data	0.892

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0858
SD	0.116
Standard Error of Mean	0.0311
95% KM (t) UCL	0.14
95% KM (z) UCL	0.137
95% KM (BCA) UCL	0.159
95% KM (Percentile Bootstrap) UCL	0.142
95% KM (Chebyshev) UCL	0.221
97.5% KM (Chebyshev) UCL	0.28
99% KM (Chebyshev) UCL	0.396

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

Pyrene

Total Number of Data Number of Non-Detect Data	16 6
Number of Detected Data	10
Minimum Detected	0.0176
Maximum Detected	0.862
Percent Non-Detects	37.50%
Minimum Non-detect	0.0146
Maximum Non-detect	0.0202
Mean of Detected Data	0.203
Median of Detected Data	0.146
Variance of Detected Data	0.0652
SD of Detected Data	0.255
CV of Detected Data	1.258
Skewness of Detected Data	2.208
Mean of Detected log data	-2.308
SD of Detected Log data	1.341

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 7
Number treated as Detected 9
Single DL Percent Detection 43.75%

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Winsorization	Method	N	I/A
VVIIISONZALION	MELITOU	- 17	"

Kaplan Meier (KM) Method Mean SD

 SD
 0.211

 Standard Error of Mean
 0.0557

 95% KM (t) UCL
 0.231

 95% KM (z) UCL
 0.225

 95% KM (BCA) UCL
 0.248

 95% KM (Percentile Bootstrap) UCL
 0.231

 95% KM (Chebyshev) UCL
 0.376

 97.5% KM (Chebyshev) UCL
 0.482

99% KM (Chebyshev) UCL

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

0.133

0.688

Silver

Total Number of Data	16
Number of Non-Detect Data	10
Number of Detected Data	6
Minimum Detected	. 0.3
Maximum Detected	0.54
Percent Non-Detects	62.50%
Minimum Non-detect	0.067
Maximum Non-detect	0.094
Mean of Detected Data	0.393
Median of Detected Data	0.39
Variance of Detected Data	0.00695
SD of Detected Data	0.0833
CV of Detected Data	0.212
Skewness of Detected Data	1.083
Mean of Detected log data	-0.951
SD of Detected Log data	0.203

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

Mean 0.335

SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.0649 0.0178 0.366 0.364 0.418 0.401 0.412 0.446 0.512	
Data appear Normal (0.05) May want to try Normal UCLs		
** Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide	. No. 1991 (Children Colorador Maria U.S.)	
Strontium		
Number of Valid Observations	16	
Number of Distinct Observations	15	
Minimum	32.8	
Maximum	81.7	
Mean	44.86	
Median	39.85	
SD Verience	14.43 208.3	
Variance Coefficient of Variation	0.322	
Skewness	1.805	
Mean of log data	3.765	
SD of log data	0.274	
Data do not follow a Discernable Distribution		
Data do flot follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	51.19	
95% UCLs (Adjusted for Skewness)	50.54	
95% Adjusted-CLT UCL 95% Modified-t UCL	52.54 51.46	
95% Modified-t OCL	31.40	
Non-Parametric UCLs		
95% CLT UCL	50.8	
95% Jackknife UCL	51.19	
95% Standard Bootstrap UCL	50.5	
95% Bootstrap-t UCL	56.98	
95% Hall's Bootstrap UCL	82.31 51.29	
95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	51.61	
95% Chebyshev(Mean, Sd) UCL	60.59	
97.5% Chebyshev(Mean, Sd) UCL	67.4	
99% Chebyshev(Mean, Sd) UCL	80.77	
Potential UCL to Use		
Use 95% Student's-t UCL	51.19	
Or 95% Modified-t UCL	51.46	
Titanium	•	
ricanium .		
Number of Valid Observations	16	
Number of Distinct Observations	16	

Minimum	19.1
Maximum	36.6
Mean	25.58
Median	23.95
SD	5.051
Variance	25.51
Coefficient of Variation	0.198
Skewness	1.084
Mean of log data	3.225
SD of log data	0.186
95% Useful UCLs	SACRET SERVICE
95% Userui UCLS Student's-t UCL	27.70
Suuents-Luck	21.19

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	28.02 27.85
Non-Parametric UCLs	
95% CLT UCL	27.65
95% Jackknife UCL	27.79
95% Standard Bootstrap UCL	27.55
95% Bootstrap-t UCL	28.62
95% Hall's Bootstrap UCL	28.98
95% Percentile Bootstrap UCL	27.63
95% BCA Bootstrap UCL	27.97
95% Chebyshev(Mean, Sd) UCL	31.08
97.5% Chebyshev(Mean, Sd) UCL	33.46
99% Chebyshev(Mean, Sd) UCL	38.14

Data appear Normal (0.05)

May want to try Normal UCLs

Toluene

Total Number of Data	16
Number of Non-Detect Data	15
Number of Detected Data	1
Minimum Detected	0.00581
Maximum Detected	0.00581
Percent Non-Detects	93.75%
Minimum Non-detect	0.00089
Maximum Non-detect	0.00423

Data set has all detected values equal to = 0.00581, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00581

** Instead of UCL, EPC is selected to be median = <0.00173

[per recommendation in ProUCL User Guide]

Vanadium

Number of Valid Observations	16
Number of Distinct Observations	16
Minimum	9.06
Maximum	21.2
Mean	13.86
Median	13.45

-	
SD	3.523
Variance	12.41
Coefficient of Variation	0.254
Skewness	0.54
Mean of log data	2.599
SD of log data	0.251
SD of log data	0,231
95% Useful UCLs Student's-t UCL	15.4
OFO/ LICL = (A diviste d for Observance)	
95% UCLs (Adjusted for Skewness)	46.44
95% Adjusted-CLT UCL	15.44
95% Modified-t UCL	15.42
N B C HO	
Non-Parametric UCLs	45.04
95% CLT UCL	15.31
95% Jackknife UCL	15.4
95% Standard Bootstrap UCL	15.23
95% Bootstrap-t UCL	15.63
95% Hall's Bootstrap UCL	15.38
95% Percentile Bootstrap UCL	15.29
95% BCA Bootstrap UCL	15.37
95% Chebyshev(Mean, Sd) UCL	17.7
97.5% Chebyshev(Mean, Sd) UCL	19.36
99% Chebyshev(Mean, Sd) UCL	22.62
00 % Onebyone (Mean, Oa) OOL	22.02
Data appear Normal (0.05) May want to try Normal UCLs	
Zinc	
Number of Valid Observations	16
Number of Valid Observations	16 15
Number of Distinct Observations	15
Number of Distinct Observations Minimum	15 18
Number of Distinct Observations Minimum Maximum	15 18 92.6
Number of Distinct Observations Minimum Maximum Mean	15 18 92.6 45.36
Number of Distinct Observations Minimum Maximum Mean Median	15 18 92.6 45.36 43.6
Number of Distinct Observations Minimum Maximum Mean Median SD	15 18 92.6 45.36 43.6 19.88
Number of Distinct Observations Minimum Maximum Mean Median SD Variance	15 18 92.6 45.36 43.6 19.88 395.3
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation	15 18 92.6 45.36 43.6 19.88 395.3 0.438
Number of Distinct Observations Minimum Maximum Mean Median SD Variance	15 18 92.6 45.36 43.6 19.88 395.3 0.438
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	15 18 92.6 45.36 43.6 19.88 395.3 0.438
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD student's-t UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness)	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness)	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.07
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.07
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.07 54.44 54.21
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.07 54.44 54.21
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's -t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.07 54.07 53.53 54.07 53.02 55.22
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.07 54.44 54.21 53.53 54.07 53.02 55.22 55.11
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	15 18 92.6 45.36 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.44 54.21 53.53 54.07 53.02 55.22 55.11 53.7
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	15 18 92.6 45.36 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.07 54.44 54.21 53.53 54.07 53.02 55.22 55.11 53.7 54.66
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.44 54.21 53.53 54.07 53.02 55.22 55.11 53.7 54.66 67.02
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Both Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	15 18 92.6 45.36 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.07 54.44 54.21 53.53 54.07 53.02 55.22 55.11 53.7 54.66
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454 54.44 54.21 53.53 54.07 53.02 55.22 55.11 53.7 54.66 67.02

Data appear Normal (0.05) May want to try Normal UCLs

APPENDIX A-7

BACKGROUND SEDIMENT INTERCOASTAL WATERWAY

Nonparametric UCL Statistics for Data Sets with Non-Detects

User Selected Options

From File C:\Users\Michael\\...\ProUCL data analysIs\ICWsed - JUST BACKGROUND\ICWsed data - JUST BACKGROUND_ProUCL input.wst

Full Precision

Confidence Coefficient 95% Number of Bootstrap Operations 2000

1,2,4-Trimethylbenzene

Total Number of Data	9
Number of Non-Detect Data	8
Number of Detected Data	1
Minimum Detected	0.00391
Maximum Detected	0.00391
Percent Non-Detects	88.89%
Minimum Non-detect	0.00032
Maximum Non-detect	0.00308

Data set has all detected values equal to = 0.00391, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00391

** Instead of UCL, EPC is selected to be median = | < < 0.000724 [per recommendation in ProUCL User Guide]

1,4-Dichlorobenzene

Total Number of Data	9
Number of Non-Detect Data	8
Number of Detected Data	1
Minimum Detected	0.00411
Maximum Detected	0.00411
Percent Non-Detects	88.89%
Minimum Non-detect	0.000681
Maximum Non-detect	0.00352

Data set has all detected values equal to = 0.00411, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00411

** Instead of UCL, EPC is selected to be median = <0.00154
[per recommendation in ProUCL User Guide]

2-Butanone

Total Number of Data	9
Number of Non-Detect Data	7
Number of Detected Data	2
Minimum Detected	0.002
Maximum Detected	0.00216
Percent Non-Detects	77.78%
Minimum Non-detect	5.05E-04
Maximum Non-detect	0.00486
Mean of Detected Data	0.00208
Median of Detected Data	0.00208

Variance of Detected Data	1.28E-08
SD of Detected Data	1.13E-04
CV of Detected Data	0.0544
Skewness of Detected Data	N/A
Mean of Detected log data	-6.176
SD of Detected Log data	0.0544

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 9
Number treated as Detected 0
Single DL Percent Detection 100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00203
SD	5.96E-05
Standard Error of Mean	3.44E-05
95% KM (t) UCL	0.00209
95% KM (z) UCL	0.00208
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	0.00216
95% KM (Chebyshev) UCL	0.00218
97.5% KM (Chebyshev) UCL	0.00224
99% KM (Chebyshev) UCL	0.00237
Potential UCL to Use	
95% KM (t) UCL	0.00209
95% KM (% Bootstrap) UCL	0.00216
** Instead of UCL, EPC is selected to be median [per recommendation in ProUCL User Guide	

4,4'-DDT

Total Number of Data	, 9
Number of Non-Detect Data	. 8
Number of Detected Data	1
Minimum Detected	0.00057
Maximum Detected	0.00057
Percent Non-Detects	88.89%
Minimum Non-detect	0.00018

Maximum Non-detect

0.00023

Data set has all detected values equal to = 5.7000E-4, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00057

**Instead of UCL, EPC is selected to be median = <0.00021 [per recommendation in ProUCL User Guide]

Aluminum

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	4730
Maximum	21800
Mean	12213
Median	10800
SD	6892
Variance	47504575
Coefficient of Variation	0.564
Skewness	0.403
Mean of log data	9.255
SD of log data	0.604

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	16486	
OFP/ LICE - (Adjusted for Skovman)		
95% UCLs (Adjusted for Skewness)	16322	
95% Adjusted-CLT UCL 95% Modified-t UCL	16537	
95 /6 Modified-t OCL	10007	
Non-Parametric UCLs		
95% CLT UCL	15992	
95% Jackknife UCL	16486	
95% Standard Bootstrap UCL	15840	
95% Bootstrap-t UCL	16940	
95% Hall's Bootstrap UCL	15693	
95% Percentile Bootstrap UCL	15956	
95% BCA Bootstrap UCL	15922	
95% Chebyshev(Mean, Sd) UCL	22228	
97.5% Chebyshev(Mean, Sd) UCL	26561	
99% Chebyshev(Mean, Sd) UCL	35073	
Data appear Normal (0.05) May want to try Normal UCLs		
Antimony		
Number of Valid Observations	9	
Number of Distinct Observations	9	
Minimum	1.68	
Maximum	7.33	

4.023

Mean

Median	2.83
SD	2.215
Variance	4.905
Coefficient of Variation	0.55
Skewness	0.488
Mean of log data	1.251
SD of log data	0.568

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs	
Student's-t UCL	5.396
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	5.366
95% Modified-t UCL	5.416
Non-Parametric UCLs	
95% CLT UCL	5.238
95% Jackknife UCL	5.396
95% Standard Bootstrap UCL	5.197
95% Bootstrap-t UCL	5.622
95% Hall's Bootstrap UCL	5.022
95% Percentile Bootstrap UCL	5.148
95% BCA Bootstrap UCL	5.33
95% Chebyshev(Mean, Sd) UCL	7.241
97.5% Chebyshev(Mean, Sd) UCL	8.634
99% Chebyshev(Mean, Sd) ÚCL	11.37

Data appear Normal (0.05)

May want to try Normal UCLs

Arsenic

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	2.36
Maximum	9.62
Mean	5.813
Median	4.63
SD	3.107
Variance	9.653
Coefficient of Variation	0.534
Skewness	0.351
Mean of log data	1.623
SD of log data	0.566

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	7.739
95% UCLs (Adjusted for Skewness 95% Adjusted-CLT UCL	s) 7.646

95% Modified-t UCL	7.759
Non-Parametric UCLs	
95% CLT UCL	7.517
95% Jackknife UCL	7.739
95% Standard Bootstrap UCL	7.405
95% Bootstrap-t UCL	8.015
95% Hall's Bootstrap UCL	7.142
95% Percentile Bootstrap UCL	7.431
95% BCA Bootstrap UCL	7.597
95% Chebyshev(Mean, Sd) UCL	10.33
97.5% Chebyshev(Mean, Sd) UCL	12.28
99% Chebyshev(Mean, Sd) UCL	16.12

Data appear Normal (0.05)

May want to try Normal UCLs

Barium

Number of Valid Observations	(9
Number of Distinct Observations	9
Minimum	111
Maximum	280
Mean	209.7
Median	201
SD	47.73
Variance	2278
Coefficient of Variation	0.228
Skewness	-0.775
Mean of log data	5.318
SD of log data	0.263

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% UCLs (Adjusted for Skewness)			
95% Adjusted-CLT UCL	231.4		
95% Modified-t UCL	238.6		
Non-Parametric UCLs			
95% CLT UCL	235.8		
95% Jackknife UCL	239.2		
95% Standard Bootstrap UCL	234.1		
95% Bootstrap-t UCL	235.4		
95% Hall's Bootstrap UCL	235.3		
95% Percentile Bootstrap UCL	233.7		
95% BCA Bootstrap UCL	231.4	N.	
95% Chebyshev(Mean, Sd) UCL	279		
97.5% Chebyshev(Mean, Sd) UCL	309		
99% Chebyshev(Mean, Sd) UCL	368		
Data appear Normal (0.05)			
May want to try Normal UCLs			

Benzo(b)fluoranthene

Total Number of Data	9
Number of Non-Detect Data	8
Number of Detected Data	. 1
Minimum Detected	0.0369
Maximum Detected	0.0369
Percent Non-Detects	88.89%
Minimum Non-detect	0.00909
Maximum Non-detect	0.0115

Data set has all detected values equal to = 0.0369, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0369

Beryllium

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	0.32
Maximum	1.32
Mean	0.766
Median	0.69
SD	0.403
Variance	0.163
Coefficient of Variation	0.527
Skewness	0.315
Mean of log data	-0.403
SD of log data	0.566

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL 1.016

., 1.010
1.002
1.018
0.987
1.016
0.975
1.053
0.946
0.977
0.981
1.351
1.605
2.103

Data appear Normal (0.05)

May want to try Normal UCLs

Boron

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	13.3
Maximum	47.9
Mean	27.64
Median	26
SD	12.82
Variance	164.2
Coefficient of Variation	0.464
Skewness	0.532
Mean of log data	3.222
SD of log data	0.472

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	35.59
95% UCLs (Adjusted for Skewness)	handelia and in the Period on the Physic
95% Adjusted-CLT UCL	35.48
95% Modified-t UCL	35.71
Non-Parametric UCLs	
95% CLT UCL	34.67
95% Jackknife UCL	35.59
95% Standard Bootstrap UCL	34.23
95% Bootstrap-t UCL	36.73
95% Hall's Bootstrap UCL	35.45
95% Percentile Bootstrap UCL	34.46
95% BCA Bootstrap UCL	35.3
95% Chebyshev(Mean, Sd) UCL	46.26
97.5% Chebyshev(Mean, Sd) UCL	54.32
99% Chebyshev(Mean, Sd) UCL	70.15
Data appear Normal (0.05)	
May want to try Normal UCLs	

Carbon disulfide

. 9
7
2
0.00341
0.00841
77.78%
1.76E-04
0.0017
0.00591
0.00591
1.25E-05
0.00354
0.598

Skewness of Detected Data

N/A

Mean of Detected log data

-5.23

SD of Detected Log data

0.638

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00397
SD	0.00157
Standard Error of Mean	7.41E-04
95% KM (t) UCL	0.00534
95% KM (z) UCL	0.00518
95% KM (BCA) UCL	0.00841
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.00719
97.5% KM (Chebyshev) UCL	0.00859
99% KM (Chebyshev) UCL	0.0113
Potential UCL to Use	
95% KM (t) UCL	0.00534
95% KM (% Bootstrap) UCL	N/A

** Instead of UCL, EPC is selected to be median = <0.000810 [per recommendation in ProUCL User Guide]

Chromium

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	5.81
Maximum	22.5
Mean	12.81
Median	11.1
SD	6.512
Variance	42.41
Coefficient of Variation	0.508
Skewness	0.444
Mean of log data	2.43
SD of log data	0.527

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	16.85
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	16.73
95% Modified-t UCL	16.9
Non-Parametric UCLs	
95% CLT UCL	16.38
95% Jackknife UCL	16.85
95% Standard Bootstrap UCL	16.23
95% Bootstrap-t UCL	17.33
95% Hall's Bootstrap UCL	16.09
95% Percentile Bootstrap UCL	16.17
95% BCA Bootstrap UCL	16.4
95% Chebyshev(Mean, Sd) UCL	22.28
97.5% Chebyshev(Mean, Sd) UCL	26.37
99% Chebyshev(Mean, Sd) UCL	34.41

Data appear Normal (0.05)

May want to try Normal UCLs

cis-1,2-Dichloroethene

Total Number of Data	9
Number of Non-Detect Data	8
Number of Detected Data	1
Minimum Detected	0.0284
Maximum Detected	0.0284
Percent Non-Detects	88.89%
Minimum Non-detect	0.000204
Maximum Non-detect	0.00196

Data set has all detected values equal to = 0.0284, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0284

** Instead of UCL, EPC is selected to be median = <0.000461 [per recommendation in ProUCL User Guide]

Cobalt

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	3.32
Maximum	11.8
Mean	6.698
Median	5.92
SD	3.165
Variance	10.02
Coefficient of Variation	0.473
Skewness	0.508
Mean of log data	1.8

SD of log data

0.481

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs	10/4 24 (44)
Student's-t UCL	8,66
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	8.624
•	
95% Modified-t UCL	8.69
Non-Parametric UCLs	
95% CLT UCL	8.433
95% Jackknife UCL	8.66
95% Standard Bootstrap UCL	8.334
95% Bootstrap-t UCL	8.982
95% Hall's Bootstrap UCL	8.445
95% Percentile Bootstrap UCL	8.349
95% BCA Bootstrap UCL	8.547
95% Chebyshev(Mean, Sd) UCL	11.3
97.5% Chebyshev(Mean, Sd) UCL	13.29
99% Chebyshev(Mean, Sd) ÚCL	17.2
D () 1 (0.00)	

Data appear Normal (0.05)

May want to try Normal UCLs

Copper

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	2.68
Maximum	16.8
Mean	8.138
Median	6.87
SD	5.165
Variance	26.67
Coefficient of Variation	0.635
Skewness	0.626
Mean of log data	1.902
SD of log data	0.676

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs	USAN THE PARK
Student's-t UCL	11.34
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	11.35
95% Modified-t UCL	11.4
Non-Parametric UCLs	
95% CLT UCL	10.97
95% Jackknife UCL	11.34
95% Standard Bootstrap UCL	10.78

95% Bootstrap-t UCL	11.68
95% Hall's Bootstrap UCL	11.18
95% Percentile Bootstrap UCL	11.05
95% BCA Bootstrap UCL	11.25
95% Chebyshev(Mean, Sd) UCL	15.64
97.5% Chebyshev(Mean, Sd) UCL	18.89
99% Chebyshev(Mean, Sd) UCL	25.27

Data appear Normal (0.05)

May want to try Normal UCLs

Iron

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	7440
Maximum	27900
Mean	16496
Median	15000
SD	8097
Variance	65563178
Coefficient of Variation	0.491
Skewness	0.325
Mean of log data	9.596
SD of log data	0.518

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t'UCL	21515	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	21247	
95% Modified-t UCL	21563	
Non-Parametric UCLs		
95% CLT UCL	20935	
95% Jackknife UCL	21515	
95% Standard Bootstrap UCL	20708	
95% Bootstrap-t UCL	22126	
95% Hall's Bootstrap UCL	19940	
95% Percentile Bootstrap UCL	20869	
95% BCA Bootstrap UCL	21036	
95% Chebyshev(Mean, Sd) UCL	28260	
97.5% Chebyshev(Mean, Sd) UCL	33351	
99% Chebyshev(Mean, Sd) UCL	43351	
Data appear Normal (0.05)		
May want to try Normal UCLs		
Lead		
Number of Valid Observations	9	
Number of Distinct Observations	9	
Minimum	5.34	
Maximum	14.5	

Mean	9.587
Median	9.2
SD	3.603
Variance	12.98
Coefficient of Variation	0.376
Skewness	0.161
Mean of log data	2.194
SD of log data	0.393

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs	deposed in
Student's-t UCL	11.82
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	11.63
95% Modified-t UCL	11.83
Non-Parametric UCLs	
95% CLT UCL	11.56
95% Jackknife UCL	11.82
95% Standard Bootstrap UCL	11.44
95% Bootstrap-t UCL	11.9
95% Hall's Bootstrap UCL	11.24
95% Percentile Bootstrap UCL	11.42
95% BCA Bootstrap UCL	11.65
95% Chebyshev(Mean, Sd) UCL	14.82
97.5% Chebyshev(Mean, Sd) UCL	17.09
99% Chebyshev(Mean, Sd) UCL	21.54

Data appear Normal (0.05)

May want to try Normal UCLs

Lithium

9
9
7.29
44.6
21.4
17.1
14.41
207.6
0.673
0.724
2.852
0.697

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

BIRRY ASSESSMENT LAND AGENCY.	Parameter Community	programme recognition	WWW. Nov. Sci. U.S.	and the second of the second	人名达伊 医色色红斑 医皮肤病的
95% Useful	UCLS			磁性 数划 裁判 種	
				바위기 100 공사회	312 dis 417 divide
Student's-t U	ICL	hadan Aleen			30.33

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL 95% Modified-t UCL	30.54 30.52
Non-Parametric UCLs	
95% CLT UCL	29.3
95% Jackknife UCL	30.33
95% Standard Bootstrap UCL	28.78
95% Bootstrap-t UCL	33.66
95% Hall's Bootstrap UCL	30.44
95% Percentile Bootstrap UCL	29
95% BCA Bootstrap UCL	29.67
95% Chebyshev(Mean, Sd) UCL	42.33
97.5% Chebyshev(Mean, Sd) UCL	51.39
99% Chebyshev(Mean, Sd) UCL	69.18

Data appear Normal (0.05)

May want to try Normal UCLs

Manganese

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	212
Maximum	442
Mean	330.7
Median	321
SD	88.99
Variance	7920
Coefficient of Variation	0.269
Skewness	-0.147
Mean of log data	5.767
SD of log data	0.284

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	385.8
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	377.9 385.6
Non-Parametric UCLs	
95% CLT UCL	379.5
95% Jackknife UCL	385.8
95% Standard Bootstrap UCL	376.3
95% Bootstrap-t UCL	385.8
95% Hall's Bootstrap UCL	371.9
95% Percentile Bootstrap UCL	376.9
95% BCA Bootstrap UCL	373.4
95% Chebyshev(Mean, Sd) UCL	460
97.5% Chebyshev(Mean, Sd) UCL	515.9
99% Chebyshev(Mean, Sd) UCL	625.8

Data appear Normal (0.05)

May want to try Normal UCLs

Mercury

Number of Valid Observations	9
Number of Distinct Observations	8
Minimum	0.0065
Maximum	0.05
Mean	0.0176
Median	0.016
SD	0.0132
Variance	1.75E-04
Coefficient of Variation	0.753
Skewness	2.163
Mean of log data	-4.227
SD of log data	0.613

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs

Student's-t UCL	0.0258
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	0.0282
95% Modified-t UCL	0.0263
Non-Parametric UCLs	
95% CLT UCL	0.0248
95% Jackknife UCL	0.0258
95% Standard Bootstrap UCL	0.0247
95% Bootstrap-t UCL	0.0349
95% Hall's Bootstrap UCL	0.0567
95% Percentile Bootstrap UCL	0.025
95% BCA Bootstrap UCL	0.0277
95% Chebyshev(Mean, Sd) UCL	0.0368
97.5% Chebyshev(Mean, Sd) UCL	0.0452
99% Chebyshev(Mean, Sd) UCL	0.0615

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Molybdenum

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	0.16
Maximum	0.35
Mean	0.241
Median	0.24
SD	0.0675
Variance	0:00456
Coefficient of Variation	0.28
Skewness	0.35
Mean of log data	-1.458
SD of log data	0.282

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	0.283
- Bayanta Departe Treatment et en 1990 til en 1922 en 1920 til en 1920 til en 1920 til en 1920 til en 1920 til Det en 1920 til en 1920 ti	AP 2.3 *** 2.47%
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	0.281
95% Modified-t UCL	0.283
33 / Middiffed-1 OOL	0.200
Non-Parametric UCLs	
95% CLT UCL	0.278
95% Jackknife UCL	0.283
95% Standard Bootstrap UCL	0.277
95% Bootstrap-t UCL	0.287
95% Hall's Bootstrap UCL	0.276
95% Percentile Bootstrap UCL	0.276
95% BCA Bootstrap UCL	0.276
95% Chebyshev(Mean, Sd) UCL	0.339
97.5% Chebyshev(Mean, Sd) UCL	0.382
99% Chebyshev(Mean, Sd) UCL	0.465

Data appear Normal (0.05)

May want to try Normal UCLs

Nickel

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	6.31
Maximum	27.3
Mean	14.91
Median	13
SD	8.111
Variance	65.79
Coefficient of Variation	0.544
Skewness	0.452
Mean of log data	2.562
SD of log data	0.571

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Students-t UCL	19.94
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	19.79
95% Modified-t UCL	20.01
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	19.36 19.94 19.13 20.56 19.13 19.09 19.63

95% Chebyshev(Mean, Sd) UCL	26.7
97.5% Chebyshev(Mean, Sd) UCL	31.8
99% Chebyshev(Mean, Sd) UCL	41.81

Data appear Normal (0.05)

May want to try Normal UCLs

Strontium		
Number of Valid Observations	9	
Number of Distinct Observations	9	
Minimum	34.8	
Maximum	87.4	
Mean	59.17	
Median	59.3	

| SD | 22.06 | Variance | 486.7 | Coefficient of Variation | 0.373 | Skewness | 0.141 | Mean of log data | 4.015 | SD of log data | 0.388 |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	72.84	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	71.63	
95% Modified-t UCL	72.9	
Non-Parametric UCLs		
95% CLT UCL	71.26	
95% Jackknife UCL	72.84	
95% Standard Bootstrap UCL	70.42	
95% Bootstrap-t UCL	73.24	
95% Hall's Bootstrap UCL	68.5	
95% Percentile Bootstrap UCL	70.59	
95% BCA Bootstrap UCL	70.8	
95% Chebyshev(Mean, Sd) UCL	91.22	
97.5% Chebyshev(Mean, Sd) UCL	105.1	
99% Chebyshev(Mean, Sd) UCL	132.3	
Data appear Normal (0.05)		
May want to try Normal UCLs	•	
may want to try Normal OCLS		
Titanium		
Number of Valid Observations	9	
Number of Distinct Observations	9	
Minimum	21.1	
Maximum	54.5	
Mean	31.79	
Median	28.6	
SD	10.49	
Variance	110	

Coefficient of Variation	0.33
Skewness	1.471
Mean of log data	3.417
SD of log data	0.297

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs	1400000
Student's-t UCL	38.29
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	39.37
95% Modified-t UCL	38.58
3370 Wodined t GOE	00.00
Non-Parametric UCLs	
95% CLT UCL	37.54
95% Jackknife UCL	38.29
95% Standard Bootstrap UCL	37.28
95% Bootstrap-t UCL	44.61
95% Hall's Bootstrap UCL	71.75
95% Percentile Bootstrap UCL	37.58
95% BCA Bootstrap UCL	39.1
95% Chebyshev(Mean, Sd) UCL	47.03
97.5% Chebyshev(Mean, Sd) UCL	53.62
99% Chebyshev(Mean, Sd) UCL	66.58
Data appear Normal (0.05)	
** ** * * * * * * * * * * * * * * * * *	

May want to try Normal UCLs

Trichloroethene

Total Number of Data	9
Number of Non-Detect Data	8
Number of Detected Data	1
Minimum Detected	0.0159
Maximum Detected	0.0159
Percent Non-Detects	88.89%
Minimum Non-detect	0.000286
Maximum Non-detect	0.00276

Data set has all detected values equal to = 0.0159, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0159

** Instead of UCL, EPC is selected to be median = <0.000647 [per recommendation in ProUCL User Guide]

Vanadium

Number of Valid Observations	9
Number of Distinct Observations	9
Minimum	10.2
Maximum	34.2
Mean	20.21
Median	19.1

SD	9.135
Variance	83.45
Coefficient of Variation	0.452
Skewness	0.468
Mean of log data	2.913
SD of log data	0.461

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	25.87
95% UCLs (Adjusted for Skewness)	05.70
95% Adjusted-CLT UCL 95% Modified-t UCL	25.73 25.95
Non-Parametric UCLs	
95% CLT UCL	25.22
95% Jackknife UCL	25.87
95% Standard Bootstrap UCL	24.81
95% Bootstrap-t UCL	26.97
95% Hall's Bootstrap UCL	25.22
95% Percentile Bootstrap UCL	24.93
95% BCA Bootstrap UCL	25
95% Chebyshev(Mean, Sd) UCL	33.48
97.5% Chebyshev(Mean, Sd) UCL	39.23
99% Chebyshev(Mean, Sd) UCL	50.51
Data appear Normal (0.05)	
May want to try Normal UCLs	

Xylene (total)

Total Number of Data	9
Number of Non-Detect Data	8
Number of Detected Data	1
Minimum Detected	0.00335
Maximum Detected	0.00335
Percent Non-Detects	88.89%
Minimum Non-detect	0.000925
Maximum Non-detect	0.00891

Data set has all detected values equal to = 0.00335, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00335

** Instead of UCL, EPC is selected to be median =		
Zinc		. — . — . — . — .
Number of Valid Observations	9	
Number of Distinct Observations	9	

19.3

54.1

Minimum

Maximum

Mean	36.04
Median	34.1
SD	13.68
Variance	187
Coefficient of Variation	0.379
Skewness	0.0735
Mean of log data	3.515
SD of log data	0.404

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	44.52
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL 95% Modified-t UCL	43.66 44.54
95% Modified-LOCE	44.54
Non-Parametric UCLs	
95% CLT UCL	43.54
95% Jackknife UCL	44.52
95% Standard Bootstrap UCL	43.06
95% Bootstrap-t UCL	44.65
95% Hall's Bootstrap UCL	42.22
95% Percentile Bootstrap UCL	43.54
95% BCA Bootstrap UCL	43.28
95% Chebyshev(Mean, Sd) UCL	55.91
97.5% Chebyshev(Mean, Sd) UCL	64.51
99% Chebyshev(Mean, Sd) UCL	81.4

Data appear Normal (0.05) May want to try Normal UCLs

APPENDIX A-8

NORTH OF MARLIN SEDIMENT

Nonparametric UCL Statistics for Data Sets with Non-Detects

User Selected Options

From File

C:\Users\Michael\....\Gulfco Superfund Site\revised HHRA\N Wetland-May09 data\Gulfco N Wetland-May09 data_ProUCL input.wst

Full Precision

OFF

Confidence Coefficient

95%

Number of Bootstrap Operations

2000

1,2-Dichloroethane

Total Number of Data	48
Number of Non-Detect Data	45
Number of Detected Data	3
Minimum Detected	0.00183
Maximum Detected	0.0024
Percent Non-Detects	93.75%
Minimum Non-detect	1.23E-04
Maximum Non-detect	0.00265
Mean of Detected Data	0.00218
Median of Detected Data	0.00232
Variance of Detected Data	9.52E-08
SD of Detected Data	3.09E-04
CV of Detected Data	0.141
Skewness of Detected Data	-1.602
Mean of Detected log data	-6.134
SD of Detected Log data	0.148

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect48Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

 Mean
 0.00185

 SD
 1.07E-04

Standard Error of Mean	1.92E-05
95% KM (t) UCL	0.00188
95% KM (z) UCL	0.00188
95% KM (BCA) UCL	0.0024
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.00194
97.5% KM (Chebyshev) UCL	0.00197
99% KM (Chebyshev) UCL	0.00204

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median <0.00015 [per recommendation in ProUCL User Guide]

2-Methylnaphthalene

Total Number of Data	48
Number of Non-Detect Data	44
Number of Detected Data	4
Minimum Detected	0.0122
Maximum Detected	0.43
Percent Non-Detects	91.67%
Minimum Non-detect	0.00851
Maximum Non-detect	0.173
Mean of Detected Data	0.134
Median of Detected Data	0.0463
Variance of Detected Data	0.0393
SD of Detected Data	0.198
CV of Detected Data	1.483
Skewness of Detected Data	1.956
Mean of Detected log data	-2.854
SD of Detected Log data	1.483
-	

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 47
Number treated as Detected 1
Single DL Percent Detection 97.92%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0225
SD	0.0599
Standard Error of Mean	0.00999
95% KM (t) UCL	0.0393
95% KM (z) UCL	0.039
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.0661
97.5% KM (Chebyshev) UCL	0.0849
99% KM (Chebyshev) UCL	0.122

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

★Instead of UCL; EPC is selected to be median < <0.01200</p>
[per recommendation in ProUCL User Guide]

1 11-	וחח	r
+.4 -	יטט	

· · · · · · · · · · · · · · · · · · ·	•
Total Number of Data	56
Number of Non-Detect Data	40
Number of Detected Data	16
Minimum Detected	9.29E-04
Maximum Detected	0.00922
Percent Non-Detects	71.43%
Minimum Non-detect	1.54E-04
Maximum Non-detect	0.00498
Mean of Detected Data	0.00254
Median of Detected Data	0.00192
Variance of Detected Data	4.33E-06
SD of Detected Data	0.00208
CV of Detected Data	0.821
Skewness of Detected Data	2.555
Mean of Detected log data	-6.177
SD of Detected Log data	0.594

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 55
Number treated as Detected 1
Single DL Percent Detection 98.21%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00139
SD	0.0013
Standard Error of Mean	1.80E-04
95% KM (t) UCL	0.0017
95% KM (z) UCL	0.00169
95% KM (BCA) UCL	0.00198
95% KM (Percentile Bootstrap) UCL	0.00184
95% KM (Chebyshev) UCL	0.00218
97.5% KM (Chebyshev) UCL	0.00252
99% KM (Chebyshev) UCL	0.00319

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

Acenaphthene

Total Number of Data	48
Number of Non-Detect Data	44
Number of Detected Data	4
Minimum Detected	0.016
Maximum Detected	0.133
Percent Non-Detects	91.67%
Minimum Non-detect	0.00851
Maximum Non-detect	0.173
Mean of Detected Data	0.0748
Median of Detected Data	0.075
Variance of Detected Data	0.00324
SD of Detected Data	0.057
CV of Detected Data	0.762
Skewness of Detected Data	-0.0107
Mean of Detected log data	-2.907
SD of Detected Log data	0.997

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect48Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0213
SD	0.0224
Standard Error of Mean	0.00387
95% KM (t) UCL	0.0278
95% KM (z) UCL	0.0277
95% KM (BCA) UCL	0.133
95% KM (Percentile Bootstrap) UCL	0.114
95% KM (Chebyshev) UCL	0.0382
97.5% KM (Chebyshev) UCL	0.0455
99% KM (Chebyshev) UCL	0.0598
Data appear Normal (0.05)	
May want to try Normal UCLs	

** Instead of UCL, EPC is selected to be median <>0.01105 [per recommendation in ProUCL User Guide]

Acenaphthylene

Total Number of Data	48
Number of Non-Detect Data	44
Number of Detected Data	4
Minimum Detected	0.0291
Maximum Detected	0.545
Percent Non-Detects	91.67%
Minimum Non-detect	0.00746
Maximum Non-detect	0.174
Mean of Detected Data	0.265
Median of Detected Data	0.243
Variance of Detected Data	0.0522
SD of Detected Data	0.228
CV of Detected Data	0.863
Skewness of Detected Data	0.418
Mean of Detected log data	-1.795
SD of Detected Log data	1.293

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

46 Number treated as Non-Detect Number treated as Detected 2 95.83% Single DL Percent Detection

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0488
SD	0.0866
Standard Error of Mean	0.0144
95% KM (t) UCL	0.073
95% KM (z) UCL	0.0726
95% KM (BCA) UCL	0.545
95% KM (Percentile Bootstrap) UCL	0.545
95% KM (Chebyshev) UCL	0.112
97.5% KM (Chebyshev) UCL	0.139
99% KM (Chebyshev) UCL	0.193

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median < 0.01270
[per recommendation in ProUCL User Guide]

Aluminum

Number of Valid Observations	48
Number of Distinct Observations	38
Minimum	3400
Maximum	19200
Mean	13229
Median	13650
SD	3162
Variance	9999496
Coefficient of Variation	0.239
Skewness	-0.611
Mean of log data	9.454
SD of log data	0.296
95% Useful UCLs	
Student's-t UCL	13995

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL 13936

95% Modified-t UCL	13988
Non-Parametric UCLs	
95% CLT UCL	13980
95% Jackknife UCL	13995
95% Standard Bootstrap UCL	13984
95% Bootstrap-t UCL	13961
95% Hall's Bootstrap UCL	13944
95% Percentile Bootstrap UCL	13956
95% BCA Bootstrap UCL	13934
95% Chebyshev(Mean, Sd) UCL	15218
97.5% Chebyshev(Mean, Sd) UCL	16079
99% Chebyshev(Mean, Sd) UCL	17770

Data appear Normal (0.05)

May want to try Normal UCLs

Anthracene

<u>'</u>	
Total Number of Data	48
Number of Non-Detect Data	40
Number of Detected Data	8
Minimum Detected	0.00838
Maximum Detected	0.334
Percent Non-Detects	83.33%
Minimum Non-detect	0.00593
Maximum Non-detect	0.12
Mean of Detected Data	0.137
Median of Detected Data	0.111
Variance of Detected Data	0.0176
SD of Detected Data	0.133
CV of Detected Data	0.972
Skewness of Detected Data	0.321
Mean of Detected log data	-2.761
SD of Detected Log data	1.525

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect44Number treated as Detected4Single DL Percent Detection91.67%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0299
SD	0.0696
Standard Error of Mean	0.0107
95% KM (t) UCL	0.0479
95% KM (z) UCL	0.0476
95% KM (BCA) UCL	0.0746
95% KM (Percentile Bootstrap) UCL	0.0547
95% KM (Chebyshev) UCL	0.0767
97.5% KM (Chebyshev) UCL	0.097
99% KM (Chebyshev) UCL	0.137

Data appear Normal (0.05) May want to try Normal UCLs

Antimony

Total Number of Data	47
Number of Non-Detect Data	8
Number of Detected Data	39
Minimum Detected	0.65
Maximum Detected	4.24
Percent Non-Detects	17.02%
Minimum Non-detect	0.24
Maximum Non-detect	0.26
Mean of Detected Data	1.365
Median of Detected Data	1.25
Variance of Detected Data	0.366
SD of Detected Data	0.605
CV of Detected Data	0.443
Skewness of Detected Data	3.054
Mean of Detected log data	0.245
SD of Detected Log data	0.347

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	0.347
Mean	1.124
SD	0.317

Mean	95% Winsor (t) UCL	1.203	
Mean 1.243 SD	Kaplan Meier (KM) Method		
Standard Error of Mean 0.0897 95% KM (t) UCL 1.394 95% KM (t) UCL 1.391 95% KM (gECA) UCL 1.417 95% KM (Percentile Bootstrap) UCL 1.411 95% KM (Percentile Bootstrap) UCL 1.411 95% KM (Chebyshev) UCL 1.634 97.5% KM (Chebyshev) UCL 1.803 99% KM (Chebyshev) UCL 2.136 Data appear Lognormal (0.05) May want to try Lognormal UCLs Arsenic Total Number of Data 48 Number of Non-Detect Data 15 Number of Detected Data 33 Minimum Detected 11 Maximum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 2.83 Variance of Detected Data 2.83 Variance of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 3.569 Mean of Detected Data 3.569 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Non-Detect 19 Number treated as Poetcted Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%		1.243	•
95% KM (t) UCL 1.394 95% KM (z) UCL 1.391 95% KM (BCA) UCL 1.417 95% KM (Percentile Bootstrap) UCL 1.411 95% KM (Chebyshev) UCL 1.634 97.5% KM (Chebyshev) UCL 1.634 97.5% KM (Chebyshev) UCL 1.803 99% KM (Chebyshev) UCL 2.136 Data appear Lognormal (0.05) May want to try Lognormal UCLs Arsenic Total Number of Data 48 Number of Non-Detect Data 15 Number of Detected Data 33 Minimum Detected 1 Maximum Detected 1 Maximum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 5.289 SD of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 3.58 Mean of Detected Data 3.58 Median of Detected Data 3.58 Median of Detected Data 5.289 SD of Detected Data 5.289 SD of Detected Data 0.642 Skewness of Detected Data 1.114 SD of Detected Log data 1.59 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Winsorization Method 39.58%	SD	0.607	
95% KM (2) UCL 1.391 95% KM (BCA) UCL 1.417 95% KM (Percentile Bootstrap) UCL 1.411 95% KM (Chebyshev) UCL 1.634 97.5% KM (Chebyshev) UCL 1.634 97.5% KM (Chebyshev) UCL 2.136 Data appear Lognormal (0.05) May want to try Lognormal UCLS Arsenic Total Number of Data 48 Number of Non-Detect Data 15 Number of Non-Detect Data 33 Minimum Detected 11 Maximum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 0.12 Maximum Non-detect 0.15 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 2.83 Variance of Detected Data 3.58 Sewness of Detected Data 2.3 CV of Detected Data 3.58 Ween of Detected Data 3.58 Sewness of Detected Data 3.59 Do find Detected Data 3.59 So of Detected Data 3.59 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	Standard Error of Mean	0.0897	
95% KM (BCA) UCL 1.417 95% KM (Percentile Bootstrap) UCL 1.411 95% KM (Chebyshev) UCL 1.634 97.5% KM (Chebyshev) UCL 2.136 Data appear Lognormal (0.05) May want to try Lognormal UCLs Arsenic Total Number of Data 48 Number of Non-Detect Data 15 Number of Detected Data 33 Minimum Detected 1 Maximum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 2.83 Variance of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 3.58 SD of Detected Data 3.58 Wedian of Detected Data 3.58 Median of Detected Data 3.58 OV of Detected Data 3.35 Do f Detected Data 4.35 Do f Detected Data 4.3	95% KM (t) UCL	1.394	
95% KM (Percentile Bootstrap) UCL 1.411 95% KM (Chebyshev) UCL 1.634 97.5% KM (Chebyshev) UCL 2.136 Data appear Lognormal (0.05) May want to try Lognormal UCLs Arsenic Total Number of Data Number of Non-Detect Data Number of Detected Data 15 Number of Detected Data 12.8 Percent Non-Detects 11.85 Minimum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 2.83 Variance of Detected Data 3.58 Median of Detected Data 3.59 Do f Detected Data 3.50 Do f Detected Dat	95% KM (z) UCL	1.391	
95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 1.803 99% KM (Chebyshev) UCL 2.136 Data appear Lognormal (0.05) May want to try Lognormal UCLs Arsenic Total Number of Data Number of Non-Detect Data 15 Number of Detected Data 33 Minimum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 2.83 Variance of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 3.58 Kewness of Detected Data 4.114 SD of Detected Log data 1.114 SD of Detected Log data 0.569 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58%	95% KM (BCA) UCL	1.417	
97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 2.136 Data appear Lognormal (0.05) May want to try Lognormal UCLs Total Number of Data 48 Number of Non-Detect Data 15 Number of Detected Data 33 Minimum Detected 11 Maximum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 2.83 Variance of Detected Data 2.83 CV of Detected Data 2.3 CV of Detected Data 3.50 Nean of Detected Data 4.114 SD of Detected Log data 5.289 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected Data 29 Single DL Percent Detection 39.58%	95% KM (Percentile Bootstrap) UCL	1.411	4
Data appear Lognormal (0.05) May want to try Lognormal UCLs Total Number of Data Number of Non-Detect Data Number of Detected Data Naimum Detected 1 Maximum Detected 1 Maximum Non-Detect Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 2.83 Vorience of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 3.50 Mean of Detected Data 3.50 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/Z, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Non-Detect 19 Number treated as Detected Data Data Data Data Data Data Data Data	95% KM (Chebyshev) UCL	1.634	
Data appear Lognormal (0.05) May want to try Lognormal UCLs Total Number of Data 48 Number of Non-Detect Data 15 Number of Detected Data 33 Minimum Detected 11 Maximum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 5.289 SD of Detected Data 2.83 Variance of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 2.191 Mean of Detected Data 2.191 Mean of Detected Log data 1.114 SD of Detected Log data 0.569 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDS Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Winsorization Method 39.58%	97.5% KM (Chebyshev) UCL	1.803	
Arsenic Total Number of Data 48 Number of Non-Detect Data 15 Number of Detected Data 33 Minimum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 2.83 Variance of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 2.3 Skewness of Detected Data 2.191 Mean of Detected Log data 3.114 SD of Detected Log data 3.569 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	99% KM (Chebyshev) UCL	2.136	
Arsenic Total Number of Data 48 Number of Non-Detect Data 15 Number of Detected Data 33 Minimum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 2.83 Variance of Detected Data 2.3 CV of Detected Data 2.3 CV of Detected Data 2.3 Skewness of Detected Data 2.191 Mean of Detected Log data 3.114 SD of Detected Log data 3.569 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	Data appear Lognormal (0.05)		
Total Number of Data Number of Non-Detect Data Number of Detected Data Number of Detected Data Number of Detected Data Minimum Detected 1			
Total Number of Data Number of Non-Detect Data Number of Detected Data Number of Detected Data Number of Detected Data Minimum Detected 1	, , ,		
Total Number of Data Number of Non-Detect Data Number of Detected Data Number of Detected Data Number of Detected Data Minimum Detected 1			
Number of Non-Detect Data Number of Detected Data Number of Detected Data Minimum Detected 1 Maximum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data Median of Detected Data 3.58 Median of Detected Data 3.58 Median of Detected Data 5.283 Variance of Detected Data 5.289 SD of Detected Data CV of Detected Data 2.3 CV of Detected Data 3.58 Mean of Detected Data 5.289 SD of Detected Data 2.3 CV of Detected Data 5.29 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level	Arsenic		
Number of Detected Data Minimum Detected 1 Maximum Detected 1 1 Maximum Detected Percent Non-Detects Minimum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 5.289 SD of Detected Data 2.3 CV of Detected Data 3.50 Mean of Detected Data 2.3 CV of Detected Data 2.191 Mean of Detected Data 3.59 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Winsorization Method 39.58%	Total Number of Data	48	
Minimum Detected Maximum Detected 12.8 Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect 1.55 Mean of Detected Data Median of Detected Data Variance of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Skewness of Detected log data Mean of Detected log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Detected 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Winsorization Method 39.58%			
Maximum Detected 12.8 Percent Non-Detects 31.25% Minimum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 5.289 SD of Detected Data 2.3 CV of Detected Data 0.642 Skewness of Detected Data 2.191 Mean of Detected log data 1.114 SD of Detected Log data 0.569 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	Number of Detected Data		
Percent Non-Detects Minimum Non-detect 0.12 Maximum Non-detect 1.55 Mean of Detected Data 3.58 Median of Detected Data 2.83 Variance of Detected Data 5.289 SD of Detected Data 2.3 CV of Detected Data 5.289 SD of Detected Data 2.3 CV of Detected Data 2.3 Exempess of Detected Data 3.58 Mean of Detected Data 5.289 SD of Detected Data 5.29 Shewness of Detected Data 5.291 Mean of Detected log data 1.114 SD of Detected Log data 5.291 Mote: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level		-	
Minimum Non-detect Maximum Non-detect 1.55 Mean of Detected Data Median of Detected Data Variance of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data CV of Detected Data Skewness of Detected Data Nean of Detected log data Nof Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Winsorization Method 39.58%			
Mean of Detected Data Median of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Nean of Detected log data Stewness of Detected Data Mean of Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Winsorization Method 39.58%			
Mean of Detected Data Median of Detected Data Z.83 Variance of Detected Data SD of Detected Data CV of Detected Data CV of Detected Data Skewness of Detected Data Nean of Detected log data SL191 Mean of Detected Log data Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection 39.58% Winsorization Method 39.58%			
Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 2.83 2.83 2.83 2.83 2.83 2.85 8.89 Significance Level	Maximum Non-detect	1.55	
Variance of Detected Data SD of Detected Data CV of Detected Data CV of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 5.289 5.289 5.289 5.289 5.289 5.289 5.289 5.289 5.289 5.289 5.289 5.289 Significance Level	Mean of Detected Data	3.58	
SD of Detected Data CV of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data 2.191 Mean of Detected log data 1.114 SD of Detected Log data O.569 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	Median of Detected Data	2.83	
CV of Detected Data Skewness of Detected Data Nean of Detected log data 1.114 SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 0.642 2.191 0.569	Variance of Detected Data	5.289	
Skewness of Detected Data 2.191 Mean of Detected log data 1.114 SD of Detected Log data 0.569 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	SD of Detected Data	2.3	
Mean of Detected log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	CV of Detected Data	0.642	
SD of Detected Log data Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	Skewness of Detected Data	2.191	
Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	Mean of Detected log data	1.114	
For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	SD of Detected Log data	0.569	
Observations < Largest DL are treated as NDs Number treated as Non-Detect 19 Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	Note: Data have multiple DLs - Use of KM Me	thod is recommended	
Number treated as Non-Detect Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	For all methods (except KM, DL/2, and ROS Me	ethods),	
Number treated as Detected 29 Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method 39.58%	Observations < Largest DL are treated as NDs		
Single DL Percent Detection 39.58% Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method . 39.58%	Number treated as Non-Detect	19	
Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level Winsorization Method . 39.58%	Number treated as Detected		
Data appear Gamma Distributed at 5% Significance Level Winsorization Method . 39.58%	Single DL Percent Detection	39.58%	
Winsorization Method 39.58%	Data Dsitribution Test with Detected Values O	nly	
Mean 2.191	Winsorization Method	39.58%	
	Mean	2.191	
SD 0.434	SD	0.434	

95% Winsor (t) UCL	2.306	
Mandau Nastau (MAA) Nashbard		
Kaplan Meier (KM) Method		
Mean	2.775	
SD	2.226	
Standard Error of Mean	0.326	
95% KM (t) UCL	3.322	
95% KM (z) UCL	3.312	
95% KM (BCA) UCL	3.433	
95% KM (Percentile Bootstrap) UCL	3.376	
95% KM (Chebyshev) UCL	4.197	
97.5% KM (Chebyshev) UCL	4.812	
99% KM (Chebyshev) UCL	6.021	
Data appear Gamma Distributed (0.05)		
May want to try Gamma UCLs		
May want to try damma octs		
		_
Barium		
Number of Valid Observations	48	
Number of Distinct Observations	46	
Minimum	36	
Maximum	820	
Mean	151.7	
Median	102.5	
SD	136.5	
Variance	18624	
Coefficient of Variation	0.899	
	3.09	
Skewness	4.792	
Mean of log data		
SD of log data	0.623	
Data do not follow a Discernable Distribution		
95% Useful UCLs		
Student's-t UCL	184.8	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	193.5	
95% Modified-t UCL	186.2	
93% Modified-t OCL	100.2	
Non-Parametric UCLs		
95% CLT UCL	184.1	
95% Jackknife UCL	184.8	
95% Standard Bootstrap UCL	184.1	
95% Bootstrap-t UCL	203.7	
95% Hall's Bootstrap UCL	214.8	
95% Percentile Bootstrap UCL	185.5	
95% BCA Bootstrap UCL	197.5	
95% Chebyshev(Mean, Sd) UCL	237.6	
3370 Chebyshev(Ivican, 3u) OCL	237,0	

97.5% Chebyshev(Mean, Sd) UCL	274.7
99% Chebyshev(Mean, Sd) UCL	347.7
Potential UCL to Use	
Use 95% Chebyshev (Mean, Sd) UCL	237.6

Benzo	(a)anth	racene

Total Number of Data	48
Number of Non-Detect Data	43
Number of Detected Data	5
Minimum Detected	0.0546
Maximum Detected	0.993
Percent Non-Detects	89.58%
Minimum Non-detect	0.00506
Maximum Non-detect	0.142
Mean of Detected Data	0.413
Median of Detected Data	0.199
Variance of Detected Data	0.177
SD of Detected Data	0.421
CV of Detected Data	1.019
Skewness of Detected Data	0.765
Mean of Detected log data	-1.442
SD of Detected Log data	1.258

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect45Number treated as Detected3Single DL Percent Detection93.75%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.092
SD	0.164
Standard Error of Mean	0.0264
95% KM (t) UCL	0.136
95% KM (z) UCL	0.135

95% KM (BCA) UCL	0.724
95% KM (Percentile Bootstrap) UCL	0.254
95% KM (Chebyshev) UCL	0.207
97.5% KM (Chebyshev) UCL	0.257
99% KM (Chebyshev) UCL	0.355

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median <--<--<---<---<---<----<----</pre>
[per recommendation in ProUCL User Guide]

Poppo/olymana		
Benzo(a)pyrene		
Total Number of Data	48	
Number of Non-Detect Data	33	
Number of Detected Data	15	
Minimum Detected	0.0176	
Maximum Detected	1.3	
Percent Non-Detects	68.75%	
Minimum Non-detect	0.00862	
Maximum Non-detect	0.132	
Mean of Detected Data	0.313	
Median of Detected Data	0.133	
Variance of Detected Data	0.157	
SD of Detected Data	0.397	
CV of Detected Data	1.269	
Skewness of Detected Data	1.521	
Mean of Detected log data	-2.11	
SD of Detected Log data	1.557	
Note: Data have multiple DLs - Use of KM Method i		
For all methods (except KM, DL/2, and ROS Methods	s),	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	39	
Number treated as Detected	9	
Single DL Percent Detection	81.25%	
Data Dsitribution Test with Detected Values Only		
Data appear Gamma Distributed at 5% Significance I	.evel	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.11	
SD	0.254	
Standard Error of Mean	0.038	

0.173

0.172

95% KM (t) UCL

95% KM (z) UCL

95% KM (BCA) UCL	0.178
95% KM (Percentile Bootstrap) UCL	0.178
95% KM (Chebyshev) UCL	0.275
97.5% KM (Chebyshev) UCL	0.347
99% KM (Chebyshev) UCL	0.487
Data appear Gamma Distributed (0.05)	
May want to try Gamma UCLs	
·	

Benzo(b)fluoranthene

Total Number of Data	48
Number of Non-Detect Data	29
Number of Detected Data	19
Minimum Detected	0.0162
Maximum Detected	1.36
Percent Non-Detects	60.42%
Minimum Non-detect	0.00754
Maximum Non-detect	0.153
Mean of Detected Data	0.206
Median of Detected Data	0.0474
Variance of Detected Data	0.123
SD of Detected Data	0.35
CV of Detected Data	1.697
Skewness of Detected Data	2.497
Mean of Detected log data	-2.563
SD of Detected Log data	1.342

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect42Number treated as Detected6Single DL Percent Detection87.50%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	-
Mean	0.0923
SD	0.233
Standard Error of Mean	0.0346
95% KM (t) UCL	0.15
95% KM (z) UCL	0.149
95% KM (BCA) UCL	0.159
95% KM (Percentile Bootstrap) UCL	0.152
95% KM (Chebyshev) UCL	0.243

97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.309 0.437	
Potential UCL to Use 95% KM (BCA) UCL	0.159	
Benzo(g,h,i)perylene		
Total Number of Data	48	•
Number of Non-Detect Data	24	
Number of Detected Data	24	
Minimum Detected	0.044	
Maximum Detected	1.94	
Percent Non-Detects	50.00%	
Minimum Non-detect	0.00863	
Maximum Non-detect	0.644	
Mean of Detected Data	0.365	
Median of Detected Data	0.144	
Variance of Detected Data	0.244	
SD of Detected Data	0.494	
CV of Detected Data	1.355	
Skewness of Detected Data	2.159	
Mean of Detected log data	-1.648	
SD of Detected Log data	1.076	
Note: Data have multiple DLs - Use of KM Method i	s recommended	
For all methods (except KM, DL/2, and ROS Methods	a),	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	43	
Number treated as Detected	5	
Single DL Percent Detection	89.58%	
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.206	
SD	0.377	
Standard Error of Mean	0.0557	
95% KM (t) UCL	0.3	
95% KM (z) UCL	0.298	
95% KM (BCA) UCL	0.331	
95% KM (Percentile Bootstrap) UCL	0.302	
95% KM (Chebyshev) UCL	0.449	
97.5% KM (Chebyshev) UCL	0.554	
99% KM (Chebyshev) UCL	0.76	

Benzo(k)fluoranthene	
Fotal Number of Data	48
Number of Non-Detect Data	34
Number of Detected Data	14
Minimum Detected	0.0692
Maximum Detected	0.73
Percent Non-Detects	70.83%
Minimum Non-detect	0.01
Maximum Non-detect	0.216
Mean of Detected Data	0.174
Median of Detected Data	0.128
Variance of Detected Data	0.0312
SD of Detected Data	0.177
CV of Detected Data	1.013
Skewness of Detected Data	2.806
Mean of Detected log data	-2.016
SD of Detected Log data	0.67
Note: Data have multiple DLs - Use of KM Meth	nod is recommended
For all methods (except KM, DL/2, and ROS Met	hods),
Observations < Largest DL are treated as NDs	
Number treated as Non-Detect	46
Number treated as Detected	2
Single DL Percent Detection	95.83%
Data Dsitribution Test with Detected Values Onl	y - *
Data do not follow a Discernable Distribution (0.	.05)
Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.101
SD	0.104
Standard Error of Mean	0.0156
95% KM (t) UCL	0.127
95% KM (z) UCL	0.127
95% KM (BCA) UCL	0.135
95% KM (Percentile Bootstrap) UCL	0.131
95% KM (Chebyshev) UCL	0.169
07 F0/ KNA /Chabuahau/ UCI	0.198
97.5% KM (Chebyshev) UCL	
97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.256
	0.256
99% KM (Chebyshev) UCL	0.256 0.127

Dam Illiana	
Beryllium	
Number of Valid Observations	48
Number of Distinct Observations	36
Minimum	0.28
Maximum	1.37
Mean	0.894
Median	0.93
SD	0.206
Variance	0.0424
Coefficient of Variation	0.23
Skewness	-0.364
Mean of log data	-0.144
SD of log data	0.269
95% Useful UCLs	
Student's-t UCL	0.943
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	0.941
95% Modified-t UCL	0.943
Non-Parametric UCLs	
95% CLT UCL	0.942
95% Jackknife UCL	0.943
95% Standard Bootstrap UCL	0.942
95% Bootstrap-t UCL	0.944
95% Hall's Bootstrap UCL	0.942
95% Percentile Bootstrap UCL	0.941
95% BCA Bootstrap UCL	0.942
95% Chebyshev(Mean, Sd) UCL	1.023
97.5% Chebyshev(Mean, Sd) UCL	1.079
99% Chebyshev(Mean, Sd) UCL	1.189
Data annear Normal / 0 OE)	
Data appear Normal (0.05) May want to try Normal UCLs	
Boron	
Total Number of Data	48
Number of Non-Detect Data	23
Number of Detected Data	25
Minimum Detected	5.17
Maximum Detected	46.2
Percent Non-Detects	47.92%
Minimum Non-detect	1.16
Maximum Non-detect	40.9

Mean of Detected Data	22.7
Median of Detected Data	20.4
Variance of Detected Data	118.8
SD of Detected Data	10.9
CV of Detected Data	0.48
Skewness of Detected Data	0.557
Mean of Detected log data	2.997
SD of Detected Log data	0.54

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect46Number treated as Detected2Single DL Percent Detection95.83%

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	15.27
SD	11.35
Standard Error of Mean	1.729
95% KM (t) UCL	18.17
95% KM (z) UCL	18.12
95% KM (BCA) UCL	20.12
95% KM (Percentile Bootstrap) UCL	19.07
95% KM (Chebyshev) UCL	22.81
97.5% KM (Chebyshev) UCL	26.07
99% KM (Chebyshev) UCL	32.48

Cadmium

Data appear Normal (0.05) May want to try Normal UCLs

Total Number of Data	48
Total Number of Data	40
Number of Non-Detect Data	29
Number of Detected Data	19
Minimum Detected	0.033
Maximum Detected	0.48
Percent Non-Detects	60.42%
Minimum Non-detect	0.0058
Maximum Non-detect	0.039
Mean of Detected Data	0.243
Median of Detected Data	0.23
Variance of Detected Data	0.0216

SD of Detected Data	0.147	
CV of Detected Data	0.606	
Skewness of Detected Data	0.272	
Mean of Detected log data	-1.645	
SD of Detected Log data	0.761	
Note: Data have multiple DLs - Use of KM Method is recommended		

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 30 Number treated as Detected 18 62.50% Single DL Percent Detection

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.116
SD	0.136
Standard Error of Mean	0.0202
95% KM (t) UCL	0.15
95% KM (z) UCL	0.149
95% KM (BCA) UCL	0.175
95% KM (Percentile Bootstrap) UCL	0.167
95% KM (Chebyshev) UCL	0.204
97.5% KM (Chebyshev) UCL	0.242
99% KM (Chebyshev) UCL	0.317

Data appear Normal (0.05) May want to try Normal UCLs

Carbazole

Total Number of Data	48
Number of Non-Detect Data	43
Number of Detected Data	5
Minimum Detected	0.0158
Maximum Detected	0.141
Percent Non-Detects	89.58%
Minimum Non-detect	0.00812
Maximum Non-detect	0.165
Mean of Detected Data	0.0644
Median of Detected Data	0.0262
Variance of Detected Data	0.00376
SD of Detected Data	0.0613
CV of Detected Data	0.952
Skewness of Detected Data	0.651

Mean of Detected log data	-3.176
SD of Detected Log data	1.059

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect48Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

h1/4

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0212
SD	0.0238
Standard Error of Mean	0.00397
95% KM (t) UCL	0.0279
95% KM (z) UCL	0.0278
95% KM (BCA) UCL	0.141
95% KM (Percentile Bootstrap) UCL	0.0362
95% KM (Chebyshev) UCL	0.0385
97.5% KM (Chebyshev) UCL	0.046
99% KM (Chebyshev) UCL	0.0607

Data appear Normal (0.05)
May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median <0.01100
[per recommendation in ProUCL User Guide]

Carbon disulfide

Total Number of Data	48
Number of Non-Detect Data	44
Number of Detected Data	4
Minimum Detected	0.00334
Maximum Detected	0.00699
Percent Non-Detects	91.67%
Minimum Non-detect	1.18E-04
Maximum Non-detect	0.00253

Mean of Detected Data	0.00507
Median of Detected Data	0.00497
Variance of Detected Data	2.23E-06
SD of Detected Data	0.00149
CV of Detected Data	0.295
Skewness of Detected Data	0.389
Mean of Detected log data	-5.318
SD of Detected Log data	0.302

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 4 Distinct Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00348
SD	6.06E-04
Standard Error of Mean	1.01E-04
95% KM (t) UCL	0.00365
95% KM (z) UCL	0.00365
95% KM (BCA) UCL	0.00699
95% KM (Percentile Bootstrap) UCL	0.00513
95% KM (Chebyshev) UCL	0.00392
97.5% KM (Chebyshev) UCL	0.00411
99% KM (Chebyshev) UCL	0.00449

Data appear Normal (0.05) May want to try Normal UCLs

** Instead	of UCL, E	PC is sele	cted to be	median	<0.00014
经保证证据 医皮肤 医二氏管	recommen	化氯甲基甲基甲基甲基	连续 医骶髓 电电路线	15 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S	

Chromium

Number of Valid Observations	48
Number of Distinct Observations	42
Minimum	8.96
Maximum	44.6
Mean	15.07
Median	14.1

SD	5.536
Variance	30.64
Coefficient of Variation	0.367
Skewness	3.399
Mean of log data	2.667
SD of log data	0.286
Data do not follow a Discernable Distribution	
95% Useful UCLs	
Student's-t UCL	16.41
Student 3-t OCL	10.41
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	16.81
95% Modified-t UCL	16.48
Non-Parametric UCLs	
95% CLT UCL	16.39
95% Jackknife UCL	16.41
95% Standard Bootstrap UCL	16.38
95% Bootstrap-t UCL	17.12
95% Hall's Bootstrap UCL	22.5
95% Percentile Bootstrap UCL	16.55
95% BCA Bootstrap UCL	16.98
95% Chebyshev(Mean, Sd) UCL	18.56
97.5% Chebyshev(Mean, Sd) UCL	20.06
99% Chebyshev(Mean, Sd) UCL	23.02
Potential UCL to Use	40.44
Use 95% Student's-t UCL	16.41
Or 95% Modified-t UCL	16.48
Chromium VI	
Total Number of Data	25
Number of Non-Detect Data	19
Number of Detected Data	6
Minimum Detected	1.3
Maximum Detected	4.04
Percent Non-Detects	76.00%
Minimum Non-detect	0.361
Maximum Non-detect	2.98
Mean of Detected Data	2.667
Median of Detected Data	2.585
Variance of Detected Data	1.786
SD of Detected Data	1.337
CV of Detected Data	0.501
Skewness of Detected Data	0.0422
Mean of Detected log data	0.864

Single DL Percent Detection

0.542

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect Number treated as Detected

88.00%

3.452

22

3

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	1.631
SD	0.835
Standard Error of Mean	0.183
95% KM (t) UCL	1.944
95% KM (z) UCL	1.932
95% KM (BCA) UCL	3.616
95% KM (Percentile Bootstrap) UCL	2.136
95% KM (Chebyshev) UCL	2.429
97.5% KM (Chebyshev) UCL	2.774

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

99% KM (Chebyshev) UCL

** Instead of UCL, EPC is selected to be median <0.56700 [per recommendation in ProUCL User Guide]

Chrysene

Total Number of Data	48
Number of Non-Detect Data	29
Number of Detected Data	19
Minimum Detected	0.011
Maximum Detected	4.05
Percent Non-Detects	60.42%
Minimum Non-detect	0.00755
Maximum Non-detect	0.253
Mean of Detected Data	0.525

Median of Detected Data	0.0813	
Variance of Detected Data	1.167	
SD of Detected Data	1.08	
CV of Detected Data	2.059	
Skewness of Detected Data	2.633	
Mean of Detected log data	-2.274	
SD of Detected Log data	1.773	
Note: Data have multiple DLs - Use of KM Method	is recommended	
For all methods (except KM, DL/2, and ROS Method	ls),	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	43	
Number treated as Detected	5	
Single DL Percent Detection	89.58%	
Data Dsitribution Test with Detected Values Only		•
Data do not follow a Discernable Distribution (0.05)	1	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.215	
SD	0.708	
Standard Error of Mean	0.105	
95% KM (t) UCL	0.391	
95% KM (z) UCL	0.388	
95% KM (BCA) UCL	0.421	
95% KM (Percentile Bootstrap) UCL	0.405	
95% KM (Chebyshev) UCL	0.673	
97.5% KM (Chebyshev) UCL	0.871	
99% KM (Chebyshev) UCL	1.259	
Potential UCL to Use		
Cobalt		
Number of Valid Observations	48	

Number of Valid Observations	48
Number of Distinct Observations	46
Minimum	3
Maximum	9.89
Mean	6.977
Median	7.29
SD	1.408
Variance	1.983
Coefficient of Variation	0.202
Skewness	-0.339
Mean of log data	1.92
SD of log data	0.223

95% Useful UCLs

Student's-t UCL 7.318	
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL 7.3	
95% Modified-t UCL 7.316	
Non-Parametric UCLs	
95% CLT UCL 7.311	
95% Jackknife UCL 7.318	
95% Standard Bootstrap UCL 7.311	
95% Bootstrap-t UCL 7.306	
95% Hall's Bootstrap UCL 7.325	
95% Percentile Bootstrap UCL 7.313	
95% BCA Bootstrap UCL 7.304	
95% Chebyshev(Mean, Sd) UCL 7.863	
97.5% Chebyshev(Mean, Sd) UCL 8.246	
99% Chebyshev(Mean, Sd) UCL 8.999	
Data appear Normal (0.05) May want to try Normal UCLs	
Copper	
Number of Valid Observations 48	
Number of Distinct Observations 44	
Minimum 5.44	
Maximum 49	
Mean 14.49	
Median 13.15	
SD 8.49)
Variance 72.09)
Coefficient of Variation 0.586	;
Skewness 2.371	
Mean of log data 2.553	}
SD of log data 0.471	
95% Useful UCLs	
Student's-t UCL 16.55	i
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL 16.96	;
95% Modified-t UCL 16.62	!
Non-Parametric UCLs	
95% CLT UCL 16.51	L
95% Jackknife UCL 16.55	
95% Standard Bootstrap UCL 16.52	
95% Bootstrap-t UCL 17.22	
95% Hall's Bootstrap UCL 17.57	
95% Percentile Bootstrap UCL 16.61	

95% BCA Bootstrap UCL	17.21
95% Chebyshev(Mean, Sd) UCL	19.83
97.5% Chebyshev(Mean, Sd) UCL	22.14
99% Chebyshev(Mean, Sd) UCL	26.68

Data appear Lognormal (0.05) May want to try Lognormal UCLs

Dibenz(a,h)anthracene

Total Number of Data	48
Number of Non-Detect Data	42
Number of Detected Data	6
Minimum Detected	0.129
Maximum Detected	2.91
Percent Non-Detects	87.50%
Minimum Non-detect	0.00635
Maximum Non-detect	0.743
Mean of Detected Data	1.391
Median of Detected Data	1.084
Variance of Detected Data	1.688
SD of Detected Data	1.299
CV of Detected Data	0.934
Skewness of Detected Data	0.291
Mean of Detected log data	-0.265
SD of Detected Log data	1.334

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect45Number treated as Detected3Single DL Percent Detection93.75%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

0.0936

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Standard Error of Mean

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.287
SD	0.592

95% KM (t) UCL	0.444
95% KM (z) UCL	0.441
95% KM (BCA) UCL	1.896
95% KM (Percentile Bootstrap) UCL	0.676
95% KM (Chebyshev) UCL	0.695
97.5% KM (Chebyshev) UCL	0.872
99% KM (Chebyshev) UCL	1.218

Data appear Normal (0.05)
May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median < <0.03750 [per recommendation in ProUCL User Guide]

D :	han:	£	

Total Number of Data	48
Number of Non-Detect Data	45
Number of Detected Data	3
Minimum Detected	0.01
Maximum Detected	0.08
Percent Non-Detects	93.75%
Minimum Non-detect	0.00506
Maximum Non-detect	0.103
Mean of Detected Data	0.0525
Median of Detected Data	0.0674
Variance of Detected Data	0.00139
SD of Detected Data	0.0373
CV of Detected Data	0.711
Skewness of Detected Data	-1.513
Mean of Detected log data	-3.276
SD of Detected Log data	1.154

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect48Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0129
SD	0.0133
Standard Error of Mean	0.00243
95% KM (t) UCL	0.0169
95% KM (z) UCL	0.0169
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	0.08
95% KM (Chebyshev) UCL	0.0235
97.5% KM (Chebyshev) UCL	0.028
99% KM (Chebyshev) UCL	0.0371

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median < <0.01555
[per recommendation in ProUCL User Guide]

Endosulfan sulfate

Total Number of Data	48
Number of Non-Detect Data	45
Number of Detected Data	3
Minimum Detected	0.00731
Maximum Detected	0.06
Percent Non-Detects	93.75%
Minimum Non-detect	2.89E-04
Maximum Non-detect	0.00527
Mean of Detected Data	0.0257
Median of Detected Data	0.00989
Variance of Detected Data	8.82E-04
SD of Detected Data	0.0297
CV of Detected Data	1.154
Skewness of Detected Data	1.717
Mean of Detected log data	-4.116
SD of Detected Log data	1.138

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00846
SD	0.00753
Standard Error of Mean	0.00133
95% KM (t) UCL	0.0107
95% KM (z) UCL	0.0107
95% KM (BCA) UCL	0.06
95% KM (Percentile Bootstrap) UCL	N/A
95% KM (Chebyshev) UCL	0.0143
97.5% KM (Chebyshev) UCL	0.0168
99% KM (Chebyshev) UCL	0.0217

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median<0.00044 [per recommendation in ProUCL User Guide]

Endrin aldehyde

Total Number of Data	48
Number of Non-Detect Data	39
Number of Detected Data	9
Minimum Detected	5.66E-04
Maximum Detected	0.01
Percent Non-Detects	81.25%
Minimum Non-detect	3.94E-04
Maximum Non-detect	0.00579
Mean of Detected Data	0.00434
Median of Detected Data	0.00431
Variance of Detected Data	1.42E-05
SD of Detected Data	0.00377
CV of Detected Data	0.869
Skewness of Detected Data	0.564
Mean of Detected log data	-5.917
SD of Detected Log data	1.135

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect	45
Number treated as Detected	3
Single DL Percent Detection	93.75%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00128
SD	0.00213
Standard Error of Mean	3.27E-04
95% KM (t) UCL	0.00183
95% KM (z) UCL	0.00182
95% KM (BCA) UCL	0.00233
95% KM (Percentile Bootstrap) UCL	0.00214
95% KM (Chebyshev) UCL	0.0027
97.5% KM (Chebyshev) UCL	0.00332
99% KM (Chebyshev) UCL	0.00453
Data appear Normal (0.05)	

Data appear Normal (0.05)
May want to try Normal UCLs

Fndrin	ketone

Total Number of Data	48
Number of Non-Detect Data	45
Number of Detected Data	3
Minimum Detected	0.00329
Maximum Detected	0.013
Percent Non-Detects	93.75%
Minimum Non-detect	3.79E-04
Maximum Non-detect	0.00527
Mean of Detected Data	0.00749
Median of Detected Data	0.00619
Variance of Detected Data	2.48E-05
SD of Detected Data	0.00498
CV of Detected Data	0.665
Skewness of Detected Data	1.096
Mean of Detected log data	-5.048
SD of Detected Log data	0.688

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 46
Number treated as Detected 2
Single DL Percent Detection 95.83%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.00355	
SD	0.00144	
Standard Error of Mean	2.54E-04	
95% KM (t) UCL	0.00398	
95% KM (z) UCL	0.00397	
95% KM (BCA) UCL	0.013	
95% KM (Percentile Bootstrap) UCL	N/A	
95% KM (Chebyshev) UCL	0.00466	
97.5% KM (Chebyshev) UCL	0.00514	
99% KM (Chebyshev) UCL	0.00608	

Data appear Normal (0.05)
May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median <0.00055
[per recommendation in ProUCL User Guide]

Fluoranthene

Total Number of Data	48
Number of Non-Detect Data	35
Number of Detected Data	13
Minimum Detected	0.012
Maximum Detected	2.17
Percent Non-Detects	72.92%
Minimum Non-detect	0.00647
Maximum Non-detect	0.213
Mean of Detected Data	0.346

Median of Detected Data	0.0548
Variance of Detected Data	0.444
SD of Detected Data	0.667
CV of Detected Data	1.925
Skewness of Detected Data	2.359
Mean of Detected log data	-2.413
SD of Detected Log data	1.622

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 45
Number treated as Detected 3
Single DL Percent Detection 93.75%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.104
SD	0.365
Standard Error of Mean	0.0548
95% KM (t) UCL	. 0.196
95% KM (z) UCL	0.194
95% KM (BCA) UCL	0.213
95% KM (Percentile Bootstrap) UCL	0.206
95% KM (Chebyshev) UCL	0.343
97.5% KM (Chebyshev) UCL	0.446
99% KM (Chebyshev) UCL	0.649

Data appear Lognormal (0.05) May want to try Lognormal UCLs

Fluorene

Total Number of Data	48
Number of Non-Detect Data	44
Number of Detected Data	4
Minimum Detected	0.015
Maximum Detected	0.139
Percent Non-Detects	91.67%
Minimum Non-detect	0.00659
Maximum Non-detect	0.135
Mean of Detected Data	0.0923
Median of Detected Data	0.108
Variance of Detected Data	0.00313
SD of Detected Data	0.0559

CV of Detected Data	0.606
Skewness of Detected Data	-1.209
Mean of Detected log data	-2.667
SD of Detected Log data	1.041

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 47 Number treated as Detected 1 Single DL Percent Detection 97.92%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

N/A

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

	,
Kaplan Meier (KM) Method	
Mean	0.0217
SD	0.0259
Standard Error of Mean	0.00439
95% KM (t) UCL	0.029
95% KM (z) UCL	0.0289
95% KM (BCA) UCL	0.139
95% KM (Percentile Bootstrap) UCL	0.128
95% KM (Chebyshev) UCL	0.0408
97.5% KM (Chebyshev) UCL	0.0491
99% KM (Chebyshev) UCL	0.0653

Data appear Normal (0.05) May want to try Normal UCLs

Winsorization Method

** Instead of UCL, EPC is selected to be median <0.01100 [per recommendation in ProUCL User Guide]

gamma-Chlordane

Total Number of Data	48
Number of Non-Detect Data	44
Number of Detected Data	4
Minimum Detected	7.69E-04
Maximum Detected	0.0036
Percent Non-Detects	91.67%
Minimum Non-detect	2.40E-04

Maximum Non-detect	0.00423
Mean of Detected Data	0.00203
Median of Detected Data	0.00188
Variance of Detected Data	1.91E-06
SD of Detected Data	0.00138
CV of Detected Data	0.68
Skewness of Detected Data	0.276
Mean of Detected log data	-6.403
SD of Detected Log data	0.761

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 48 0 Number treated as Detected 100.00% Single DL Percent Detection

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	8.77E-04	
SD	4.96E-04	
Standard Error of Mean	8.35E-05	
95% KM (t) UCL	0.00102	
95% KM (z) UCL	0.00101	
95% KM (BCA) UCL	0.0036	
95% KM (Percentile Bootstrap) UCL	0.00283	
95% KM (Chebyshev) UCL	0.00124	
97.5% KM (Chebyshev) UCL	0.0014	
99% KM (Chebyshev) UCL	0.00171	

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median <0.00044 [per recommendation in ProUCL User Guide]

Indeno(1,2,3-cd)pyrene

Total Number of Data

48

Number of Non-Detect Data	25	
Number of Detected Data	23	
Minimum Detected	0.0628	
Maximum Detected	1.94	
Percent Non-Detects	52.08%	
Minimum Non-detect	0.013	
Maximum Non-detect	0.55	
Mean of Detected Data	0.388	
Median of Detected Data	0.118	
Variance of Detected Data	0.279	
SD of Detected Data	0.528	
CV of Detected Data	1.361	
Skewness of Detected Data	1.896	
Mean of Detected log data	-1.668	
SD of Detected Log data	1.156	
Note: Data have multiple DLs - Use of KM Method is	recommended	
For all methods (except KM, DL/2, and ROS Methods),		
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	42	
Number treated as Detected	6	
Single DL Percent Detection	87.50%	
Data Data the street Task with Data at ad Values Only		
Data Ditribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
·	N/A	
Winsorization Method	N/A	
Winsorization Method	N/A	
·	N/A 0.22	
Winsorization Method Kaplan Meier (KM) Method		
Winsorization Method Kaplan Meier (KM) Method Mean	0.22	
Winsorization Method Kaplan Meier (KM) Method Mean SD	0.22 0.393	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean	0.22 0.393 0.0579	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL	0.22 0.393 0.0579 0.317	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL	0.22 0.393 0.0579 0.317 0.315	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL	0.22 0.393 0.0579 0.317 0.315 0.317	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.22 0.393 0.0579 0.317 0.315 0.317	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.22 0.393 0.0579 0.317 0.315 0.317 0.321	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581 0.796	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581 0.796	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581 0.796	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581 0.796	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Iron Number of Valid Observations	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581 0.796	·
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Iron Number of Valid Observations Number of Distinct Observations	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581 0.796	
Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL Iron Number of Valid Observations	0.22 0.393 0.0579 0.317 0.315 0.317 0.321 0.472 0.581 0.796	

Mean	17152	
Median	16650	
SD	6903	
Variance	47645953	
Coefficient of Variation	0.402	
Skewness	5.582	
Mean of log data	9.71	
SD of log data	0.25	
Data do not follow a Discernable Distribution	1	
95% Useful UCLs		
Student's-t UCL	18824	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	19649	
95% Modified-t UCL	18958	
55% Mounica Cool	10550	
Non-Parametric UCLs		
95% CLT UCL	18791	
95% Jackknife UCL	18824	
95% Standard Bootstrap UCL	18718	
95% Bootstrap-t UCL	20832	
95% Hall's Bootstrap UCL	25660	
95% Percentile Bootstrap UCL	18863	
95% BCA Bootstrap UCL	20117	
95% Chebyshev (Mean, Sd) UCL	21495	
97.5% Chebyshev(Mean, Sd) UCL	23374	
99% Chebyshev(Mean, Sd) UCL	27065	
Potential UCL to Use		
AND	10024	
Use 95% Student's-t UCL	18824	
Or 95% Modified-t UCL	18958	
. — . — . — . — . — . — . — . — . — .		
Lead		
Number of Valid Observations	48	
Number of Distinct Observations	45	
Minimum	9.4	
Maximum	237	
Mean	25.36	
Median	16.7	
SD	34.13	
Variance		
Coefficient of Variation	1165	
Skewness	1.346	
	5.449	•
Mean of log data	2.969	
SD of log data	0.571	

Data do not follow a Discernable Distribution

95% Useful UCLs		
Student's-t UCL	33.62	
	55.52	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	37.6	
95% Modified-t UCL	34.27	
-		
Non-Parametric UCLs		
95% CLT UCL	33.46	
95% Jackknife UCL	33.62	
95% Standard Bootstrap UCL	33.12	
95% Bootstrap-t UCL	48.81	
95% Hall's Bootstrap UCL	62.56	
95% Percentile Bootstrap UCL	34.42	
95% BCA Bootstrap UCL	39.58	
95% Chebyshev(Mean, Sd) UCL	46.83	
97.5% Chebyshev(Mean, Sd) UCL	56.12	
99% Chebyshev(Mean, Sd) UCL	74.38	
•		
Potential UCL to Use		
Use 95% Chebyshev (Mean, Sd) UCL	46.83	
The state of the s	The state of the s	
Lithium		
Number of Valid Observations	48	
Number of Valid Observations Number of Distinct Observations	48 . 43	
Number of Distinct Observations	. 43	
Number of Distinct Observations Minimum	. 43 5.43	
Number of Distinct Observations Minimum Maximum	, 43 5.43 27.6	
Number of Distinct Observations Minimum Maximum Mean	. 43 5.43 27.6 18.65	
Number of Distinct Observations Minimum Maximum Mean Median	. 43 5.43 27.6 18.65 18.75	
Number of Distinct Observations Minimum Maximum Mean Median SD	. 43 5.43 27.6 18.65 18.75 3.754	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance	. 43 5.43 27.6 18.65 18.75 3.754 14.09	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation	. 43 5.43 27.6 18.65 18.75 3.754 14.09 0.201	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	. 43 5.43 27.6 18.65 18.75 3.754 14.09 0.201	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	. 43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	. 43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	. 43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	. 43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data 95% Useful UCLs Student's-t UCL	43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs	43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25 19.48 19.56	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL	43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25 19.56	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL	43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25 19.56	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25 19.56	
Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL	43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25 19.56	

95% Hall's Bootstrap UCL	19.54
95% Percentile Bootstrap UCL	19.56
95% BCA Bootstrap UCL	19.43
95% Chebyshev(Mean, Sd) UCL	21.02
97.5% Chebyshev(Mean, Sd) UCL	22.04
99% Chebyshev(Mean, Sd) UCL	24.05

Data appear Normal (0.05)

May want to try Normal UCLs

Manganese	•
-----------	---

Number of Valid Observations	48	
Number of Distinct Observations	48	
Minimum	87.6	
Maximum .	1010	
Mean	331.8	
Median	275	
SD	205.9	
Variance	42405	
Coefficient of Variation	0.621	
Skewness	1.558	
Mean of log data	5.638	
SD of log data	0.583	
95% Useful UCLs		
Student's-t UCL	381.7	
•		
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	387.8	
95% Modified-t UCL	382.8	
Non-Parametric UCLs		
95% CLT UCL	380.7	
95% Jackknife UCL	381.7	
95% Standard Bootstrap UCL	380.9	
95% Bootstrap-t UCL	388.6	
95% Hall's Bootstrap UCL	389.8	
95% Percentile Bootstrap UCL	381.8	
95% BCA Bootstrap UCL	387.6	
95% Chebyshev(Mean, Sd) UCL	461.3	
97.5% Chebyshev(Mean, Sd) UCL	517.4	
99% Chebyshev(Mean, Sd) UCL	627.5	
Data appear Gamma Distributed (0.05)		
May want to try Gamma UCLs		

Mercury

Total Number of Data	48	
Number of Non-Detect Data	21	
Number of Detected Data	27	
Minimum Detected	0.0061	
Maximum Detected	0.081	
Percent Non-Detects	43.75%	
Minimum Non-detect	0.0025	
Maximum Non-detect	0.038	
	5,555	
Mean of Detected Data	0.0304	
	0.0294	
Median of Detected Data	0.024	
Variance of Detected Data	4.64E-04	
SD of Detected Data	0.0215	
CV of Detected Data	0.733	
Skewness of Detected Data	1.056	
Mean of Detected log data	-3.791	
-		
SD of Detected Log data	0.758	
Note: Data have multiple DLs - Use of KM Me		
For all methods (except KM, DL/2, and ROS M	ethods),	
Observations < Largest DL are treated as NDs		
Number treated as Non-Detect	40	
Number treated as Detected	8	
	-	
Single DL Percent Detection	83.33%	
Data Dsitribution Test with Detected Values O	•	
Data appear Gamma Distributed at 5% Signific	ance Level	
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0204	
SD	0.019	
Standard Error of Mean	0.00282	
95% KM (t) UCL	0.0251	
95% KM (z) UCL	0.025	•
95% KM (BCA) UCL	0.0256	
95% KM (Percentile Bootstrap) UCL	0.0251	
95% KM (Chebyshev) UCL	0.0327	
97.5% KM (Chebyshev) UCL	0.038	
· 黄色之子 · 黄石 · · · · · · · · · · · · · · · · ·	Control of the Contro	
99% KM (Chebyshev) UCL	0.0485	
B		
Data appear Gamma Distributed (0.05)		
May want to try Gamma UCLs		4
,		
Molybdenum		

48

10

38

Total Number of Data

Number of Non-Detect Data

Number of Detected Data

Minimum Detected	0.13
Maximum Detected	3.24
Percent Non-Detects	20.83%
Minimum Non-detect	0.074
Maximum Non-detect	0.084
Mean of Detected Data	0.723
Median of Detected Data	0.445
Variance of Detected Data	0.482
SD of Detected Data	0.694
CV of Detected Data	0.961
Skewness of Detected Data	2.229
Mean of Detected log data	-0.636
SD of Detected Log data	0.754

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method	0.754
Mean	0.413
SD	0.229
95% Winsor (t) UCL	0.47
Kaplan Meier (KM) Method	
Mean	0.599
SD	0.655
Standard Error of Mean	0.0959
95% KM (t) UCL	0.76
95% KM (z) UCL	0.757
95% KM (BCA) UCL	0.775
95% KM (Percentile Bootstrap) UCL	0.769
95% KM (Chebyshev) UCL	1.017
97.5% KM (Chebyshev) UCL	1.198
99% KM (Chebyshev) UCL	1.553

Data appear Lognormal (0.05) May want to try Lognormal UCLs

Nickel

•	
Number of Valid Observations	50
Number of Distinct Observations	43
Minimum	10.9
Maximum	27.7
Mean	17.29
Median	17.3

SD Variance Coefficient of Variation Skewness Mean of log data SD of log data	3.391 11.5 0.196 0.421 2.831 0.197
95% Useful UCLs Student's-t UCL	18.09
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	18.11
95% Modified-t UCL	18.09
Non-Parametric UCLs	
95% CLT UCL	18.07
95% Jackknife UCL	18.09
95% Standard Bootstrap UCL	18.08
95% Bootstrap-t UCL	18.1
95% Hall's Bootstrap UCL	18.14
95% Percentile Bootstrap UCL	18.04
95% BCA Bootstrap UCL	18.12
95% Chebyshev(Mean, Sd) UCL	19.38
97.5% Chebyshev(Mean, Sd) UCL	20.28
99% Chebyshev(Mean, Sd) UCL	22.06
Data appear Normal (0.05)	
May want to try Normal UCLs	
Phenanthrene	
Total Number of Data	48
Number of Non-Detect Data	36
Number of Detected Data	12
Minimum Detected	0.022

Total Number of Data	48
Number of Non-Detect Data	36
Number of Detected Data	12
Minimum Detected	0.023
Maximum Detected	1.3
Percent Non-Detects	7 5.00%
Minimum Non-detect	0.00616
Maximum Non-detect	0.125
Mean of Detected Data	0.268
Median of Detected Data	0.0938
Variance of Detected Data	0.209
SD of Detected Data	0.457
CV of Detected Data	1.707
Skewness of Detected Data	2.03
Mean of Detected log data	-2.324
SD of Detected Log data	1.352

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection	44 4 91.67%	
Data Dsitribution Test with Detected Values Only		
Data do not follow a Discernable Distribution (0.05)		
Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.0846	
SD	0.243	
Standard Error of Mean	0.0366	
95% KM (t) UCL	0.146	
95% KM (z) UCL	0.145	
95% KM (BCA) UCL	0.156	
95% KM (Percentile Bootstrap) UCL	0.149	
95% KM (Chebyshev) UCL	0.244	
97.5% KM (Chebyshev) UCL	0.313	
99% KM (Chebyshev) UCL	0.449	
Potential UCL to Use 95% KM (BCA) UCL	0.156	

Pyrene

Total Number of Data	48
Number of Non-Detect Data	29
Number of Detected Data	19
Minimum Detected	0.0159
Maximum Detected	1.64
Percent Non-Detects	60.42%
Minimum Non-detect	0.00816
Maximum Non-detect	0.371
Mean of Detected Data	0.355
Median of Detected Data	0.109
Variance of Detected Data	0.255
SD of Detected Data	0.505
CV of Detected Data	1.42
Skewness of Detected Data	1.636
Mean of Detected log data	-2.033
SD of Detected Log data	1.485

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

Number treated as Non-Detect

43

Number treated as Detected	5
Single DL Percent Detection	89.58%

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.152
SD	0.351
Standard Error of Mean	0.052
95% KM (t) UCL	0.239
95% KM (z) UCL	0.237
95% KM (BCA) UCL	0.254
95% KM (Percentile Bootstrap) UCL	0.245
95% KM (Chebyshev) UCL	0.379
97:5% KM (Chebyshev) UCL	0.477
99% KM (Chebyshev) UCL	0.669

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

Strontium

Number of Valid Observations	48
Number of Distinct Observations	47
Minimum	18.8
Maximum	330
Mean	67
Median	54
SD	52.81
Variance	2789
Coefficient of Variation	0.788
Skewness	3.229
Mean of log data	4.025
SD of log data	0.557
95% Useful UCLs	
Student's-t UCL	79.79
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	83.33
95% Modified-t UCL	80.38
Non-Parametric UCL's	
95% CLT UCL	79.53
95% Jackknife UCL	79.79
95% Standard Bootstrap UCL	79.32
95% Bootstrap-t UCL	88.66

95% Hall's Bootstrap UCL	98.83
95% Percentile Bootstrap UCL	81.07
95% BCA Bootstrap UCL	85.31
95% Chebyshev(Mean, Sd) UCL	100.2
97.5% Chebyshev(Mean, Sd) UCL	114.6
99% Chebyshev(Mean, Sd) UCL	142.8

Data appear Lognormal (0.05) May want to try Lognormal UCLs

Tin

Total Number of Data	48
Number of Non-Detect Data	44
Number of Detected Data	4
Minimum Detected	3.45
Maximum Detected	4.61
Percent Non-Detects	91.67%
Minimum Non-detect	0.4
Maximum Non-detect	1.29
Mean of Detected Data	3.845
Median of Detected Data	3.66
Variance of Detected Data	0.27
SD of Detected Data	0.52
CV of Detected Data	0.135
Skewness of Detected Data	1.771
Mean of Detected log data	1.34
SD of Detected Log data	0.128

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	3.483
SD	0.17
Standard Error of Mean	0.0283
95% KM (t) UCL	3.53

95% KM (z) UCL	3.529
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	3.738
95% KM (Chebyshev) UCL	3.606
97.5% KM (Chebyshev) UCL	3.66
99% KM (Chebyshev) UCL	3.764

Data appear Normal (0.05) May want to try Normal UCLs

*** Instead of UCL, EPC is selected to be median < 0.60000 [per recommendation in ProUCL User Guide]

Titanium	
mannum	

Number of Valid Observations	48
Number of Distinct Observations	44
Minimum	8.15
Maximum	68.7
Mean	29.14
Median	28
SD	13.88
Variance	192.7
Coefficient of Variation	0.476
Skewness	1.065
Mean of log data	3.267
SD of log data	0.465
95% Useful UCLs	
Student's-t UCL	32.5
95% UCLs (Adjusted for Skewness)	•
95% Adjusted-CLT UCL	32.77
95% Modified-t UCL	32.55
Non-Parametric UCLs	
95% CLT UCL	32.44
95% Jackknife UCL	32.5
95% Standard Bootstrap UCL	32.44
95% Bootstrap-t UCL	32.97
95% Hall's Bootstrap UCL	32.68
95% Percentile Bootstrap UCL	32.57
95% BCA Bootstrap UCL	32.71
95% Chebyshev(Mean, Sd) UCL	37.87
97.5% Chebyshev (Mean, Sd) UCL	41.65
99% Chebyshev(Mean, Sd) UCL	49.08

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

Toluene

Total Number of Data	48
Number of Non-Detect Data	45
Number of Detected Data	3
Minimum Detected	0.00157
Maximum Detected	0.00214
Percent Non-Detects	93.75%
Minimum Non-detect	5.94E-04
Maximum Non-detect	0.0128
Mean of Detected Data	0.00178
Median of Detected Data	0.00162
Variance of Detected Data	9.96E-08
SD of Detected Data	3.16E-04
CV of Detected Data	0.178
Skewness of Detected Data	1.683
Mean of Detected log data	-6.343
SD of Detected Log data	0.17

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect48Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00158
SD	8.33E-05
Standard Error of Mean	1.50E-05
95% KM (t) UCL	0.00161
95% KM (z) UCL	0.00161
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	0.00214
95% KM (Chebyshev) UCL	0.00165
97.5% KM (Chebyshev) UCL	0.00168

Data appear Normal (0.05)
May want to try Normal UCLs

**Instead of UCL, EPC is selected to be median <0.00073</pre>
[per recommendation in ProUCL User Guide]

Vanadium	
Number of Valid Observations	48
Number of Distinct Observations	39
Minimum	9.02
Maximum	32
Mean	21.65
Median	21.75
SD	4.554
Variance	20.74
Coefficient of Variation	0.21
Skewness	-0.279
Mean of log data	3.05
SD of log data	0.233
95% Useful UCLs Student's-t UCL	22.75
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	22.7
95% Modified-t UCL	22.74
Non-Parametric UCLs	
95% CLT UCL	22.73
95% Jackknife UCL	22.75
95% Standard Bootstrap UCL	22.72
95% Bootstrap-t UCL	22.75
95% Hall's Bootstrap UCL	22.77
95% Percentile Bootstrap UCL	22.7
95% BCA Bootstrap UCL	22.67
95% Chebyshev(Mean, Sd) UCL	24.51
97.5% Chebyshev(Mean, Sd) UCL	25.75
99% Chebyshev(Mean, Sd) UCL	28.19
Data appear Normal (0.05)	
May want to try Normal UCLs	
way want to try Normal OCLS	
Zinc	

53

53

Number of Valid Observations

Number of Distinct Observations

Minimum	31.5
Maximum	903
Mean	139.1
Median	84.3
SD	160.9
Variance	25899
Coefficient of Variation	1.157
Skewness	2.989
Mean of log data	4.558
SD of log data	0.795 `
Data do not follow a Discernable Distribution	
95% Useful UCLs	
Student's-t UCL	176.1
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	185.2
95% Modified-t UCL	177.6
Non-Parametric UCLs	
95% CLT UCL	175.5
95% Jackknife UCL	176.1
95% Standard Bootstrap UCL	176.1
95% Bootstrap-t UCL	198.2
95% Hall's Bootstrap UCL	196.5
95% Percentile Bootstrap UCL	179.1
95% BCA Bootstrap UCL	183.4
95% Chebyshev(Mean, Sd) UCL	235.5
97.5% Chebyshev(Mean, Sd) UCL	255.5 277.1
99% Chebyshev(Mean, Sd) UCL	359
33% Chebyshev(iviean, 3u) OCL	333
Potential UCL to Use	
Use 95% Chebyshev (Mean, Sd) UCL	235.5

APPENDIX A-9

POND SEDIMENT

Nonparametric UCL Statistics for Data Sets with Non-Detects

User Selected Options

From File

 $\hbox{C:$Users\Michael}{\mbox{\dots.$}} ProUCL\ data\ analysis\Pond\ Sediment\Pond\ sediment\ data_ProUCL\ input.wst$

Full Precision

OFF

Confidence Coefficient

Number of Bootstrap Operations

95% 2000

2,4,6-Trichlorophenol

Total Number of Data	8
Number of Non-Detect Data	7
Number of Detected Data	. 1
Minimum Detected	0.0429
Maximum Detected	0.0429
Percent Non-Detects	87.50%
Minimum Non-detect	0.025
Maximum Non-detect	0.033

Data set has all detected values equal to = 0.0429, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0429

** Instead of UCL, EPC is selected to be median = < <0.0269 [per recommendation in ProUCL User Guide]

4,4'-DDD

Total Number of Data	8
Number of Non-Detect Data	7
Number of Detected Data	1
Minimum Detected	0.00068
Maximum Detected	0.00068
Percent Non-Detects	87.50%
Minimum Non-detect	0.00046
Maximum Non-detect	0.026

Data set has all detected values equal to = 6.7600E-4, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 6.7600E-4

** Instead of UCL, EPC is selected to be median =. <0.020 [per recommendation in ProUCL User Guide]

4,4'-DDT

Total Number of Data	8
Number of Non-Detect Data	5
Number of Detected Data	3
Minimum Detected	0.00111
Maximum Detected	0.00157
Percent Non-Detects	62.50%
Minimum Non-detect	0.011
Maximum Non-detect	0.014
Mean of Detected Data	0.00127
Median of Detected Data	0.00113
Variance of Detected Data	6.76E-08
SD of Detected Data	2.60E-04
CV of Detected Data	0.205
Skewness of Detected Data	1.721

Pond sediment data_ProUCL sheets.xls nonparam UCLs 01/29/10 mlj

Page 191 of 212

Mean of Detected log data -6.682 0.195 SD of Detected Log data

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 8 Number treated as Detected 0 Single DL Percent Detection 100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.00127
SD	2.12E-04
Standard Error of Mean	1.50E-04
95% KM (t) UCL	0.00155
95% KM (z) UCL	0.00152
95% KM (BCA) UCL	0.00148
95% KM (Percentile Bootstrap) UCL	0.00157
95% KM (Chebyshev) UCL	0.00192
97.5% KM (Chebyshev) UCL	0.00221
99% KM (Chebyshev) UCL	0.00276

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.0110 [per recommendation in ProUCL User Guide]

Acetone

Total Number of Data	8
Number of Non-Detect Data	7
Number of Detected Data	1
Minimum Detected	0.0798
Maximum Detected	0.0798
Percent Non-Detects	87.50%
Minimum Non-detect	0.00066
Maximum Non-detect	0.073

Data set has all detected values equal to = 0.0798, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0798

** Instead of UCL, EPC is selected to be median = <0.0425 [per recommendation in ProUCL User Guide]

Aluminum

Pond sediment data_ProUCL sheets.xls nonparam UCLs 01/29/10 mlj

Page 192 of 212

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	7990
Maximum	16300
Mean	11748
Median	11550
SD	3382
Variance	11436193
Coefficient of Variation	0.288
Skewness	0.211 ⁻
Mean of log data	9.334
SD of log data	0.293

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	1/013
	2017012
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	13810
95% Modified-t UCL	14028
Non-Parametric UCLs	
95% CLT UCL	13714
95% Jackknife UCL	14013
95% Standard Bootstrap UCL	13591
95% Bootstrap-t UCL	14179
95% Hall's Bootstrap UCL	13371
95% Percentile Bootstrap UCL	13634
95% BCA Bootstrap UCL	13558
95% Chebyshev(Mean, Sd) UCL	16959
97.5% Chebyshev(Mean, Sd) UCL	19214
99% Chebyshev(Mean, Sd) UCL	23644
Data appear Normal (0.05)	

Data appear Normal (0.05)
May want to try Normal UCLs

Antimony

Total Number of Data Number of Non-Detect Data	8 5
Number of Detected Data	3
Minimum Detected	1.34
Maximum Detected	1.85
Percent Non-Detects	62.50%
Minimum Non-detect	0.33
Maximum Non-detect	0.44
Mean of Detected Data	1.517
Mean of Detected Data Median of Detected Data	1.517 1.36
Median of Detected Data	1.36
Median of Detected Data Variance of Detected Data	1.36 0.0834
Median of Detected Data Variance of Detected Data SD of Detected Data	1.36 0.0834 0.289
Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data	1.36 0.0834 0.289 0.19

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	1.406	
SD	0.168	
Standard Error of Mean	0.0727	
95% KM (t) UCL	1.544	
95% KM (z) UCL	1.526	
95% KM (BCA) UCL	1.85	
95% KM (Percentile Bootstrap) UCL	1.85	
95% KM (Chebyshev) UCL	1.723	
97.5% KM (Chebyshev) UCL	1.86	
99% KM (Chebyshev) UCL	2.129	

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is sel	lected to be me	edian =	<0.440
 Bit is a straight of the engineering of the straight of the engineering for 	A. 古典,在1944年 - 1970年 新华美術的 (東)	光 "''我,我们们是不是我们的人,我们	renti di decembro di
[per recommendation in	1 Prouct User	Guidej	AND REPUBLICA

Arsenic

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	8 5 3 3.39 5.01 62.50% 0.28 0.37
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	4.373 4.72 0.746 0.864 0.198 -1.515 1.461 0.21

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Page 194 of 212

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	3.759
SD	0.643
Standard Error of Mean	0.278
95% KM (t) UCL	4.286
95% KM (z) UCL	4.217
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	5.01
95% KM (Chebyshev) UCL	4.972
97.5% KM (Chebyshev) UCL	5.497
99% KM (Chebyshev) UCL	6.528
Data appear Normal (0.05) May want to try Normal UCLs	

** Instead of UCL, EPC is selected to be median = <0.335 [per recommendation in ProUCL User Guide]

Barium

Number of Valid Observations Number of Distinct Observations	8 7
Minimum	108
Maximum	417
Mean	198.6
Median	128.5
SD	119.4
Variance	14249
Coefficient of Variation	0.601
Skewness	1.058
Mean of log data	5.149
SD of log data	0.553

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

Data do not follow a Discernable Distribution

95% Useful UCLs	
Student's-t UCL	278.6
OFFICE (A Product for Observer and)	
95% UCLs (Adjusted for Skewness)	0040
95% Adjusted-CLT UCL	284.9
95% Modified-t UCL	281.2
Non-Parametric UCLs	
95% CLT UCL	268
95% Jackknife UCL	278.6
95% Standard Bootstrap UCL	262.3
95% Bootstrap-t UCL	330.7
95% Hall's Bootstrap UCL	259.7
95% Percentile Bootstrap UCL	265.3
95% BCA Bootstrap UCL	272.6
95% Chebyshev(Mean, Sd) UCL	382.6
97.5% Chebyshev(Mean, Sd) UCL	462.2

Pond sediment data_ProUCL sheets.xls nonparam UCLs 01/29/10 mlj

618.5

Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 382.6

Benzo(b)fluoranthene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	8 2 6 0.0293 0.106 25.00% 0.01
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.0618 0.0597 0.00112 0.0334 0.541 0.232 -2.919

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method Mean SD	0.579 0.0506 0.027
95% Winsor (t) UCL	0.073
Kaplan Meier (KM) Method	
Mean	0.0537
SD	0.0299
Standard Error of Mean	0.0116
95% KM (t) UCL	0.0756
95% KM (z) UCL	0.0727
95% KM (BCA) UCL	0.0746
95% KM (Percentile Bootstrap) UCL	0.0746
95% KM (Chebyshev) UCL	0.104
97.5% KM (Chebyshev) UCL	0.126
99% KM (Chebyshev) UCL	0.169

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = <0.0338 [per recommendation in ProUCL User Guide]

Benzo(g,h,i)perylene

Total Number of Data

Number of Non-Detect Data	7
Number of Detected Data	1
Minimum Detected	0.135
Maximum Detected	0.135
Percent Non-Detects	87.50%
Minimum Non-detect	0.015
Maximum Non-detect	0.02

Data set has all detected values equal to = 0.135, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UTLs are all less than the maximum detection limit = 0.135

** Instead of UCL, EPC is selected to be median = <0.0159
[per recommendation in ProUCL User Guide]

Benzo(k)fluoranthene

Total Number of Data	8
Number of Non-Detect Data	5
Number of Detected Data	3
Minimum Detected	0.11
Maximum Detected	0.13
Percent Non-Detects	62.50%
Minimum Non-detect	0.023
Maximum Non-detect	0.03
Mean of Detected Data	0.12
Median of Detected Data	0.119
Variance of Detected Data	1.00E-04
SD of Detected Data	0.01
CV of Detected Data	0.0837
Skewness of Detected Data	0.298
Mean of Detected log data	-2.125
SD of Detected Log data	0.0836

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.114
SD	0.00685
Standard Error of Mean	0.00297
95% KM (t) UCL	0.119
95% KM (z) UCL	0.119
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	0.13
95% KM (Chebyshev) UCL	0.127

Pond sediment data_ProUCL sheets.xls nonparam UCLs 01/29/10 mlj

97.5% KM (Chebyshev) UCL	0.132
99% KM (Chebyshev) UCL	0.143

Data appear Normal (0.05)
May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = ...<0.0275
[per recommendation in ProUCL User Guide]

Beryllium

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	0.58
Maximum	1.13
Mean	0.834
Median	0.865
SD	0.206
Variance	0.0423
Coefficient of Variation	0.247
Skewness	0.0408
Mean of log data	-0.209
SD of log data	0.254

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

1.151

1.288

1.557

95% Useful UCLs Student's-t UCL 0.0)72
--	-----

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	0.954 0.972
Non-Parametric UCLs	
95% CLT UCL	0.953
95% Jackknife UCL	0.972
95% Standard Bootstrap UCL	0.946
95% Bootstrap-t UCL	0.979
95% Hall's Bootstrap UCL	0.938
95% Percentile Bootstrap UCL	0.944
95% BCA Bootstran UCI	0.946

Data appear Normal (0.05)

May want to try Normal UCLs

95% Chebyshev(Mean, Sd) UCL

99% Chebyshev(Mean, Sd) ÚCL

97.5% Chebyshev(Mean, Sd) UCL

beta-BHC

Total Number of Data	8
Number of Non-Detect Data	7
Number of Detected Data	1
Minimum Detected	0.000699
Maximum Detected	0.000699
Percent Non-Detects	87.50%
Minimum Non-detect	0.00049
Maximum Non-detect	0.03

Data set has all detected values equal to = 6.9900E-4, having '0' variation.

Pond sediment data_ProUCL sheets.xis nonparam UCLs 01/29/10 mlj

No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 6.9900E-4

[per recommendation in ProUCL User Guide]

Boron	*
Total Number of Data	8
Number of Non-Detect Data	3
Number of Detected Data	5
Minimum Detected	11
Maximum Detected	28.4
Percent Non-Detects	37.50%
Minimum Non-detect	8.52
Maximum Non-detect	9.89
Mean of Detected Data	21.12
Median of Detected Data	25
Variance of Detected Data	65.87
SD of Detected Data	8.116
CV of Detected Data	0.384
Skewness of Detected Data	-0.574
Mean of Detected log data	2.98
SD of Detected Log data	0.438

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	17.33
SD	7.546
Standard Error of Mean	2.983
95% KM (t) UCL	22.98
95% KM (z) UCL	22.23
95% KM (BCA) UCL	26.33
95% KM (Percentile Bootstrap) UCL	26.28
95% KM (Chebyshev) UCL	30.33
97.5% KM (Chebyshev) UCL	35.95
99% KM (Chebyshev) ÚCL	47
Data appear Normal (0.05) May want to try Normal UCLs	
** Instead of UCL, EPC is selected to be [per recommendation in ProUCL U	
Bromomethane	

Total Number of Data 8 Number of Non-Detect Data 6

Pond sediment data_ProUCL sheets.xls nonparam UCLs 01/29/10 mlj

Page 199 of 212

Number of Detected Data	2
Minimum Detected	0.014
Maximum Detected	0.031
Percent Non-Detects	75.00%
'Minimum Non-detect	0.00264
Maximum Non-detect	0.017
Mean of Detected Data	0.0225
Median of Detected Data	0.0225
Variance of Detected Data	1.45E-04
SD of Detected Data	0.012
CV of Detected Data	0.534
Skewness of Detected Data	. N/A
Mean of Detected log data	-3.871
SD of Detected Log data	0.562

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 7
Number treated as Detected 1
Single DL Percent Detection 87.50%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0161
SD	0.00562
Standard Error of Mean	0.00281
95% KM (t) UCL	0.0215
95% KM (z) UCL	0.0207
95% KM (BCA) UCL	0.031
95% KM (Percentile Bootstrap) UCL	0.031
95% KM (Chebyshev) UCL	0.0284
97.5% KM (Chebyshev) UCL	0.0337
99% KM (Chebyshev) UCL	0.0441
Potential UCL to Use	
95% KM (t) UCL	0.0215
95% KM (⅍ Bootstrap) UCL	0.031
** Instead of UCL, EPC is selected to be med [per recommendation in ProUCL User G	

Cadmium

Total Number of Data

8

Number of Non-Detect Data Number of Detected Data	3 5
Minimum Detected	0.19
Maximum Detected	0.27
Percent Non-Detects	37.50%
Minimum Non-detect	0.03
Maximum Non-detect	0.034
Mean of Detected Data	0.226
Median of Detected Data	0.23
Variance of Detected Data	0.00128
SD of Detected Data	0.0358
CV of Detected Data	0.158
Skewness of Detected Data	0.0524
Mean of Detected log data	-1.497
SD of Detected Log data	0.16

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.213
SD	0.0307
Standard Error of Mean	0.0121
95% KM (t) UCL	0.236
95% KM (z) UCL	0.232
95% KM (BCA) UCL	0.24
95% KM (Percentile Bootstrap) UCL	0.243
95% KM (Chebyshev) UCL	0.265
97.5% KM (Chebyshev) UCL	0.288
99% KM (Chebyshev) ÚCL	0.333
Data appear Normal (0.05)	
May want to try Normal UCLs	

** Instead of UCL, EPC is selected to be median = <0.190
[per recommendation in ProUCL User Guide]

Carbon disulfide

Total Number of Data	8
Number of Non-Detect Data	7
Number of Detected Data	1
Minimum Detected	0.00771
Maximum Detected	0.00771
Percent Non-Detects	87.50%
Minimum Non-detect	0.00019
Maximum Non-detect	0.00205

Data set has all detected values equal to = 0.00771, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00771

Page 201 of 212

** Instead of UCL, EPC is selected to be median = <0.00096 [per recommendation in ProUCL User Guide]

(:r	ırnı	nium	

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	8.29
Maximum	20.1
Mean	12.93
Median	11.55
SD	4.611
Variance	21.26
Coefficient of Variation	0.357
Skewness	0.57
Mean of log data	2.505
SD of log data	0.35

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs

16.02
15.97 16.08
15.61
16.02
15.51
16.56
15.49
15.56
15.76
20.04
23.11
29.15

Data appear Normal (0.05)

May want to try Normal UCLs

Chrysene

Total Number of Data	8
Number of Non-Detect Data	7
Number of Detected Data	1
Minimum Detected	0.0257
Maximum Detected	0.0257
Percent Non-Detects	87.50%
Minimum Non-detect	0.013
Maximum Non-detect	0.017

Data set has all detected values equal to = 0.0257, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0257

** Instead of UCL, EPC is selected to be median = <0.0140

[per recommendation in ProUCL User Guide]

Cobalt		
Number of Valid Observations	8	
Number of Distinct Observations	8	
Minimum	5.19	
Maximum	8.99	
Mean	6.939	
Median	6.945	
SD	1.378	
Variance	1.898	
Coefficient of Variation	0.199	
Skewness	0.167	-
Mean of log data	1.92	
SD of log data	0.2	
5		

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	7.771
95% Modified-t UCL	7.866
Non-Parametric UCLs	
95% CLT UCL	7.74
95% Jackknife UCL	7.862
95% Standard Bootstrap UCL	7.698
95% Bootstrap-t UCL	7.888
95% Hall's Bootstrap UCL	7.723
95% Percentile Bootstrap UCL	7.695
95% BCA Bootstrap UCL	7.695
95% Chebyshev(Mean, Sd) UCL	9.062
97.5% Chebyshev(Mean, Sd) UCL	9.981
99% Chebyshev(Mean, Sd) UCL	11.79
Data appear Normal (0.05)	
May want to try Normal UCLs	

Copper

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	8.33
Maximum	26.8
Mean	15.2
Median	12.55
SD	7.421
Variance	55.08
Coefficient of Variation	0.488
Skewness	0.836
Mean of log data	2.623
SD of log data	0.467

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	20.17
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL	20.34
95% Modified-t UCL	20.3
Non-Parametric UCLs	
95% CLT UCL	19.51
95% Jackknife UCL	20:17
95% Standard Bootstrap UCL	19.15
95% Bootstrap-t UCL	23.41
95% Hall's Bootstrap UCL	21.13
95% Percentile Bootstrap UCL	19.25
95% BCA Bootstrap UCL	19.92
95% Chebyshev(Mean, Sd) UCL	26.64
97.5% Chebyshev(Mean, Sd) UCL	31.58
99% Chebyshev(Mean, Sd) UCL	41.31

Data appear Normal (0.05)

May want to try Normal UCLs

Iron

8
11300
20100
15275
15500
3227
10416429
0.211
0.139
9.614
0.214

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs

Student's-t UCL	17437
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	17212
95% Modified-t UCL	17446
Non-Parametric UCLs	
95% CLT UCL	17152
95% Jackknife UCL	17437
95% Standard Bootstrap UCL	17037
95% Bootstrap-t UCL	17535
95% Hall's Bootstrap UCL	17130
95% Percentile Bootstrap UCL	17125
95% BCA Bootstrap UCL	17088
95% Chebyshev(Mean, Sd) UCL	20249
97.5% Chebyshev(Mean, Sd) UCL	22401
99% Chebyshev(Mean, Sd) UCL	26629

Data appear Normal (0.05) May want to try Normal UCLs

Lead

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	10.6
Maximum	30.5
Mean	17.54
Median	15.5
SD	7.076
Variance	50.07
Coefficient of Variation	0.403
Skewness	0.923
Mean of log data	2.798
SD of log data	0.384

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Usefu	ul UCLs UCL				22.28
Student S-t	しし上述書の表記を	·····································	运动型 医神经性神经	经基金公司	~~~~~C

95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	22.52
95% Modified-t UCL	22.41
Non-Parametric UCLs	
95% CLT UCL	21.65
95% Jackknife UCL	22.28
95% Standard Bootstrap UCL	21.32
95% Bootstrap-t UCL	23.59
95% Hall's Bootstrap UCL	23.41
95% Percentile Bootstrap UCL	21.54
95% BCA Bootstrap UCL	22.34
95% Chebyshev(Mean, Sd) UCL	28.44
97.5% Chebyshev(Mean, Sd) UCL	33.16
99% Chebyshev(Mean, Sd) UCL	42.43

Data appear Normal (0.05)

May want to try Normal UCLs

Lithium

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	13.5
Maximum	23.7
Mean	18.48
Median	18.85
SD	4.071
Variance	16.58
Coefficient of Variation	0.22
Skewness	0.00369
Mean of log data	2.895
SD of log data	0.225

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	21.2	
95% UCLs (Adjusted for Skewness)		
95% Adjusted-CLT UCL	20.84	
95% Modified-t UCL	21.2	
Non-Parametric UCLs		
95% CLT UCL	20.84	
95% Jackknife UCL	21.2	
95% Standard Bootstrap UCL	20.65	
95% Bootstrap-t UCL	21.12	
95% Hall's Bootstrap UCL	20.4	
95% Percentile Bootstrap UCL	20.68	
95% BCA Bootstrap UCL	20.68	
95% Chebyshev(Mean, Sd) UCL	24.75	
97.5% Chebyshev(Mean, Sd) UCL	27.46	
99% Chebyshev(Mean, Sd) UCL	32.8	
Data appear Normal (0.05)		
May want to try Normal UCLs		
m,p-Cresol		
Total Number of Data	8	•
Number of Non-Detect Data	7	

Data set has all detected values equal to = 0.0375, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0375

** Instead of UCL, EPC is selected to be median = <0.0234 [per recommendation in ProUCL User Guide]

1

0.0375

0.0375

87.50%

0.021

0.0253

Manganese

Number of Detected Data

Minimum Detected

Maximum Detected

Percent Non-Detects

Minimum Non-detect

Maximum Non-detect

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	352
Maximum	711
Mean	487.6
Median	453
SD	124.2
Variance	15417
Coefficient of Variation	0.255
Skewness	0.739
Mean of log data	6.162
SD of log data	0.247

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL 570.8

Page 206 of 212

95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	572.1
95% Modified-t UCL	572.7
Non-Parametric UCLs	
95% CLT UCL	559.8
95% Jackknife UCL	570.8
95% Standard Bootstrap UCL	556.5
95% Bootstrap-t UCL	599
95% Hall's Bootstrap UCL	572.9
95% Percentile Bootstrap UCL	556
95% BCA Bootstrap UCL	563.6
95% Chebyshev(Mean, Sd) UCL	679
97.5% Chebyshev(Mean, Sd) UCL	761.8
99% Chebyshev(Mean, Sd) ÚCL	924.4

Data appear Normal (0.05) May want to try Normal UCLs

Methyl iodide

Total Number of Data	8
Number of Non-Detect Data	7
Number of Detected Data	1
Minimum Detected	0.041
Maximum Detected	0.041
Percent Non-Detects	87.50%
Minimum Non-detect	0.00159
Maximum Non-detect	0.017

Data set has all detected values equal to = 0.041, having '0' variation. No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.041

** Instead of UCL, EPC is selected to be median = <0.00784

[per recommendation in ProUCL User Guide]

Molybdenum

Total Number of Data	8
Number of Non-Detect Data	6
Number of Detected Data	2
Minimum Detected	0.21
Maximum Detected	0.6
Percent Non-Detects	75.00%
Minimum Non-detect	0.11
Maximum Non-detect	0.14
Mean of Detected Data	0.405
Median of Detected Data	0.405
Variance of Detected Data	0.0761
SD of Detected Data	0.276
CV of Detected Data	0.681
Skewness of Detected Data	N/A
Mean of Detected log data	-1.036
SD of Detected Log data	0.742

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method	N/A	
Kaplan Meier (KM) Method		
Mean	0.259	
SD	0.129	
Standard Error of Mean	0.0645	
95% KM (t) UCL	0.381	
95% KM (z) UCL	0.365	
95% KM (BCA) UCL	N/A	
95% KM (Percentile Bootstrap) UCL	0.6	
95% KM (Chebyshev) UCL	0.54	
97.5% KM (Chebyshev) UCL	0.661	
99% KM (Chebyshev) UCL	0.9	
Potential UCL to Use		
95% KM (t) UCL	0.381	
95% KM (% Bootstrap) UCL	0.6	
**Instead of UCL, EPC is selected to be median = <0.12 [per recommendation in ProUCL User Guide]		

Nickel

Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness	8 8 12.3 20.6 16.33 16.65 3.09 9.551 0.189 -0.0427
Skewness Mean of log data	-0.0427 2.777
SD of log data	0.193

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful		
Student's til		

95% Useful UCLs Student's-t UCL 18.4

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 18.1 95% Modified-t UCL 18.39

Pond sediment data_ProUCL sheets.xls nonparam UCLs 01/29/10 mlj

Page 208 of 212

Non-Parametric UCLs	•
95% CLT UCL	18.12
95% Jackknife UCL	18.4
95% Standard Bootstrap UCL	17.98
95% Bootstrap-t UCL	18.4
95% Hall's Bootstrap UCL	17.86
95% Percentile Bootstrap UCL	17.88
95% BCA Bootstrap UCL	17.96
95% Chebyshev(Mean, Sd) UCL	21.09
97.5% Chebyshev(Mean, Sd) UCL	23.15
99% Chebyshev(Mean, Sd) UCL	27.2

Data appear Normal (0.05)

May want to try Normal UCLs

Pyrene

Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect	8 5 3 0.0201 0.0265 62.50% 0.018 0.023
Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data	0.0232 0.0231 1.03E-05 0.0032 0.138 0.187 -3.769 0.138

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 6
Number treated as Detected 2
Single DL Percent Detection 75.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method	N/A
Kaplan Meier (KM) Method	
Mean	0.0213
SD	0.00221
Standard Error of Mean	9.55E-04
95% KM (t) UCL	0.0231
95% KM (z) UCL	0.0228
95% KM (BCA) UCL	0.0265

Pond sediment data_ProUCL sheets.xls nonparam UCLs 01/29/10 mlj

95% KM (Percentile Bootstrap) UCL	0.0265
95% KM (Chebyshev) UCL	0.0254
97.5% KM (Chebyshev) UCL	0.0272
99% KM (Chebyshev) UCL	0.0308

Data appear Normal (0.05) May want to try Normal UCLs

** Instead of UCL, EPC is selected to be median = \$\leq <0.0196 [per recommendation in ProUCL User Guide]

C+	 nf	i.,	-

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	63.3
Maximum	181
Mean	103.6
Median	89.45
SD	41.82
Variance	1749
Coefficient of Variation	0.404
Skewness	1
Mean of log data	4.575
SD of log data	0.38

Warning: There are only 8 Values in this data
Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Üseful UCLs Student's-t UCL	131.6

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	133.5 132.5
Non-Parametric UCLs	
95% CLT UCL	127.9
95% Jackknife UCL	131.6
95% Standard Bootstrap UCL	126
95% Bootstrap-t UCL	151.9
95% Hall's Bootstrap UCL	138.6
95% Percentile Bootstrap UCL	127
95% BCA Bootstrap UCL	130.3
95% Chebyshev(Mean, Sd) UCL	168.1
97.5% Chebyshev(Mean, Sd) UCL	195.9
99% Chebyshev(Mean, Sd) UCL	250.7

Data appear Normal (0.05) May want to try Normal UCLs

Titanium

Number of Valid Observations	8
Number of Distinct Observations	. 8
Minimum	19.1
Maximum	40.5
Mean	30
Median	32.65
SD	8.035
Variance	64.57

Pond sediment data_ProUCL sheets.xls nonparam UCLs 01/29/10 mlj

Coefficient of Variation	0.268
Skewness	-0.263
Mean of log data	3.367
SD of log data	0.286

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	35.38
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	34.39
95% Modified-t UCL	35.34
Non-Parametric UCLs	
95% CLT UCL	34.67
95% Jackknife UCL	35.38
95% Standard Bootstrap UCL	34.3
95% Bootstrap-t UCL	35.29
95% Hall's Bootstrap UCL	33.72
95% Percentile Bootstrap UCL	34.38
95% BCA Bootstrap UCL	34.13
95% Chebyshev(Mean, Sd) UCL	42.38
97.5% Chebyshev(Mean, Sd) UCL	47.74
99% Chebyshev(Mean, Sd) UCL	58.27
Data appear Normal (0.05)	
May want to try Normal UCLs	

Vanadium

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	16.8
Maximum	27.4
Mean	21.83
Median	21.8
SD	4.107
Variance	16.87
Coefficient of Variation	0.188
Skewness	0.0796
Mean of log data	3.067
SD of log data	0.19

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL	24.58
95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL	24.26 24.58
Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	24.21 24.58 24.04 24.41

Pond sediment data_ProUCL sheets.xls nonparam UCLs 01/29/10 mlj

95% Hall's Bootstrap UCL	23.81
95% Percentile Bootstrap UCL	24.04
95% BCA Bootstrap UCL	24.15
95% Chebyshev(Mean, Sd) UCL	28.15
97.5% Chebyshev(Mean, Sd) UCL	30.89
99% Chebyshev(Mean, Sd) UCL	36.27

Data appear Normal (0.05)

May want to try Normal UCLs

Zinc

Number of Valid Observations	8
Number of Distinct Observations	8
Minimum	38.2
Maximum	999
Mean	332.3
Median	55.65
SD	407.7
Variance	166239
Coefficient of Variation	1.227
Skewness	0.879
Mean of log data	4.894
SD of log data	1.489

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

Data do not follow a Discernable Distribution

95% Useful UCLs	
Student's-t UCL	605.4
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL	617.3
95% Modified-t UCL	612.9
Non-Bosson Add HOLo	
Non-Parametric UCLs	FCO 4
95% CLT UCL	569.4
95% Jackknife UCL	605.4
95% Standard Bootstrap UCL	557.3
95% Bootstrap-t UCL	767.6
95% Hall's Bootstrap UCL	474.7
95% Percentile Bootstrap UCL	549.9
95% BCA Bootstrap UCL	591.4
95% Chebyshev(Mean, Sd) UCL	960.7
97.5% Chebyshev(Mean, Sd) UCL	1233
99% Chebyshev(Mean, Sd) ÚCL	1767
Potential UCL to Use	
99% Chebyshev(Mean, Sd) UCL	1767
Recommended UCL exceeds the maximum observation	1707
Meconimended OCE exceeds the maximum observation	

APPENDIX B

BACKGROUND COMPARISONS

APPENDIX B-1 BACKGROUND COMPARISONS SOUTH OF MARLIN SURFACE SOIL

ANTIMONY - SOUTH OF MARLIN SURFACE SOIL								
Compound Site Conc. Site Conc. Number of Site Dackground Conc.: Number of Background Conc.: Number of Background Conc.: Number of Background Conc.: Samples Conc. Mean Standard Deviation Samples								
Antimony 1.118 1.228 83 0.953 0.878 10								

Calculated Difference = 0.165 Standard Error of the Difference = 0.407177285

Degree of Freedom = 91

t = 0.405228892

0.3445

Data sets significantly different = No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html background mean is not statistically less than site mean

ARSENIC - SOUTH OF MARLIN SURFACE SOIL									
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Conc. Number of Background Samples									
Arsenic	3.735	4.012	83	3.438	1.792	10			
Coloulated Difference	0.207								

Calculated Difference = 0.297
Standard Error of the Difference = 1.126036589

Degree of Freedom = 91

t = 0.263756971

p = 0.3963

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soil mean is not statistically greater than background mean

BARIUM - SOUTH OF MARLIN SURFACE SOIL								
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Barium								

Calculated Difference = 12.1 Standard Error of the Difference = 124.3580544

Degree of Freedom = 91

t = 0.097299689

0.4614

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

CADMIUM - SOUTH OF MARLIN SURFACE SOIL									
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples									
Cadmium	0.464	1.141	83	0.0311	0.0398	10			
Calculated Difference =	0.4329								

Standard Error of the Difference = 0.277019204

Degree of Freedom = 91

t = 1.562707545

0.0608

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

CHROMIUM - SOUTH OF MARLIN SURFACE SOIL								
Compound	Site Conc. – Mean	The state of the control of the cont	Number of Site Samples	TO CONTRACT THE PROPERTY OF TH		Number of Background Samples		
Chromium	16.08	15.7	83	15.2	3.02	10		
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	0.88 3.925742193 91 0.224161434 0.4116 No	calculated at www.stat. site soil mean is not sta			n			

ſ	COPPER - SOUTH OF MARLIN SURFACE SOIL								
A.W. (\$1.00)	Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background								
ľ	MeanStandard DeviationSamplesConc. MeanStandard DeviationSamplesCopper27.9835.358312.123.95510								

Calculated Difference = 15.86 Standard Error of the Difference = 8.664375822

Degree of Freedom = 91

t = 1.830483849

p = 0.0353

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

site surface soil mean is statistically greater than background mean Data sets significantly different = Yes

LEAD - SOUTH OF MARLIN SURFACE SOIL								
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Lead 69.61 112.8 83 13.43 1.547 10								

Calculated Difference = 56.18
Standard Error of the Difference = 27.36239203

Degree of Freedom = 91

t = 2.053183068

p = 0.0215

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = Yes site surface soil mean is statistically greater than background mean

LITHIUM - SOUTH OF MARLIN SURFACE SOIL									
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Conc. Samples Samples									
Lithium	7.856	5.715	83	21.14	5.166	10			
					. ———				
Calculated Difference =	13.284								

Standard Error of the Difference = 2.142429492

Degree of Freedom = 91

t = 6.200437423

0.00 p =

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean Data sets significantly different = Yes

MANGANESE - SOUTH OF MARLIN SURFACE SOIL									
Compound Site Conc. Site Conc. Number of Site Samples Standard Deviation Samples Standard Deviation Samples									
Manganese	257.4	129.3	83	377.4	93.75	10			
Calculated Difference = 120									

Standard Error of the Difference = 43.15491673

Degree of Freedom = 91

t = 2.780679679

0.0033

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

Yes

site surface soil mean is statistically less than background mean

MERCURY - SOUTH OF MARLIN SURFACE SOIL								
Compound	Site Conc.		Number of Site			Number of Background Samples		
Mercury	0.0227	0.0752	83	0.0213	0.00479	10		
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	0.0014 0.01830147 91 0.076496585 0.4698 No	calculated at www.stat.t site soil mean is not sta			1			
						•		

MOLYBDENUM - SOUTH OF MARLIN SURFACE SOIL								
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples		
Molybdenum	1.306	1.588	83	0.522	0.0739	10		

Calculated Difference = 0.784
Standard Error of the Difference = 0.385854899

Degree of Freedom = 91

t = 2.031851873

0.0225

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

Yes

site surface soil mean is statistically greater than background mean

ZINC - SOUTH OF MARLIN SURFACE SOIL								
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site	Background Conc Mean	Background Conc.	Number of Background Samples		
Zinc	601.2	672.8	83	247	364.6	10		

Calculated Difference = 354.2

Standard Error of the Difference = 199.8008143 Degree of Freedom =

t = 1.772765547

0.0399

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

site surface soil mean is statistically greater than background mean Data sets significantly different = Yes

APPENDIX B-2 BACKGROUND COMPARISONS SOUTH OF MARLIN SOIL

ANTIMONY - SOUTH OF MARLIN SOIL								
Site Conc.	Site Conc.	ACCUMENTATION OF THE PROPERTY OF THE PARTY O	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples			
1.023	1.14	166	0.953	0.878	10			
1 1,020		100	0.000	0.010				
	Mean	Site Conc. Site Conc. Mean Standard Deviation	Site Conc. Site Conc. Number of Site Mean Standard Deviation Samples	Site Conc. Site Conc. Number of Site Backgrounds Mean Standard Deviation Samples Conc. Mean	Site Conc. Site Conc. Number of Site Background Background Conc.			

Calculated Difference = 0.07 Standard Error of the Difference = 0.39183601

Degree of Freedom = 174

t = 0.178646164

0.4292 p =

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

No

background mean is not statistically less than site mean

ARSENIC - SOUTH OF MARLIN SOIL									
Gompound	Site Conc Mean	Site Conc. Standard Deviation	Number of Site: Samples			Number of Background Samples			
Arsenic	3.331	3.269	166	3.438	1.792	10			
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	0.107 0.97454393 174 0.109794948 0.4563 No	calculated at www.stat. site soil mean is not sta							

BARIUM - SOUTH OF MARLIN SOIL								
Compound	Conc. Site Cor ean Standard De		e Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples			
Barium 2	37.4 274.8	166	333.1	288.1	10			

Calculated Difference = 95.7 Standard Error of the Difference = 112.8814519

Degree of Freedom = 174

t = 0.847792072

p = 0.1989

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

No

site soil mean is not statistically less than background mean

CADMIUM - SOUTH OF MARLIN SOIL								
Compound	Site Conc. Mean	Site Conc.	Number of Site.	The second secon	Background Conc. Standard Deviation	Number of Background		
Cadmium	0.335	0.859	166	0.0311	0.0398	10		
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	0.3039 0.208717917 174 1.456032165 0.0736 No	calculated at www.stat. site soil mean is not sta			n			

Compound Site Co	onc: Site Conc.	Number of Site	Background	Background Conc.	Number of Background
ivied	n Standard Deviation	Samples	Conc. Mean	Standard Deviation	Samples
Chromium 13.5	3 12.49	166	15.2	3.02	10

Calculated Difference = 1.67 Standard Error of the Difference = 3.176242508

Degree of Freedom = 174

t = 0.525778493

0.2998 Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

049277

COPPER - SOUTH OF MARLIN SOIL									
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site	Background Conc. Mean	Background Conc, Standard Deviation	Number of Background Samples			
Copper	24.26	46.76	166	12.12	3.955	10			
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	11.40971991	calculated at www.stat. site soil mean is not sta			n				

		LEAD - SO	OUTH OF MARLIN S	SOIL		
Gompound	Site Conc. Mean	Site Conc. Standard Deviation	The state of the s	Background Conc. Mean		Number of Background Samples
Lead	53.52	104.2	166	13.43	1.547	10
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	40.09 25.27694655 174 1.586030177 0.0573 No	calculated at www.stat.t site surface soil mean is			ınd mean	

LITHIUM - SOUTH OF MARLIN SOIL								
Compound	Site Conc. Mean	Site Conc.	Number of Site		Background Conc. Standard Deviation	Number of Background Samples		
Lithium	10.03	6.299	166	21.14	5.166	10		
Calculated Difference =	11 11							

11.11 Standard Error of the Difference = 2.236676187

Degree of Freedom = 174

t = 4.967191972

0.00

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean Data sets significantly different = Yes

MANGANESE - SOUTH OF MARLIN SOIL								
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Manganese								

Calculated Difference = 116.2 Standard Error of the Difference = 42.82121949

Degree of Freedom = 174

t = 2.713607912

p = 0.0037

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = Yes site surface soil mean is statistically less than background mean

MERCURY - SOUTH OF MARLIN SOIL							
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples	
Mercury	0.0262	0.0941	166	0.0213	0.00479	10	
}							

Calculated Difference = 0.0049 Standard Error of the Difference = 0.022872813

Degree of Freedom = 174

t = 0.214228129

p = 0.4153

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soil mean is not statistically greater than background mean

049282

MOLYBDENUM - SOUTH OF MARLIN SOIL							
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples							
Molybdenum 0.89 1.488 166 0.522 0.0739 10							

Calculated Difference = 0.368
Standard Error of the Difference = 0.361648843

Degree of Freedom = 174

t = 1.017561668

p = 0.1550

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Compound	Site Conc.	The state of the s	Number of Site			Number of Backgroun
Zinc	Mean 433.8	Standard Deviation 786.8	Samples 166	Conc. Mean 247	Standard Deviation 364.6	Samples 10
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t =	186.8 222.9535182 174 0.8378428 0.2016	calculated at www.stat.t				
p = Data sets significantly different =	No .	site soil mean is not sta	tistically greater tha	ın background mea	n	

APPENDIX B-3
BACKGROUND COMPARISONS
NORTH OF MARLIN SURFACE SOIL

ANTIMONY - NORTH OF MARLIN SURFACE SOIL								
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Antimony	1.744	2.146	18	0.953	0.878	10		

Calculated Difference = 0.791
Standard Error of the Difference = 0.589906214

Degree of Freedom = 26

t = 1.340891114

o = 0.0958

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Compound Site Conc. Site Co	onc Number of Site	Packarounder					
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples							
Arsenic 2.522 1.16	4 18	3.438	1.792	10			

Calculated Difference = 0.916 Standard Error of the Difference = 0.633108336

Degree of Freedom = 26

t = 1.446829789

p = 0.0799

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean Data sets significantly different = No

BARIUM - NORTH OF MARLIN SURFACE SOIL								
Compound Site Conc. Site Conc. Number of Site & Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Barium	145.2	115.8	18	333.1	288.'1	10		
Bandin 140.2 110.0 10 556.1 200.1 10								

Calculated Difference = 187.9
Standard Error of the Difference = 95.33605484

Degree of Freedom = 26

t = 1.970922756

0.0297

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = Yes site surface soil mean is statistically less than background mean

	CADMIUM - NORTH OF MARLIN SURFACE SOIL									
Compound	Site Conc Mean	Site Conc. Standard Deviation	Number of Site			Number of Background Samples				
Cadmium	0.207	0.252	18	0.0311	0.0398	10				
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	0.06240139	calculated at www.stat. site soil mean is statisti								

CHROMIUM - NORTH OF MARLIN SURFACE SOIL							
Gompound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Samples Conc. Mean Standard Deviation Samples							
Chromium	20.26	27.58	18	15.2	3.02	10	
Chloman		27.50	10	10.2	0.02	10	

Calculated Difference = 5.06
Standard Error of the Difference = 6.7569619

Degree of Freedom = 26

t = 0.748857264

p = 0.2303

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

COPPER - NORTH OF MARLIN SURFACE SOIL								
Compound Site Conc. Site Conc. Number of Site Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Copper								

Calculated Difference = 12.01

Standard Error of the Difference = 10.90360718

Degree of Freedom = 26

t = 1.101470348

p = 0.1405

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

		LEAD - NORTH	OF MARLIN SURF	ACE SOIL		
Compound (2)	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site	Background	Background Cone.	Number of Background
Lead	57.7	111.1	18	13.43	1.547	10

Calculated Difference = 44.27

Standard Error of the Difference = 26.95014837

Degree of Freedom = 26

t = 1.64266257

p = 0.0562

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

		LITHIUM - NORTH	OF MARLIN SUR	FACE SOIL		
Compound	Site Conc. Mean	Site Conc.	Number of Site Samples	Background Conc Mean	Background Conc.	Number of Background Samples
Lithium	16.57	5.136	18	21.14	5.166	10

Calculated Difference = 4.57

Standard Error of the Difference = 2.054368963

Degree of Freedom = 26

t = 2.224527377

p = 0.0175

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = Yes site surface soil mean is statistically less than background mean

MANGANESE - NORTH OF MARLIN SURFACE SOIL							
Compound'	Site Conc. Mean	Site Conc. Standard Deviation	Number of Sites	Background Conc. Mean	Background Conc Standard Deviation	Number of Background Samples	
Manganese	369.5	247.7	18	377.4	93.75	10	

Calculated Difference = 7.9 Standard Error of the Difference = 66.99284257

Degree of Freedom = 26

t = 0.117923045

0.4535 p =

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically less than background mean Data sets significantly different = Nο

MERCURY - NORTH OF MARLIN SURFACE SOIL							
Compound	Site Conc. Mean	Site Conc.	Number of Site Samples	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples	
Mercury	0.0126	0.0163	18	0.0213	0.00479	10	

Calculated Difference = 0.0087 Standard Error of the Difference = 0.004233584

Degree of Freedom =

t = 2.054996426

0.0250

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean Data sets significantly different = Yes

		MOLYBDENUM - NO	RTH OF MARLIN S	URFACE SOIL	-	
Compound.	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples
Molybdenum	0.949	2.5	18	0.522	0.0739	10

Calculated Difference =

0.427

Standard Error of the Difference = 0.606789238

Degree of Freedom =

26

t = 0.703703977

p = 0.2439 calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

No

site soil mean is not statistically greater than background mean

	ZINC - NORTH OF MARLIN SURFACE SOIL						
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background Conc Mean	Background Conc. Standard Deviation	Number of Background Samples	
Zinc	418.4	1308	18	247	364.6	10	

Calculated Difference = 171.4
Standard Error of the Difference = 337.5387012

Degree of Freedom = 26

t = 0.507793623

p = 0.3080

.3080 calculated at www.stat.tamu.edu/~west/applets/tdemo.html

APPENDIX B-4 BACKGROUND COMPARISONS NORTH OF MARLIN SOIL

		ANTIMONY -	NORTH OF MARLI	N SOIL		
Compound	Site Conc. Mean	Site Conc.	Number of Site Samples	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples
Antimony	1.416	1.779	36	0.953	0.878	10

Calculated Difference = 0.463
Standard Error of the Difference = 0.513084318

Degree of Freedom = 44

t = 0.902385794

p = 0.1859

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

ARSENIC - NORTH OF MARLIN SOIL								
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site	Background Conc. Mean	Background Conc. Standard Deviation			
Arsenic	2.573	1.369	36	3.438	1.792	10		
Calculated Difference =	0.865							

Standard Error of the Difference = 0.656788524

Degree of Freedom = 44

t = 1.317014486

0.0973

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

		BARIUM - N	IORTH OF MARLIN	SOIL	·	
Compound	Site Conc. Mean	Site Conc.	Number of Site	Background Cone Mean	Background Conc. Standard Deviation	Number of Background Samples
Barium	142.1	95.9	36	333.1	288.1	10
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	191 94.02738869 44 2.031323029 0.0242 Yes	calculated at www.stat. site surface soil mean i	• •		an	

		CADMIUM - N	NORTH OF MARLI	N SOIL		
Compound	Site Conc. Mean	Site Conc.	Number of Site	Background Conc Mean	Background Conc.	Number of Background Samples
Cadmium	0.193	0.239	36	0.0311	0.0398	10

Calculated Difference = 0.1619 Standard Error of the Difference = 0.059316632

Degree of Freedom = 44

t = 2.729419974

0.0045 p =

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically greater than background mean Data sets significantly different = Yes

		CHROMIUM -	NORTH OF MARL	IN SOIL		
Compound	Site Conc.	Site Conc.	Number of Site Samples	Background	Background Cone.	Number of Background
Chromium	17.17	19.6	36	15.2	3.02	10

Calculated Difference = 1.97
Standard Error of the Difference = 4.848678898

Degree of Freedom = 44

t = 0.406296239

p = 0.3432

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

COPPER - NORTH OF MARLIN SOIL								
Compound	Site Conc Mean	Site Conc.	Number of Site	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples		
Copper	18.7	31.9	36	12.12	3.955	10		

Calculated Difference = 6.58
Standard Error of the Difference = 7.837321881

Degree of Freedom = 44

t = 0.83957251

p = 0.2028

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

LEAD - NORTH OF MARLIN SOIL								
Compound.	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples		
Lead	37.8	80.99	36	13.43	1.547	10		
			•					
Calculated Difference =	24 27							

Calculated Difference = 24.37
Standard Error of the Difference = 19.6490511

Degree of Freedom = 44

t = 1.240263455

= 0.1108

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

LITHIUM - NORTH OF MARLIN SOIL							
Compound	Site Conc. Mean	Site Conc.	Number of Site Samples	Background Conc. Mean	Background Conc.	Number of Background Samples	
Lithium	18.84	5.952	36	21.14	5.166	10	

Calculated Difference = 2.3

Standard Error of the Difference = 2.180058677

Degree of Freedom = 44

t = 1.055017475

p = 0.1486

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

		MANGANESE	- NORTH OF MAR	LIN SOIL		
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site			Number of Background
Manganese ''	347	204.1	36	377.4	93.75	10
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	30.4 57.70014591 44 0.526861753 0.3005 No	calculated at www.stat. site surface soil mean i			mean	

		MERCURY -	NORTH OF MARLI	N SOIL		
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site		Background Conc. Standard Deviation	Number of Background Samples
Mercury	0.0094	0.0124	36	0.0213	0.00479	10
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	0.0119 0.00336736 44 3.533925295 0.0005 Yes	calculated at www.stat. site soil mean is statisti	• •			

MOLYBDENUM - NORTH OF MARLIN SOIL							
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Sites Samples	Background	Background Conc. Standard Deviation	Number of Background Samples	
Molybdenum	0.586	1.788	36	0.522	0.0739	10	

Calculated Difference = 0.064 Standard Error of the Difference = 0.434282915

Degree of Freedom = 44

t = 0.147369371

p = 0.4417

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

	ZINC - NORTH OF MARLIN SOIL								
Compound		Site Conc. Mean	Site Conc.	Number of Site.	Background	Background Conc.	Number of Background		
Zinc		242.5	929.4	36	247	364.6	10		

Calculated Difference = 4.5

Standard Error of the Difference = 253.1879948

Degree of Freedom =

t = 0.017773355

0.4929

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different = No

049310

APPENDIX B-5 BACKGROUND COMPARISONS INTRACOASTAL WATERWAY SEDIMENT

Compound Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples			4,4'-DDT - INTRACO	ASTAL WATERWA	AY SEDIMENT		·
4 4'-DDT 0.00041103 0.0007962 17 0.0001555 0.00015569 9	Compound			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	The second secon		Number of Background Samples
4,4-551 0.00041103 0.0007302 17 0.0001333 0.00013333	4,4'-DDT	0.00041103	0.0007962	17	0.0001555	0.00015569	9

Calculated Difference = 0.00025553
Standard Error of the Difference = 0.000199284

Degree of Freedom = 24

t = 1.28223903

p = 0.106

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

		ALUMINUM - INTRAC	OASTAL WATERV	VAY SEDIMENT		
Compound -	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	TO THE RESIDENCE OF THE PARTY O	Background Conc. Standard Deviation	Number of Background Samples
Aluminum	6854	2346	16	12213	6892	9
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	5359 2252.49071 23 2.379144107 0.013 Yes	calculated at www.stat. site soil mean is statisti				

		ANTIMONY - INTRAC	OASTAL WATERW	/AY SEDIMENT		
Compound	Site Conc. Mean	Site Conc Standard Deviation	Number of Site Samples	Background	Background Conc. Standard Deviation	Number of Background Samples
Antimony	2.245	1.751	16	4.023	2.215	9

Calculated Difference = 1.778

Standard Error of the Difference = 0.819130942

Degree of Freedom = 23

t = 2.170593136

0.0203

Data sets significantly different =

Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

	ARSENIC - INTRACOASTAL WATERWAY SEDIMENT							
Compound	Compound: Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples							
Arsenic	4.026	1.4	16	5.813	3.107	9		

Calculated Difference = 1.787 Standard Error of the Difference = 1.039537887

Degree of Freedom = 23

t = 1.719033066

p = 0.0495

Data sets significantly different = Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

BARIUM - INTRACOASTAL WATERWAY SEDIMENT							
Compound	Site Conc. 7	Site Conc. Standard Deviation	Number of Site	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples	
Barium	215.3	59.65	16	209.7	47.73	9	

Calculated Difference = 5.6 Standard Error of the Difference = 20.90733397

Degree of Freedom = 23

t = 0.267848594

p = 0.3956

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soil mean is not statistically greater than background mean

BENZO(B)FLUORANTHENE - INTRACOASTAL WATERWAY SEDIMENT								
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Benzo(b)fluoranthene								

Calculated Difference = 0.0913 Standard Error of the Difference = 0.038225347

Degree of Freedom = 23

t = 2.388467508

p = 0.5

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean No Data sets significantly different =

	BERYLLIUM - INTRACOASTAL WATERWAY SEDIMENT								
Compound	Site Conc. Mean					Number of Background Samples			
Beryllium	0.463	0.149	16	0.766	0.403	9			
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	0.303 0.13246449 23 2.287405473 0.0159 Yes	calculated at www.stat. site soil mean is statisti	•						

		BORON - INTRACO	ASTAL WATERWA	Y SEDIMENT		
Compound	Site Conc Mean	Site Conc. Standard Deviation	Number of Site Samples	THE COUNTY WAS A CONTROL OF THE CONT	Background Conc. Standard Deviation	Number of Background Samples
Boron	12.04	9.92	16	27.64	12.82	9
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p = Data sets significantly different =	15.6 4.714218044 23 3.30913841 0.0015 Yes	calculated at www.stat.t site soil mean is statistic				

				COBALT - INTRACOASTAL WATERWAY SEDIMENT								
Compound Site Co Mear		Number of Site Samples	Background*** Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples							
Cobalt 4.385	1.131	16	6.698	3.165	9							

Calculated Difference = 2.313
Standard Error of the Difference = 1.037770333

Degree of Freedom = 23

t = 2.228816845

= 0.0179

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

Yes

site soil mean is statistically less than background mean

e Conc.	CIT O	Chicago and a Character South State of the Character of t	the angle of the Control of the Cont		
AND THE PERSON NAMED IN COLUMN	Site Conc. tandard Deviation	Number of Site Samples			Number of Background Samples
7.112	2.997	16	8.138	5.165	9
		7.112 2.997	7.112 2.997 16	7.112 2.997 16 8.138	7.112 2.997 16 8.138 5.165

Calculated Difference = 1.026 Standard Error of the Difference = 1.787757246

Degree of Freedom = 23

t = 0.573903421

p = 0.2858

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

IRON - INTRACOASTAL WATERWAY SEDIMENT								
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Iron	Control of the contro							

Calculated Difference = 3144 Standard Error of the Difference = 2892.307356

Degree of Freedom = 23

t = 1.087021403

p = 0.1441

calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = site soil mean is not statistically less than background mean No

LEAD - INTRACOASTAL WATERWAY SEDIMENT								
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site	AND THE RESERVE OF THE PARTY OF	Background Conc. Standard Deviation	Parameter and the second secon		
Lead	11.56	7.161	16	9.587	3.602	9		
Calculated Difference =	1.973 2.076994545							

	LITHIUM - INTRACOASTAL WATERWAY SEDIMENT							
- Compound	Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Wean Standard Deviation Samples Conc. Mean Standard Deviation Samples							
Lithium	10.53	3.559	16	21.4	14.41	9		

Calculated Difference = 10.87 Standard Error of the Difference = 4.637876359

Degree of Freedom =

t = 2.343745102 p = 0.0141

23

p = 0

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = Yes site soil mean is statistically less than background mean

	MANGANESE - INTRACOASTAL WATERWAY SEDIMENT							
Compound	Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples							
Manganese	283.3	87.59	16	330.7	88.99	9		

Calculated Difference = ' 47.4 Standard Error of the Difference = 35.25927685 Degree of Freedom = 23

t = 1.34432706

p = 0.0960

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

MERCURY - INTRACOASTAL WATERWAY SEDIMENT							
Compound Site Conc. Site Conc. Number of Site Background Background Gonc. Number of Background Samples Conc. Mean Standard Deviation Samples							
Mercury	0.0201	0.0073	16	0.0176	0.0132	9	

Calculated Difference = 0.0025 Standard Error of the Difference = 0.004534171 Degree of Freedom = 23

t = 0.551368717

0.5000

Data sets significantly different = No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

	N	MOLYBDENUM - INTRA	COASTAL WATER	RWAY SEDIMENT		
Compound	Site Conc. Mean	Site Conc:	Number of Site	Background -	Background Conc.	Number of Background
Molybdenum	0.667	1.358	16	0.241	0.0675	9

Calculated Difference = 0.426 Standard Error of the Difference = 0.330054329 Degree of Freedom = 23

t = 1.290696598

p = 0.1048

Data sets significantly different = No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

	NICKEL - INTRACOASTAL WATERWAY SEDIMENT							
Compound	Site Conc. Mean	Site Conc.	Number of Site : Samples	Background Conc Mean	Background Conc.	Number of Background		
Nickel	9.589	2.741 ·	16	14.91	8.111	9		

Calculated Difference = 5.321 Standard Error of the Difference = 2.649675082

Degree of Freedom = 23 t = 2.008170751

0.5000

calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = site soil mean is not statistically less than background mean No

	STRONTIUM - INTRACOASTAL WATERWAY SEDIMENT							
Compound Site Conc, Site Conc. Number of Site Background Background Conc. Number of Background Samples Conc. Mean Standard Deviation Samples								
Strontium	44.86	14.43	16	59.17	22.06	9		

Calculated Difference = 14.31 Standard Error of the Difference = 7.804670623

Degree of Freedom = 23 t = 1.833517478

0.0398 Data sets significantly different = Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

	TITANIUM - INTRACOASTAL WATERWAY SEDIMENT							
Compound	Site Conc. Mean	Site Conc.	Number of Site	Background 4 Conc Mean	Background Conc. Standard Deviation	Number of Backgrounds Samples		
Titanium	25.58	5.051	16	31.79	10.49	9		

Calculated Difference = 6.21 Standard Error of the Difference = 3.536205768 Degree of Freedom = 23

t = 1.756119527

0.0462

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

site soil mean is statistically less than background mean Data sets significantly different = Yes

	VANADIUM - INTRACOASTAL WATERWAY SEDIMENT							
+Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background	Background Conc.	Number of Background		
Vanadium	13.86	3.523	16	20.21	9.135	9		

Calculated Difference = 6.35 Standard Error of the Difference = 3.012459534 23

Degree of Freedom =

t = 2.107912133

0.0231 p =

Data sets significantly different = Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

	ZINC - INTRACOASTAL WATERWAY SEDIMENT							
Compound	Site Conc.	Site Conc.	Number of Site Samples	Background	Background Conc.	Number of Background Samples		
Zinc	45.36	19.88	Sambles 16	36.04	13.68	9		

Calculated Difference = 9.32
Standard Error of the Difference = 6.477819531
Degree of Freedom = 23

t = 1.438755735

p = 0.0818 calculated at www.stat.tamu.edu/~west/applets/tdemo.html
Data sets significantly different = No site soil mean is not statistically greater than background mean

APPENDIX B-6 BACKGROUND COMPARISONS WETLAND SEDIMENT

ANTIMONY - WETLAND SEDIMENT								
Compound	Site Conc. Mean	Site Conc:	Number of Site Samples	Background Conc. Mean	Background Conc.	Number of Background Samples		
Antimony	1.154	0.724	47	0.953	0.878	10		

Calculated Difference = 0.201 Standard Error of the Difference = 0.32851527

Degree of Freedom = 55

t = 0.611843706

p = 0.2716

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soil mean is not statistically greater than background mean

Compound Site Conc. Site Co	inc: Number of Sit	ite Background	Background Conc.	Make the second
Mean Standard Do	eviation Samples	Conc. Mean	Standard Deviation	Number of Background Samples
Arsenic 2.534 2.465	5 48	3.438	1.792	10

Calculated Difference = 0.904

Standard Error of the Difference = 0.823742314

Degree of Freedom = 56

t = 1.097430573

p = 0.1387

Data sets significantly different = No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

049335

BARIUM - WETLAND SEDIMENT									
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	TO THE RESIDENCE OF THE PROPERTY OF THE PERSON OF THE PERS	Background Conc. Standard Deviation	Number of Background Samples			
Barium	151.7	136.5	48	333.1	288.1	10			
					·				
Calculated Difference =	181.4								

Standard Error of the Difference = 96.93387285

Degree of Freedom = 56

t = 1.871378855

p = 0.0333

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean Data sets significantly different = Yes

CADMIUM - WETLAND SEDIMENT									
Compound	Site Conc.	Site Conc. Standard Deviation			Background Conc. Standard Deviation				
Cadmium	0.103	0.146	48	0.0311	0.0398	10			
Calculated Difference = Standard Error of the Difference =	0.0719 0.037580399								

Degree of Freedom = 56

t = 1.913231441

p = 0.0304 calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

Yes

site soil mean is statistically greater than background mean

	CHROMIUM - WETLAND SEDIMENT							
Compound Site Conc. Site Conc. 2Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Chromium	15.07	5.536	48	15.2	3.02	10		

Calculated Difference = 0.13 Standard Error of the Difference = 1.647671726

Degree of Freedom = 56

t = 0.078899211

0.4687 p =

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different =

COPPER - WETLAND SEDIMENT								
Compound	Site Conc. Mean	Site Conc. Standard Deviation		Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples		
Copper	14.49	8.49	48	12.12	3.955	10		
	•							
Calculated Difference =	2.37							

Standard Error of the Difference = 2.409192475

Degree of Freedom = 56

t = 0.983732111

0.1647

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

LEAD - WETLAND SEDIMENT									
Compound	Site Conc. Mean	Site Conc. Standard Deviation	AND THE PROPERTY OF THE PARTY O		Background Conc. Standard Deviation	Number of Background Samples			
Lead	25.36	34.13	48	13.43	1.547	10			
				I					
Calculated Difference =	11.93					•			

Standard Error of the Difference = 8.292183972

Degree of Freedom = 56

t = 1.438704211

0.0779

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically greater than background mean Data sets significantly different = No

LITHIUM - WETLAND SEDIMENT										
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Secretary and the second secon	Background Conc. Standard Deviation	Number of Background Samples				
Lithium	18.65	3.754	48	21.14	5.166	10				
Calculated Difference =	2.49									

Standard Error of the Difference = 1.870221145

Degree of Freedom = 56 t = 1.331393353

0.0943 calculated at www.stat.tamu.edu/~west/applets/tdemo.html

site soil mean is not statistically less than background mean No Data sets significantly different =

MANGANESE - WETLAND SEDIMENT									
Compound	Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Manganese	331.8	205.9	48	377.4	93.75	10			

Calculated Difference = 45.6

Standard Error of the Difference = 58.07511173

Degree of Freedom = 56

t = 0.785190052

p = 0.2178

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

No

site surface soil mean is not statistically less than background mean

MERCURY - WETLAND SEDIMENT									
Compound	Site Conc.		Number of Site	Background		Number of Background			
Mercury	Mean 0.0199	Standard Deviation 0.0194	Samples 48	0.0213	Standard Deviation 0.00479	Samples 10			
Calculated Difference = Standard Error of the Difference =					·	•			
Degree of Freedom = t = p =	56 0.283228898 0.3890	calculated at www.stat.	tamu.edu/~west/app	olets/tdemo.html					
Data sets significantly different =	No	site surface soil mean is			mean				

MOLYBDENUM - WETLAND SEDIMENT									
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples									
Molybdenum	0.581	0.677	48	0.522	0.0739	10			
Molybuertum	0.501	0.077	40	0.522	0.0733	10			

Calculated Difference = 0.059
Standard Error of the Difference = 0.16585129

Degree of Freedom = 56

t = 0.355740374

p = 0.3617

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soi

site soil mean is not statistically greater than background mean

ZINC - WETLAND SEDIMENT								
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples		
Zinc	139.1	160.9	53	247	364.6	10		

Calculated Difference = 107.9 Standard Error of the Difference = 121.7217613

Degree of Freedom =

t = 0.886447902

p = 0.1896

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean Data sets significantly different = No

APPENDIX B-7 BACKGROUND COMPARISONS POND SEDIMENT

ANTIMONY - POND SEDIMENT									
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site. Samples		l	Number of Background Samples			
Antimony	0.795	0.618	8	0.953	0.878	10			
Calculated Difference = Standard Error of the Difference = Degree of Freedom = t = p =	0.158 0.31552261 16 0.500756506 0.3116	calculated at www.stat.t							
Data sets significantly different =	No	site soil mean is not sta	tistically less than b	ackground mean					

ARSENIC - POND SEDIMENT								
Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples								
Arsenic	1.735	2.233	8	3.438	1.792	10		

Calculated Difference = 1.703

Standard Error of the Difference = 0.783860649

Degree of Freedom = 16

t = 2.172580039

p = __. 0.0226

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

Yes

site soil mean is statistically less than background mean

BARIUM - POND SEDIMENT									
Compound	Gompound Site Conc. Site Conc. Number of Site Background Background Gonc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation. Samples								
Barium	198.6	119.4	8	333.1	288.1	10			

Calculated Difference = 134.5 Standard Error of the Difference = 95.59691633

Degree of Freedom = 16

t = 1.406949148

p = 0.0893

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically less than background mean No Data sets significantly different =

CADMIUM - POND SEDIMENT								
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples		
Cadmium	0.147	0.112	8	0.0311	0.0398	10		

Calculated Difference = 0.1159

Standard Error of the Difference = 0.029938042

Degree of Freedom = 16

t = 3.871328672

0.0007

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically greater than background mean Data sets significantly different = Yes

·		CHROMIL	IM - POND SEDIM	ENT		
Compound	Site Conc.	Site Conc. Standard Deviation	Number of Site	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples
Chromium	12.93	4.611	8	15.2	3.02	10

Calculated Difference = 2.27

Standard Error of the Difference = 1.470614137

Degree of Freedom = 16

t = 1.543572812

p = 0.0711

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soil mean is not statistically less than background mean

		COPPER	R - POND SEDIMEI	NT		
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background Conc. Mean	Background Conc.	Number of Background Samples
Copper	15.2	7.421	8	12.12	3.955	10

Calculated Difference = 3.08
Standard Error of the Difference = 2.191731568

Degree of Freedom = 16

t = 1.40528158

p = 0.0896

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soil mean is not statistically greater than background mean

Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Site Conc. Mean Standard Deviation	CONTRACTOR AND AND ADDRESS OF THE PARTY OF T
	mber of Background Samples
Lead 17.54 7.076 8 13.43 1.547	10

Calculated Difference = 4.11
Standard Error of the Difference = 1.784545276

Degree of Freedom = 16

t = 2.303107719

p = 0.0175

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = Yes site surface soil mean is statistically greater than background mean

LITHIUM - POND SEDIMENT									
Compound	Site Conc. Mean	Site Conc.	The second of th	Background Conc. Mean	Background Cone. Standard Deviation	Number of Background Samples			
Lithium	18.48	4.071	8	21.14	5.166	10			
		-							

Calculated Difference = 2.66

Standard Error of the Difference = 1.908832199

Degree of Freedom = 16

t = 1.393522176

p = 0.0912

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soil mean is not statistically less than background mean

		MANGANE	SE - POND SEDIM	ENT		
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples
Manganese	487.6	124.2	8	377.4	93.75	10

Calculated Difference = 110.2 Standard Error of the Difference = 42.26460503

Degree of Freedom =

t = 2.607382701

p = 0.0095

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically greater than background mean Data sets significantly different = Yes

		MOLYBDEN	NUM - POND SEDI	MENT		
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Site Samples	Background Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples
Molybdenum	0.146	0.191	8	0.522	0.0739	10

Calculated Difference = 0.376

Standard Error of the Difference = 0.051885086

Degree of Freedom = 16

t = 7.24678375

p = 0.0000

Data sets significantly different =

Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

		ZINC -	POND SEDIMENT			
Compound	Site Conc. Mean	Site Conc. Standard Deviation	Number of Sites Samples	Background - Conc. Mean	Background Conc. Standard Deviation	Number of Background Samples
Zinc	332.3	407.7	8	247	364.6	10

Calculated Difference = 85.3 Standard Error of the Difference = 151.8911495

Degree of Freedom = 16

t = 0.561586375

0.2910

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

Data sets significantly different = No APPENDIX C

INTAKE CALCULATIONS

APPENDIX C-1
INTAKE CALCULATIONS
SOUTH OF MARLIN SOIL

TABLE C-1
EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs
SOIL SOUTH OF MARLIN AVE.

Parameter	Average		95% UCL	Statistic Used
4,4-DDD	7.76E-03		5.08E-02	97.5% KM (Chebyshev)
Aluminum	6.45E+03		8.20E+03	97.5% Chebyshev
Aroclor-1254	2.16E-01		7.73E-01	97.5% KM (Chebyshev)
Benzo(a)anthracene	2.69E-01		6.43E-01	97.5% KM (Chebyshev)
Benzo(a)pyrene	3.48E-01		7.63E-01	97.5% KM (Chebyshev)
Benzo(b)fluoranthene	4.77E-01		8.22E-01	95% KM (Chebyshev)
Benzo(k)fluoranthene	1.58E-01		3.81E-01	97.5% KM (Chebyshev)
Dibenz(a,h)anthracene	1.48E-01		1.80E-01	95% KM (Bootstrap)
Dieldrin	8.89E-04		2.11E-03	97.5% KM (Chebyshev)
Indeno(1,2,3-cd)pyrene	3.85E-01		6.58E-01	95% KM (Chebyshev)
Iron	1.43E+04		1.75E+04	95% Chebyshev
Isopropylbenzene (cumene)	8.31E-01		5.85E+00	97.5% KM (Chebyshev)
Lead	5.35E+01		1.04E+02	97.5% Chebyshev
Napthalene	3.26E-01	<	2.65E-03	median

TABLE C-2
EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs
SURFACE SOIL SOUTH OF MARLIN AVE.

Parameter	Average		95% UCL	Statistic Used
4,4-DDD	3.07E-03	<	2.70E-04	median
Aluminum	5.34E+03		5.95E+03	95% Student's-t
Aroclor-1254	1.46E-01		7.64E-01	97.5% KM (Chebyshev)
Benzo(a)anthracene	3.57E-01		9.03E-01	97.5% KM (Chebyshev)
Benzo(a)pyrene	4.53E-01		1.09E+00	97.5% KM (Chebyshev)
Benzo(b)fluoranthene	5.88E-01		1.10E+00	95% KM (Chebyshev)
Benzo(k)fluoranthene	2.44E-01		6.58E-01	97.5% KM (Chebyshev)
Dibenz(a,h)anthracene	1.87E-01		2.45E-01	95% KM (Bootstrap)
Dieldrin	1.40E-03		3.14E-03	97.5% KM (Chebyshev)
Indeno(1,2,3-cd)pyrene	4.83E-01		9.31E-01	95% KM (Chebyshev)
Iron	1.63E+04		2.40E+04	97.5% Chebyshev
Isopropylbenzene (cumene)				
Lead	6.96E+01		1.47E+02	97.5% Chebyshev
Napthalene				

TABLE C-2.5
CALCULATION OF OUTDOOR AIR CONCENTRATION FROM EXPOSED SOIL - VOLATILE EMISSIONS

	De = H' * Da * na^3.33/n^2 + Dw * nw^3.33/n^2 Pb * Kd + nw + na * H'	Kd = Foc * Koc			
	FD KUTHWTHA H	na = n - nw			
	VF = (3.14 * De * T)^0.5 * Q/C	114 - 11 - 11 4			
	(2 * Pb * De) * CF		Source: EPA,	1996	
Parameter	Definition	Value	Reference		
Da	Diffusion coefficent in air (cm^2/sec)	see below	EPA, 1996		
Dw	Diffusion coefficent in water (cm^2/sec)	see below	EPA, 1996		
De	Effective diffusion coefficient (cm^2/sec)	see below	calculated		
VF	Volatilization Factor (m3/kg)	see below	calculated		
n	Total porosity (dimensionless)	0.35	TNRCC, 1993		
nw	Water filled soil porosity (dimensionless)	0.15	EPA, 1996		
na	Air filled soil porosity (dimensionless)	0.2	n-nw		
H'	Henry's law constant (dimensionless)	see below	TRRP		
Pb	Dry Bulk Density (g/cm^3)	1.5	EPA, 1996		
Foc	Fraction organic carbon (g/g)	0.006	EPA, 1996		
Koc	Organic carbon-water partition coefficient (cm^3/g)	see below	EPA, 1996		
Kd	Soil-water partition coefficient (cm^3/g)	see below	calculated		
CF	Conversion factor (cm^2/m^2)	1.00E+04	standard		
Q/C	Inverse of the mean conc. at center of source (g/m^2-s per kg/m^3)	see below	EPA, 1996		
Т	Exposure interval (sec)	see below	EPA, 1996		
Chemical	Da Dw De H' Koc Kd	Q/C	Т	VF	
Isopropylbenzene (cumene)	7.50E-02 7.80E-06 1.14E-05 7.89E-03 2.04E+02 1.224	68.81	9.50E+08	3.71E+04	

TABLE C-3 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE – YOUTH TRESPASSER

INTAKE = (Sc * IR					
Parameter	Definition			Value	Reference
Intake	Intake of chemical (mg/kg	-day)		calculated	11010111100
Sc	Soil concentration (mg/kg)			see data page	
Ac	Air concentration (mg/m^3			see below	
EAC	Effective air concentration	n (mg/m^3)		calculated	
PEF	Particulate Emission Fact	or (m^3/kg)		1.00E+09	EPA, 2004a
R	Ingestion rate of soil (mg/	day)		100	TNRCC, 1998
SA	Skin surface area (cm2)			3500	TNRCC, 1998
4F	Soil to skin adherence fac			0.1	TNRCC, 1998
ABSd	Dermal absorption fraction			see chemprop page	
EF.	Exposure frequency (day/	yr)		25	professional judgment
ED	Exposure duration (yr)			6	professional judgment
CF .	Conversion factor (kg/mg))		1.00E-06	EPA, 1989
BW	Body weight (kg)			40	EPA, 1991a
ATc ATnc	Averaging time for carcino Averaging time for noncar			25550 9125	EPA, 1989 EPA, 1989
				· · · · · · · · · · · · · · · · · · ·	
Chemical			Sc	Intake for Carcinogens	Intake for Noncarcinogens
4,4-DDD			7.76E-03	1,14E-10	3.19E-10
Aluminum			6.45E+03	9.47E-05	2.65E-04
Aroclor-1254	_		2.16E-01	3.17E-09	8.88E-09
Benzo(a)anthracen	e e		2.69E-01	3,95E-09	1.11E-08
Benzo(a)pyrene			3.48E-01	5.11E-09	1.43E-08
Benzo(b)fluoranthe			4.77E-01	7.00E-09	1.96E-08
Benzo(k)fluoranthe			1.58E-01	2.32E-09	6.49E-09
Dibenz(a,h)anthrac Dioldrin	elle		1.48E-01	2,17E-09	6.08E-09
Dieldrin	rano.		8.89E-04	1.30E-11	3.65E-11 1.58E-08
Indeno(1,2,3-cd)py	Ielic		3,85E-01	5.65E-09	
iron Isopropyibenzene (cumana)		1.43E+04 8.31E-01	2.10E-04 1.22E-08	5.87E-04 3.42E-08
isopropyibenzene (Lead	cument)		5.35E+01	7.86E-07	3.42E-08 2.20E-06
Luuu					
DERMAL CONTAC	ot .*AF*ABSd*EF*ED*CF)	/ (BW * AT)	3,26E-01	4,78E-09	1.34E-08
DERMAL CONTAC		/ (BW * AT)	3,26E-01	4.78E-09 Intake for Carcinogens	1,34E-08
·		-		Intake for	Intake for
DERMAL CONTAC INTAKE = (Sc * SA Chemical 4,4-DDD		ABSd	Sc	Intake for Carcinogens	Intake for Noncarcinogens
DERMAL CONTAC INTAKE = (Sc * SA Chemical 4,4-DDD Aluminum		ABSd 1.30E-01	Sc 7.76E-03	Intake for Carcinogens 5.18E-11	Intake for Noncarcinogens 1.45E-10
DERMAL CONTAC INTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Aroclor-1254	.* AF * ABSd * EF * ED * CF)	ABSd 1,30E-01 1,00E-02	Sc 7.76E-03 6.45E+03	Intake for Carcinogens 5.18E-11 3.31E-06	Intake for Noncarcinogens 1.45E-10 9.28E-06
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene	* AF * ABSd * EF * ED * CF)	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01	Intake for Cardinogens 5.18E-11 3.31E-06 1.55E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene	* AF * ABSd * EF * ED * CF)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthrace Benzo(b)lyoranthe Benzo(b)llyoranthe	* AF * ABSd * EF * ED * CF) e	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4,4-DDD Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(f)fluoranthe Benzo(f)fluoranthe Dibenz(a,h)anthracen	* AF * ABSd * EF * ED * CF) e ne ne	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.97E-09 2.77E-09
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pryene Benzo(k)fluoranthe Benzo(k)fluoranthe Dielokin	* AF * ABSd * EF * ED * CF) e ne ne ne ne	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11
DERMAL CONTAC INTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Diebrzo(a,h)anthrac Dieldrin Indeno(1,2,3-cd)pyrene	* AF * ABSd * EF * ED * CF) e ne ne ne ne	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.48E-01 8.89E-04 3.85E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09
DERMAL CONTAC INTAKE = (So * SA Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pryene Benzo(b)fluoranthe Dienz(a,h)anthraco Dieldrin indeno(1,2,3-cd)pyiron	* AF * ABSd * EF * ED * CF) e ne ne ne ne rene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(b)fluoranthe Jenzo(k)fluoranthe Jenzo(k)fluoranthe	* AF * ABSd * EF * ED * CF) e ne ne ne ne rene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 3.48E-01 1.58E-01 1.48E-01 1.48E-01 1.43E+04 3.85E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.79E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08
DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,4-DDD Auminum Arcolor-1254 Jenzo(a)pyrene Jenzo(b)fluoranthe Dibenzo(a)thracen Jenzo(h)fluoranthe Dibenzo(a)thracen Jenzo(b)fluoranthe Jenzo(b)fluoranth	* AF * ABSd * EF * ED * CF) e ne ne ne ne rene	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 8.31E-01 5.35E+01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-06 7.70E-08
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)prene Benzo(b)fluoranthe Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dieldrin ndeno(1,2,3-cd)pyr ron sopropylbenzene (Lead Vapthalene	e ne ne ene cumene)	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 3.48E-01 1.58E-01 1.48E-01 1.48E-01 1.43E+04 3.85E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.79E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08
DERMAL CONTAC INTAKE = (So * SA Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dibenz(a,h)anthrac Negroy)benzene (Lead Napthalene	e ne ne erne cumene)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 8.31E-01 5.35E+01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-06 7.70E-08
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthraco Dieldrin deno(1,2,3-cd)pyron sopropylbenzene (Lead Apthalene NHALATION PATH Ac = Sc * (1//	e e ne ene cumene)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	\$c 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.48E-01 1.48E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-06 7.70E-08
DERMAL CONTAC INTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dibenz(a,h)anthrac Benzo(b)fluoranthe Benzo	e ne ne ene cumene)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	\$c 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.48E-01 1.48E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 8.10E-09
Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)prene Benzo(k)fluoranthe Dibenz(a,h)anthrac Dielari(a,h)anthrac Dielari(a,h)anthrac Dielari(a,h)anthrac NHALATION PATH Ac = Sc * (1// CAC = EF	e ne ne ne cumene) HWAY PEF+1/VF) * for carci	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.00E-02 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-04 3.85E-04 3.85E-04 3.35E-01 5.35E+01 3.26E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09
Chemical 4.4-DDD Auminum Aroclor-1254 Benzo(e)anthracen Benzo(e)anthracen Benzo(e)prene Benzo(e) Be	e e ne ne erne cumene)	ABSd 1,30E-01 1,00E-02 1,40E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,00E-02 1,30E-01 1,00E-02 1,30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 1.58E-01 1.48E-01 1.48E-04 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09
Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthracen Dibenz(a,h)anthracen Benzo(b)fluoranthe Dibenz(a,h)anthracen Benzo(b)fluoranthe Dibenz(a,h)anthracen Benzo(b)fluoranthe Renzo(b)fluoranthe Dibenz(a,h)anthracen Benzo(b)fluoranthe Acallorianthracen Apthalanten NHALATION PATH Acallorianthracen Chemical 4.4-DDD	e e ne ne ne e ene e e e e e e e e e e	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 Sec VF	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 5.35E+01 3.26E-01	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09
Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo (s) anthracen Benzo (s) fluoranthe Benzo (s) fluora	e ne ne ne erene cumene) -WAY PEF+1/VF) - * ED) / AT * for carci	ABSd 1,30E-01 1,00E-02 1,40E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,00E-02 1,30E-01 1,00E-02 1,30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 3.48E-01 3.48E-01 1.58E-01 1.48E-04 3.85E-04 3.35E-01 3.26E-01 3.26E-01 3.26E-01 Ac 3.07E-12 5.34E-06 1.46E-10	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 8.10E-09
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)prene Benzo(b)fluoranthe Dieldrin ndeno(1,2,3-cd)pyron sopropylbenzene (Lead Napthalene NHALATION PATH Ac = Sc * (1// EAC = (Ac * EF Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(b)fluoranthe Dieldrin Ac = Sc * (1// EAC = (Ac * EF Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(a)anthracen	e ne ne ne ene cumene)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.48E-01 1.48E-01 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01 3.26E-01 Ac 3.07E-12 5.34E-06 1.46E-10 3.57E-10	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)prene Benzo(k)fluoranthe Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dieldrin ndeno(1,2,3-cd)pyr on sopropylbenzene (.ead Ac = Sc * (1// EAC = (Ac * EF Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)prene	e ne ne ne ne cumene) HWAY PEF+1/VF) - * ED) / AT *for carcl 5.1 6 3.1 6 4.1	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 3.48E-01 3.48E-01 1.58E-01 1.48E-04 3.85E-01 3.26E-01 3.26E-01 3.26E-01 Ac 3.07E-12 5.34E-06 1.46E-10 3.57E-10 3.57E-10	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09 thiot proper units, ug/m3 EAC for Carcinogens 1.80E-11 3.13E-05 8.57E-10 2.10E-09 2.66E-09 2.66E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09 EAC for Noncarcinogens 5.05E-14 8.77E-08 2.40E-12 5.87E-12
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene	* AF * ABSd * EF * ED * CF) e ne ne ne ne eene cumene)	ABSd 1,30E-01 1,00E-02 1,40E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,00E-02 1,30E-01 1,00E-02 1,30E-01 sc VF 07E-03 34E+03 46E-01 57E-01 53E-01	Sc 7.76E-03 6.45E+03 2.16E-01 3.48E-01 3.48E-01 1.58E-01 1.48E-01 1.48E-01 3.85E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.57E-10 4.53E-10 4.53E-10 5.58E-10	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09 tt into proper units, ug/m3 EAC for Carcinogens 1.80E-11 3.13E-05 8.57E-10 2.10E-09 2.66E-09 3.45E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09 EAC for Noncarcinogens 5.05E-14 8.77E-08 2.40E-12 5.87E-12 7.45E-12 9.87E-12
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)prene Benzo(b)fluoranthe Dibenz(a,h)anthrac Dibeldrin ndeno(1,2,3-cd)pyron Sopropylbenzene (Lead Napthalene NHALATION PATH Ac = Sc * (J/I EAC = (Ac * EF Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)pyrene Benzo(b)fluoranthe Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene	* AF * ABSd * EF * ED * CF) e me ne ne ne ene cumene) HWAY PEF+1/VF) = * ED) / AT	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 5.35E+01 3.26E-01 Ac 3.07E-12 5.34E-06 1.46E-10 3.57E-10 4.53E-10 5.88E-10 5.88E-10 5.88E-10 5.88E-10 5.88E-10	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09 4t into proper units, ug/m3 EAC for Carcinogens 1.80E-11 3.13E-05 8.57E-10 2.10E-09 2.66E-09 3.45E-09 1.43E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 2.95E-09 2.77E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09 EAC for Noncarcinogens 5.05E-14 8.77E-08 2.40E-12 5.67E-12 4.401E-12
Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(a)prene Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Chemical 4.4-DDD Ac = Sc * (1/f EAC = (Ac * Ef Chemical 4.4-DDA Aluminum Aroclor-1254 Benzo(a)prene Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe	e ne ne ene cumene)	ABSd 1,30E-01 1,00E-02 1,40E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,00E-02 1,30E-01 1,00E-02 1,30E-01 mogens, a conversion Sc VF 07E-03 34E-03 44E-01 45E-01 45E-01 44E-01 47E-01 57E-01	Sc 7.76E-03 6.45E+03 2.16E-01 3.48E-01 3.48E-01 1.58E-01 1.48E-04 3.85E-01 1.43E+04 8.31E-01 3.26E-01 3.26E-01 3.26E-01 3.76E-12 5.34E-06 1.46E-10 3.57E-10 5.88E-10 5.88E-10 5.88E-10 5.88E-10 5.88E-10 5.88E-10	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09 1.10E-09 1.80E-11 3.13E-05 8.57E-10 2.10E-09 2.66E-09 3.45E-09 1.43E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 8.10E-09
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)prene Benzo(b)fluoranthe Dibenz(a,h)anthrac Dieldrin ndeno(1,2,3-cd)pyr ron sopropylbenzene (Lead Napthalene NHALATION PATH Ac = Sc * (III EAC = (Ac * EF Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(b)fluoranthe Benzo(a)fluoranthe Dibenz(a,h)anthrac Dieldrin Dibenz(a,h)anthrac Dieldrin Dibenz(a,h)anthrac Dieldrin	* AF * ABSd * EF * ED * CF) e ne ne ne ne ene rene cumene)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 3.26E-01 3.26E-01 Ac 3.07E-12 5.34E-06 1.46E-10 3.57E-10 4.53E-10 4.53E-10 1.58E-10 1.45E-10 1.57E-10 4.53E-10 1.57E-10 4.53E-10 1.57E-10 4.53E-10 1.57E-10 4.53E-10 1.40E-12	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09 tt into proper units, ug/m3 EAC for Carcinogens 1.80E-11 3.13E-05 8.57E-10 2.10E-09 2.66E-09 3.45E-09 1.43E-09- 1.10E-09 8.22E-12	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09 EAC for Noncarcinogens 5.05E-14 8.77E-08 2.40E-12 5.87E-12 7.45E-12 9.67E-12 1.401E-12 3.07E-12 2.30E-14
DERMAL CONTAC INTAKE = (Sc * SA Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthraco Dieldrin indeno(1,2,3-cd)py ron isopropylbenzene (Lead Napthalene NHALATION PATH Ac = Sc * (1//	* AF * ABSd * EF * ED * CF) e ne ne ne ne ene rene cumene)	ABSd 1,30E-01 1,00E-02 1,40E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,00E-02 1,30E-01 1,00E-02 1,30E-01 Medical Control C	Sc 7.76E-03 6.45E+03 2.16E-01 3.48E-01 3.48E-01 1.58E-01 1.48E-04 3.85E-01 1.43E+04 8.31E-01 3.26E-01 3.26E-01 3.26E-01 3.76E-12 5.34E-06 1.46E-10 3.57E-10 5.88E-10 5.88E-10 5.88E-10 5.88E-10 5.88E-10 5.88E-10	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09 1.10E-09 1.80E-11 3.13E-05 8.57E-10 2.10E-09 2.66E-09 3.45E-09 1.43E-09	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.95E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 8.10E-09
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthracol Benzo(b)fluoranthe Dibenz(a,h)anthracol Benzo(b)fluoranthe Chemical 4.4-DDD Aluminum Ac = Sc * (1/1 EAC = (Ac * EF Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthracol Dieldrin Aroclor-1254 Benzo(b)fluoranthe Dibenz(a,h)anthracol Dieldrin Andeno(1,2,3-cd)pyreno Dieldrin Andeno(1,2,3-cd)pyreno Dieldrin Andeno(1,2,3-cd)pyreno Dieldrin Andeno(1,2,3-cd)pyreno Dieldrin Andeno(1,2,3-cd)pyreno Dienzo(a)pyrene	* AF * ABSd * EF * ED * CF) e me ne ne ne ne e rene cumene)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-03 34E-03 46E-01 57E-01 53E-01 44E-01 47E-01 40E-03 83E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 1.58E-01 1.48E-01 1.48E-01 1.43E+04 3.85E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.7E-12 5.34E-06 3.57E-10 4.53E-10 2.44E-10 3.57E-10 1.87E-10 1.40E-12 4.83E-10 1.63E-05	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09 1.06E-09 1.06E-09 2.75E-08 2.18E-09 1.10E-09 2.66E-05 1.10E-09 1.43E-09 1.10E-09 8.22E-12 2.84E-09 9.56E-05	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09 EAC for Noncarcinogens 5.05E-14 8.77E-08 2.40E-12 5.87E-12 7.45E-12 9.67E-12 4.01E-12 3.07E-12 2.30E-14 7.94E-12 2.88E-07
DERMAL CONTAC INTAKE = (Sc * SA Chemical 4.4-DDD Aluminum Arocior-1254 Benzo(a)anthracen Benzo(a)prene Benzo(a)fluoranthe Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dibenz(a,h)anthrac Nesopropylbenzene (Lead Napthalene INHALATION PATH EAC = Sc * (1// (Ac * Ef Chemical 4.4-DDD Aluminum Arocior-1254 Benzo(a)fluoranthe Dibenz(a,h)anthrac Benzo(b)fluoranthe Dibenz(a,h)anthrac	e ne	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-03 1.00E-	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 3.26E-01 3.26E-01 Ac 3.07E-12 5.34E-06 1.46E-10 3.57E-10 4.53E-10 5.88E-10 1.58E-10 1.58E-10 1.58E-10 1.63E-05 2.44E-10 1.63E-05	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-09 2.75E-09 1.80E-11 3.13E-05 8.57E-10 2.10E-09 2.66E-09 3.45E-09 1.43E-09 9.56E-05 1.32E-04	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.77E-09 2.05E-05 1.56E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09 EAC for Noncarcinogens 5.05E-14 8.77E-08 2.40E-12 5.87E-12 9.67E-12 4.01E-12 2.30E-14 7.94E-12 2.88E-07 3.69E-07
DERMAL CONTAC NTAKE = (Sc * SA Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthracol Benzo(b)fluoranthe Dibenz(a,h)anthracol Benzo(b)fluoranthe Chemical 4.4-DDD Aluminum Ac = Sc * (1/1 EAC = (Ac * EF Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthracol Dieldrin Aroclor-1254 Benzo(b)fluoranthe Dibenz(a,h)anthracol Dieldrin Andeno(1,2,3-cd)pyreno Dieldrin Andeno(1,2,3-cd)pyreno Dieldrin Andeno(1,2,3-cd)pyreno Dieldrin Andeno(1,2,3-cd)pyreno Dieldrin Andeno(1,2,3-cd)pyreno Dienzo(a)pyrene	* AF * ABSd * EF * ED * CF) e ne ne ne ne ne ne rene cumene)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-03 34E-03 46E-01 57E-01 53E-01 44E-01 47E-01 40E-03 83E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 1.58E-01 1.48E-01 1.48E-01 1.43E+04 3.85E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.7E-12 5.34E-06 3.57E-10 4.53E-10 2.44E-10 3.57E-10 1.87E-10 1.40E-12 4.83E-10 1.63E-05	Intake for Carcinogens 5.18E-11 3.31E-06 1.55E-09 1.80E-09 2.32E-09 3.19E-09 1.06E-09 9.88E-10 5.94E-12 2.57E-09 7.33E-06 5.55E-09 2.75E-08 2.18E-09 1.06E-09 1.06E-09 2.75E-08 2.18E-09 1.10E-09 2.66E-05 1.10E-09 1.43E-09 1.10E-09 8.22E-12 2.84E-09 9.56E-05	Intake for Noncarcinogens 1.45E-10 9.28E-06 4.35E-09 5.03E-09 6.51E-09 8.92E-09 2.77E-09 1.66E-11 7.20E-09 2.05E-05 1.55E-08 7.70E-08 6.10E-09 EAC for Noncarcinogens 5.05E-14 8.77E-08 2.40E-12 5.87E-12 7.45E-12 9.67E-12 4.01E-12 3.07E-12 2.30E-14 7.94E-12 2.88E-07

TABLE C-4 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN RME – YOUTH TRESPASSER (age 6 to 18)

NTTAKE = (Sc * R* EF * ED * CF) / (BW * AT)	SOIL INGESTION					
Parameter Definition Value Reference Intake of chemical (mg/kg-day) calculaterials calculateri	INTAKE = (Sc * IR *	FF * FD * CF) / (BW * AT)				
Intake Intake of chemical (mg/lgs) see data page see ballow calculated see data page see data page see data page see data page see ballow calculated see data page see ballow calculated see data page see ballow calculated see Ca	•				Makes	Defenses
Search Soli Concentration (mg/m²) see data page set						Reference
Ac Air concentration (mg/m²s) AC Effective air concentration (mg/m²s) AC Effective air concentration (mg/m²s) AC Effective air concentration (mg/m²s) AC Sins sufface area (m2) AC Sins sufface area (m2						
ACC						
EFF Particulate Emission Factor (m/9/mg) 1.00E1-09 EPA, 2004 a R R Ingestion rate of a (mpd/sw) 1.00 TMRCC, 1988 EPA Sins surface area (mr2) 3500 TMRCC, 1988 EPA Sins surface area (mr2) 1.00E-06 EPA 1988 EPA 1.00E-06 EPA 1988 EPA 1.00E-06 EPA 1989 EPA 1.00E-06 EPA 1.00E-07 EPA			n^3)			
R						FPA 2004a
Skin surface area (cm2) S500 TNRCC, 1998 SAF Skin skin shardwarea factor (mg/cm2) 0.1 1 1 1 1 1 1 1 1 1			ong,			
Solid to skin adherence factor (mg/cm2) Solid to skin adherence factor (mg/cm2) Solid to skin adherence factor (mg/cm2) Solid to see chemptop page TNRCC, 1998 EPA 100 EPA						
See Chemptop page Formatting See Chemptop page Formatting Septiment			n/cm2)			
Exposure frequency (daylyr)						TARCO, 1990
Exposure duration (pr)			essj			TNDCC 4000
Conversion factor (kg/mg)						
Body weight (fig)						
APPROACH Averaging time for carcinogens (days) 25550 EPA, 1989 EPA,						
APPROACH Section Section Section Section Intake for Carcinogens Chemical Section						
A-DDD						
A-DDD	ATnc	Averaging time for noncarcinoge	ens (days)		9125	EPA, 1989
A-DDD				. Sc	Intake for	Intake for
Numhum	Chemical	 		·		
Numhum	I.4-DDD			5.08E-02	2.98E-09	8,35E-09
Berzo(a)pyrene						
Parzo (a) pyrene		9				
Parazo(phituoranthene 8,22E-01 4,83E-08 1,35E-07 abarazo(phituoranthene 3,81E-01 2,24E-08 2,24E-08 2,26E-08 abitenz(a,h)anthracene 1,80E-01 1,06E-08 2,96E-08 abitenz(a,h)anthracene 1,80E-01 3,86E-08 1,08E-07 abitenzia 1,24E-10 3,47E-10 3,47E-10 3,47E-10 4,24E-07 3,47E-10 4,26E-03 3,60E-08 1,08E-07 abitenzia 4,26E-01 3,86E-08 1,08E-07 abitenzia 4,26E-01 3,86E-08 1,08E-07 3,60E-08 3,47E-07 3,61E-07 abitenzia 4,36E-10 4,36E		-				
Serzo(Giffuoranthene 3,81E-01 2,24E-08 6,26E-08 1,80E-01 1,06E-08 2,96E-08 1,96E-01 1,06E-08 2,96E-08 1,96E-01 1,06E-03 1,24E-10 3,47E-10 1,06E-07 1,75E-04 1,02E-03 2,287E-03 2,97F-03 2,97F-0		ne				
A-DD		sile				
1,75E+04 1,02E-03 2,97E-03						
September Sept		ene				
1,04E+02						
ABSIDENTIAL ABSIDENTIAL		cumene)				
ABSd Sc						
ABSd Sc	vaptnalene			2.65E-03	1.56E-10	4.36E-10
Carcinogens			ABOA	C-	lately for	Intelled Sec.
Aluminum 1.00E-02 8.20E+03 1.68E-05 4.72E-05 Araclor-1254 1.40E-01 7.73E-01 2.22E-08 6.23E-08 Benzo(a)anhtracene 1.30E-01 6.43E-01 1.72E-08 4.81E-08 Benzo(a)pyrene 1.30E-01 7.63E-01 2.04E-08 5.71E-08 Benzo(h)fluoranthene 1.30E-01 8.22E-01 2.0E-08 6.15E-08 Benzo(h)fluoranthene 1.30E-01 8.22E-01 2.0E-08 6.15E-08 Benzo(h)fluoranthene 1.30E-01 3.81E-01 1.02E-08 2.85E-08 Benzo(h)fluoranthene 1.30E-01 1.80E-01 4.81E-09 1.35E-08 Dilebriz(a,h)anhtracene 1.30E-01 1.80E-01 4.81E-09 1.35E-08 d.9E-10 deno(1,2,3-cd)pyrene 1.30E-01 6.58E-01 1.76E-08 4.92E-08 d.9E-10 deno(1,2,3-cd)pyrene 1.30E-01 6.58E-01 1.76E-08 4.92E-08 d.9E-10 d.9E-1	Chemical					
Arcolor-1254	4.4-DDD		1.30E-01	5.08E-02	1.36E-09	3.80E-09
Arcolor 1254						
Seruzo(a)anthracene						
Serzo(a)pyrene		9				
Benzo(k) Benzo(k) Be		-				
Senze(k) Iucranthene 1.30E-01 3.81E-01 1.02E-08 2.85E-08 Dibenz(a,h)anthracene 1.30E-01 1.80E-01 4.81E-09 1.35E-08 Dibenz(a,h)anthracene 1.30E-01 2.11E-03 5.64E-11 1.58E-10 Indeno(1,2,3-cd)pyrene 1.30E-01 6.58E-01 1.76E-08 4.92E-08 Sopropylbenzene (cumene) 1.30E-01 5.85E-00 1.56E-07 4.37E-07 Lead 1.00E-02 1.04E+02 2.14E-07 5.98E-07 Alaphalene 1.30E-01 2.65E-03 7.08E-11 NHALATION PATHWAY Ac		ne				
1.30E-01 1.80E-01 4.81E-09 1.35E-08						
1.30E-01 2.11E-03 5.64E-11 1.58E-10						
According Acco						
1.00E-02		ene				
1.30E-01		ene				
1.00E-02		aumana)				
A-DDD 2.70E-04 2.70E-13 6.34E-12 1.78E-14 1.99E-10		Juliene)				
NHALATION PATHWAY C						
Sc Carbon		NATA			7.002-11	
AC = (Ac *EF *ED) / AT *for carcinogens, a conversion is necessary to get into proper units, ug/m3 Sc VF Ac EAC for Carcinogens Noncarcinogens A-DDD 2.70E-04 2.70E-13 6.34E-12 1.78E-14 (2.10E-14) (2.10E-16)						
Chemical Carcinogens Noncarcinogens ,4-DDD 2.70E-04 2.70E-13 6.34E-12 1.78E-14 ,kluminum 5.95E+03 5.95E-06 1.40E-04 3.91E-07 ,vcolor-1254 7.64E-01 7.64E-10 1.79E-08 5.02E-11 ,denzo(a)anthracene 9.03E-01 9.03E-10 2.12E-08 5.94E-11 ,denzo(a)pyrene 1.09E+00 1.09E-09 2.55E-08 7.13E-11 ,denzo(b)fluoranthene 1.10E+00 1.10E-09 2.59E-08 7.25E-11 ,denzo(b)fluoranthene 6.58E-01 6.58E-10 1.56E-08 4.33E-11 ,blenzo(a)hanthracene 2.45E-10 5.75E-09 1.61E-11 ,olledrin 3.14E-03 3.14E-12 7.37E-11 2.06E-13 ,olderin 9.31E-01 9.31E-10 2.19E-08 6.12E-11 ,on 2.40E-05 5.63E-04 1.58E-08			s, a conversion	is necessary to	get into proper units, ug/m3	
Chemical Carcinogens Noncarcinogens i,4-DDD 2.70E-04 2.70E-13 6.34E-12 1.78E-14 Aluminum 5.95E+03 5.95E-06 1.40E-04 3.91E-07 Alocolor-1254 7.64E-01 7.64E-10 1.79E-08 5.02E-11 Benzo(a)anthracene 9.03E-01 9.03E-10 2.12E-08 5.94E-11 Benzo(a)pyrene 1.09E+00 1.09E-09 2.55E-08 7.13E-11 Benzo(b)fluoranthene 1.10E+00 1.10E-09 2.59E-08 7.25E-11 Benzo(b)fluoranthene 6.58E-01 6.58E-10 1.56E-08 4.33E-11 Bibenz(a,h)anthracene 2.45E-10 5.75E-09 1.61E-11 Dieldrin 3.14E-03 3.14E-12 7.37E-11 2.06E-13 ndeno(1,2,3-cd)pyrene 9.31E-01 9.31E-10 2.19E-08 6.12E-11 ron 2.40E-05 5.63E-04 1.58E-08 1.58E-08		Sc	VF	Ac	EAC for	EAC for
Aluminum 5,95E+03 5,95E-06 1,40E-04 3,91E-07 Arcolor-1,254 7,84E-01 7,64E-10 1,79E-08 5,02E-11 Jenzo(a)anthracene 9,03E-01 9,03E-10 2,12E-08 5,94E-11 Jenzo(a)pyrene 1,09E+00 1,09E-09 2,55E-08 7,13E-11 Jenzo(b)fluoranthene 1,10E+00 1,10E-09 2,59E-08 7,25E-11 Jenzo(b)fluoranthene 6,58E-01 6,58E-10 1,55E-08 4,33E-11 Johenz(a,h)anthracene 2,45E-10 5,75E-09 1,61E-11 Jieldrin 3,14E-03 3,14E-12 7,37E-11 2,06E-13 ndeno(1,2,3-cd)pyrene 9,31E-01 9,31E-10 2,19E-08 6,12E-11 ron 2,40E-04 2,40E-05 5,63E-04 1,58E-08	Chemical				_ ``.	
vocolor-1254 7,64E-01 7,64E-10 1,79E-08 5,02E-11 slenzo(a)anthracene 9,03E-01 9,03E-10 2,12E-08 5,94E-11 slenzo(a)pyrene 1,09E+00 1,09E-09 2,55E-08 7,13E-11 slenzo(b)fluoranthene 1,10E+00 1,10E-09 2,59E-08 7,25E-11 slenzo(b)fluoranthene 6,58E-01 6,58E-10 1,55E-08 4,33E-11 bloenz(a,h)anthracene 2,45E-01 2,45E-10 5,75E-09 1,61E-11 sleden(1,2,3-cd)pyrene 9,31E-01 9,31E-10 2,19E-08 6,12E-11 ron 2,40E+04 2,40E-05 5,63E-04 1,58E-06						
vocolor-1254 7,64E-01 7,64E-10 1,79E-08 5,02E-11 slenzo(a)anthracene 9,03E-01 9,03E-10 2,12E-08 5,94E-11 slenzo(a)pyrene 1,09E+00 1,09E-09 2,55E-08 7,13E-11 slenzo(b)fluoranthene 1,10E+00 1,10E-09 2,59E-08 7,25E-11 slenzo(b)fluoranthene 6,58E-01 6,58E-10 1,55E-08 4,33E-11 bloenz(a,h)anthracene 2,45E-01 2,45E-10 5,75E-09 1,61E-11 sleden(1,2,3-cd)pyrene 9,31E-01 9,31E-10 2,19E-08 6,12E-11 ron 2,40E+04 2,40E-05 5,63E-04 1,58E-06						
Senzo(a)anthracene 9.03E-01 9.03E-10 2.12E-08 5.94E-11 Senzo(a)pyrene 1.09E+00 1.09E-09 2.55E-08 7.13E-11 Senzo(b)lluoranthene 1.10E+00 1.10E-09 2.59E-08 7.25E-11 Senzo(b)lluoranthene 6.58E-01 6.58E-10 1.55E-08 4.33E-11 Stenzo(b)lluoranthene 2.45E-01 2.45E-10 5.75E-09 1.61E-11 Siberz(a,h)anthracene 2.45E-01 3.14E-12 7.37E-11 2.06E-13 Aldeno(12,3-cd)pyrene 9.31E-01 9.31E-10 2.19E-08 6.12E-11 Siberz(a,b)anthracene 2.40E-05 5.63E-04 1.58E-06 Siberz(a,b)anthracene 5.94E-01 5.63E-04 1.58E-06 Siberz(a,b)anthracene 5.94E-01 5.63E-04 5.63E-04 Siberz(a,b)anthracene 5.94E-01 5.63E-04 Siberz(a,b)anthracene 5.94E-11 Siberz(a,	roclor-1254	7.64E-01				
lenzo(a)pyrene 1.09E+00 1.09E-09 2.55E-08 7.13E-11 lenzo(b)lluoranthene 1.10E+00 1.10E-09 2.59E-08 7.25E-11 lenzo(b)lluoranthene 1.10E+01 1.10E-09 2.59E-08 7.25E-11 lebrzo(b)lluoranthene 6.58E-01 6.58E-10 1.55E-08 4.33E-11 libenz(a,h)anthracene 2.45E-01 2.45E-10 5.75E-09 1.61E-11 libeldrin 3.14E-03 3.14E-12 7.37E-11 2.06E-13 ndeno(1,2,3-cd)pyrene 9.31E-01 9.31E-10 2.19E-08 6.12E-11 on 2.40E+04 2.40E-05 5.63E-04 1,58E-06						
lenzo(b)fluoranthene 1,10E+00 1,10E-09 2,59E-08 7,25E-11 elenzo(k)fluoranthene 6,58E-01 6,58E-10 1,55E-08 4,33E-11 blenzo(k)fluoranthene 2,45E-01 6,58E-10 5,75E-09 1,61E-11 blenzo(a,h)anthracene 2,45E-01 3,14E-03 5,75E-10 2,06E-13 cledno(1,2,3-cd)pyrene 9,31E-01 9,31E-10 2,19E-08 6,12E-11 con 2,40E+04 2,40E-05 5,63E-04 1,58E-06						
lenzo(k)fluoranthene 6.58E-01 6.58E-10 1.55E-08 4.33E-1.1) liblenz(a,h)anthracene 2.45E-01 2.45E-10 5.75E-09 1.61E-1.1) lieldrin 3.14E-03 3.14E-12 7.37E-11 2.06E-13 deno(1,2,3-cd)pyrene 9.31E-01 9.31E-10 2.19E-08 6.12E-11 on 2.40E+04 2.40E-05 5.63E-04 1.58E-06						
Olbenz(a,h)anthracene 2.45E-01 2.45E-10 5.75E-09 1.61E-11 Jieldrin 3.14E-03 3.14E-12 7.37E-11 2.06E-13 ndeno(1,2,3-cd)pyrene 9.31E-01 9.31E-01 2.19E-08 6.12E-11 ron 2.40E+04 2.40E-05 5.63E-04 1,58E-06						
pieldrin 3.14E-03 3.14E-12 7.37E-11 2.06E-13 ndeno(1,2,3-cd)pyrene 9.31E-01 9.31E-10 2.19E-08 6.12E-11 ron 2.40E+04 2.40E-05 5.63E-04 1.58E-06						
ndeno(1,2,3-cd)pyrene 9.31E-01 9.31E-10 2.19E-08 6.12E-11 con 2.40E+04 2.40E-05 5.63E-04 1.58E-06						
ron 2.40E+04 2.40E-05 5.63E-04 1.58E-06						
corron/honzeno (gumeno) 5 955±00 2 715±04 4 595 04 2 745 02 4 045 02						
sopropylbenzene (cumene) 5.85E+00 3.71E+04 1.58E-04 3.71E-03 1.04E-05						
.ead 1.47E+02 1.47E-07 3.45E-06 9.66E-09 .lapthalene 2.65E-03 2.65E-12 6.22E-11 1.74E-13						

TABLE C-5 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE – CONSTRUCTION WORKER

INTAKE = (Sc. * IR *	* EF * ED * CF) / (BW * AT)				
				Value	Boforer
Parameter Intake	Definition Intake of chemical (mg/kg-day)			Value calculated	Reference
nake Sc	Soil concentration (mg/kg)				
				see data page	
1C	Air concentration (mg/m^3)	40)		see below	
AC	Effective air concentration (mg/m			calculated	ED4 0004
EF	Particulate Emission Factor (m^3	/kg)		1.00E+09	EPA, 2004a
R	Ingestion rate of soil (mg/day)			165	professional judgment
SA	Skin surface area (cm2)			3300	EPA, 2004a
۱F	Soil to skin adherence factor (mg			0.14	EPA, 2004b
ABSd	Dermal absorption fraction (unitle	ss)		see chemprop page	
≣F	Exposure frequency (day/yr)			90	professional judgment
ED	Exposure duration (yr)			1	professional judgment
CF	Conversion factor (kg/mg)			1.00E-06	EPA, 1989
3W	Body weight (kg)			70	EPA, 1989
ATc	Averaging time for carcinogens (davs)		25550	EPA, 1989
ATnc	Averaging time for noncarcinoger	ns (days)		365	EPA, 1989
			Sc	Intake for	Intake for
Chemical				Carcinogens	Noncarcinogens
1,4-DDD			7.76E-03	6.44E-11	4.51E-09
Aluminum			6.45E+03	5,36E-05	3.75E-03
Aroclor-1254			2.16E-01	1.79E-09	1.26E-07
Benzo(a)anthracene	В		2.69E-01	2,23E-09	1.56E-07
Benzo(a)pyrene			3.48E-01	2.89E-09	2.02E-07
Benzo(b)fluoranthei	ne		4.77E-01	3.96E-09	2.77E-07
Senzo(k)fluoranther			1.58E-01	1.31E-09	9.18E-08
Dibenz(a,h)anthrace	SI IG		1.48E-01	1.23E-09	8.60E-08
Dieldrin			8.89E-04	7.38E-12	5.17E-10
ndeno(1,2,3-cd)pyr	ene		3.85E-01	3.20E-09	2.24E-07
ron			1.43E+04	1.19E-04	8.30E-03
sopropylbenzene (d	cumene)		8.31E-01	6,90E-09	4.83E-07
Lead			5.35E+01	4.44E-07	3.11E-05
Vapthalene			3.26E-01	2.71E-09	1.89E-07
	* AF * ABSd * EF * ED * CF) / (BW	• ΔΤ)			
INTAKE = (Sc * SA	7 7.001 2 20 0.7. (0	,,,,			
		ABSd	Sc	Intake for	Intake for
Chemical		_=	Sc	Intake for Carcinogens	Intake for Noncarcinogens
Chemical		_=	Sc 7.76E-03		
Chemical		ABSd		Carcinogens	Noncarcinogens
Chemical 4,4-DDD Aluminum	, , , , , , , , , , , , , , , , , , ,	ABSd 1.30E-01	7.76E-03	Carcinogens 2,35E-11	Noncarcinogens 1.64E-09
Chemical 4,4-DDD Aluminum Aroclor-1254		ABSd 1.30E-01 1.00E-02 1.40E-01	7.76E-03 6.45E+03 2.16E-01	2,35E-11 1,50E-06 7.03E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08
Chemical 4,4-DDD Aluminum Aroctor-1254 Benzo(a)anthracene		ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracence Benzo(a)pyrene	a	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01	2,35E-11 1,50E-06 7,03E-10 8,13E-10 1,05E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracent Benzo(a)pyrene Benzo(b)fluoranther	a ne	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.09E-08 7.36E-08 1.01E-07
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthei Benzo(k)fluoranthei	e ne ne	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01	2,35E-11 1,50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(k)fluoranther Dibenz(a,h)anthrace	e ne ne	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08
Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Dibenz(a,h)anthrace	e ne ne eene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.09E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Dibenz(a,h)anthraco Dieldrin ndeno(1,2,3-cd)pyr	e ne ne eene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 2.69E-12 1.16E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Dibenz(a,h)anthrace Dieldrin ndeno(1,2,3-cd)pyr ron	a ne ne ene ene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.06E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Dibenz(a,h)anthrace Dieldrin ndeno(1,2,3-cd)pyr ron	a ne ne ene ene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 2.69E-12 1.16E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08
Chemical 4,4-DDD Aluminum Arcolor-1254 Senzo(a)pyrene Senzo(b)fluoranther Senzo(k)fluoranther Dibenz(a,h)anthraccolledrin adeno(1,2,3-cd)pyr ondeno(1,2,3-cd)pyr ondeno(1,2,3-cd)pyr osopropylbenzene (c	a ne ne ene ene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.06E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.89E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranther Benzo(b)fluoranther Dibenz(a),hairber Dibenz(a),hairber Dibenz(a),andeno(1,2,3-cd)pyr ron sopropylbenzene (c-ead	a ne ne ene ene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 1.77E-01 1.58E-01 1.48E-01 3.85E-04 3.85E-04 3.85E-04	2,35E-11 1,50E-06 7,03E-10 8,13E-10 1,05E-09 1,44E-09 4,78E-10 4,47E-10 2,69E-12 1,16E-09 3,32E-06 2,51E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 6.15E-08 2.32E-04 1.76E-07
	e ne ne ene ene cumene)	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.55E-04 3.85E-01 1.43E+04 8.35E+01 5.35E+01	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07
Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracent Benzo(a)pyrene Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Dibenz(a,h)anthrace Dibeldrin indeno(1,2,3-cd)pyr iron sopropylbenzene (d ead Napthalene NHALATION PATH	e ne ne ene cumene)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07
Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracent Benzo(a)pyrene Benzo(b)fluoranther Benzo(b)fluoranther Dibenz(a,h)anthrace Dibetria Indeno(1,2,3-cd)pyr Iron sopropylbenzene (clead Napthalene INHALATION PATH Ac = Sc* (1/F	e ne ene cumene) WAY PEF+1/VF) * ED) / AT *for carcinogens	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.5EE-01 1.43E+04 8.31E-01 3.26E-01	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08
Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracent Benzo(a)pyrene Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Dibenz(a,h)anthrace Dibeldrin indeno(1,2,3-cd)pyr iron sopropylbenzene (d ead Napthalene NHALATION PATH	e ne ne ene cumene)	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07
Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther Benzo(b)fl	e ne ene cumene) WAY PEF+1/VF) * ED) / AT *for carcinogens	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.5EE-01 1.43E+04 8.31E-01 3.26E-01	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.09E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13
Chemical 4.4-DDD Aluminum Aroctor-1254 Benzo(a)anthracen Benzo(b)fluoranther Benzo(b	ene ene cumene) IWAY PEF+1/VF) * ED) / AT *for carcinogens	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44F-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 6.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08
Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(c)anthracen Benzo(c)anthrac	ene ene eumene) WAY PEF+1/VF) * ED) / AT * for carcinogens Sc 3.07E-03	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-04 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t into proper units, ug/m3 EAC for Carcinogens 1.08E-11	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.09E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(ane ne ne ene cumene) IWAY PEF+1/VF) * ED) / AT *for carcinogens Sc 3.07E-03 5.34E+03 1.46E-01	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.55E-01 1.43E+04 8.31E-01 3.26E-01 3.26E-01	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t into proper units, ug/m3 EAC for Carcinogens 1.08E-11 1.88E-05	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06
Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(a)anthracen Chemical	9 nee nee cumene) WAY PEF+1/VF) * ED) / AT \$ for carcinogens \$ \$ 3.07E-03 5.34E+03 1.46E-01 9 3.57E-01	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.09E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01 Is necessary to ge Ac 3.07E-12 5.34E-08 1.46E-10 3.57E-10	Carcinogens 2,35E-11 1,50E-06 7,03E-10 8,13E-10 1,05E-09 1,44E-09 4,78E-10 4,47E-10 2,69E-12 1,16E-09 3,32E-06 2,51E-09 1,24E-08 9,85E-10 t into proper units, ug/m3 EAC for Carcinogens 1,08E-11 1,88E-05 5,14E-10 1,26E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.09E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11
Chemical 4,4-DDD Aluminum rocolor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Benzo(a)pyene Benzo(a)pyene Benzo(a)pyene Benzo(a)pyene Benzo(a)pyene Benzo(a)pyene Benzo(a)pyene Benzo(a)pyene Chemical 4,4-DDD Auminum kraclor-1254 Benzo(a)anthracene	ane ne ne ene cumene) WAY PEF+1/VF) * ED) / AT *for carcinogens \$c 3.07E-03 5.34E+03 1.46E-01 4.53E-01 4.53E-01	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.35E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44F-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t Into proper units, ug/m3 EAC for Carcinogens 1.08E-11 1.88E-05 5.14E-10 1.26E-09 1.60E-09 1.60E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11 1.12E-10
Chemical I,4-DDD Aluminum vocolor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Chemical I,4-DDD Aluminum vocolor-1254 Benzo(a)anthracene Benzo(a)pyrene	ane ne ne ane sumene) WAY PEF+1/VF) * ED) / AT * for carcinogens Sc 3.07E-03 5.34E+03 1.46E-01 4.53E-01 4.53E-01 ne 5.88E-01	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-04 3.85E-01 3.56E-01 3.26E-01 3.26E-01 3.76E-12 5.34E-06 3.77E-12 5.34E-00 4.53E-10 5.58E-10	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t into proper units, ug/m3 EAC for Carcinogens 1.08E-11 1.88E-05 5.14E-10 1.26E-09 1.00E-09 2.07E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 6.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11 1.12E-10 1.45E-10
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Ac = Sc * (1/F EAC = (Ac * EF Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranther Benzo(b)fluoranther	9 ne ene cumene) WAY PEF+1/VF) * ED) / AT Sc 3.07E-03 5.34E+03 1.46E-01 4.53E-01 1.66 5.88E-01	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 3.89E-04 3.18E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.57E-10 4.53E-10 5.88E-10 5.88E-10 5.88E-10 5.88E-10	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.18E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t into proper units, ug/m3 EAC for Carcinogens 1.08E-11 1.88E-05 5.14E-10 1.26E-09 1.26E-09 1.07E-09 8.59E-10 8.59E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.89E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11 1.12E-10 1.45E-10 6.02E-11
Chemical 4,4-DDD Aluminum Aroclor-1254 Senzo(a)anthracene Senzo(b)fluoranther Senzo(b)fluoranther Senzo(b)fluoranther Senzo(b)fluoranther Sibenzo(a),fluoranther Sibenzo(a),fluoranther Sibenzo(a),fluoranther Acal Scoot (Archiver) Chemical 4,4-DDD Aluminum Aroclor-1254 Senzo(a),anthracene Senzo(b)fluoranther	ane ne ne ene ene ene ene ene ene ene en	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.35E-01 1.43E+04 8.31E-01 5.35E+01 3.28E-01 is necessary to ge Ac 3.07E-12 5.34E-06 1.46E-10 3.57E-10 5.88E-10 5.88E-10 5.44E-10	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44F-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t Into proper units, ug/m3 EAC for Carcinogens 1.08E-11 1.88E-05 5.14E-10 1.26E-09 1.60E-09 1.60E-09 1.60E-09 1.60E-09 1.60E-09 1.59E-10 6.59E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11 1.12E-10 1.45E-10 6.02E-11 4.61E-11
Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(a)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranther	Benee	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-04 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01 Is necessary to ge Ac 3.07E-12 5.34E-06 1.46E-10 3.57E-10 4.53E-10 5.88E-10 2.44E-10 1.87E-10 1.87E-10	Carcinogens 2,35E-11 1,50E-06 7,03E-10 8,13E-10 1,05E-09 1,44E-09 4,78E-10 4,47E-10 2,69E-12 1,16E-09 3,32E-06 2,51E-09 1,24E-08 9,85E-10 t into proper units, ug/m3 EAC for Carcinogens 1,08E-11 1,88E-05 5,14E-10 1,26E-09 2,07E-09 8,59E-10 4,93E-12	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.09E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11 1.12E-10 1.45E-10 6.02E-11 4.61E-11 3.45E-13
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Ac = Sc * (1/F EAC = (Ac * EF Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(a)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther	e ne	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.99E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.35E-01 1.43E+04 8.31E-01 5.35E-01 3.26E-01 3.26E-01 3.76E-12 5.34E-08 1.46E-10 3.57E-10 4.53E-10 5.88E-10 1.47E-10	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44F-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t Into proper units, ug/m3 EAC for Carcinogens 1.08E-11 1.88E-05 5.14E-10 1.26E-09 1.60E-09 9.59E-10 4.93E-10 4.93E-12 1.70E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11 1.12E-10 1.45E-10 6.02E-11 4.61E-11 3.45E-13 1.19E-10
Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Chienical, n)anthrace Dieldrin ndeno(1,2,3-cd)pyr ron sopropylbenzene (c) Lead NHALATION PATH Ac = Sc * (1/F EAC = (Ac * EF Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Chemical Chemical Chemical 4,4-DDD Chemical Chem	ene	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-04 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01 Is necessary to ge Ac 3.07E-12 5.34E-06 1.46E-10 3.57E-10 4.53E-10 5.88E-10 2.44E-10 1.87E-10 1.87E-10	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t Into proper units, ug/m3 EAC for Carcinogens 1.08E-11 1.88E-05 5.14E-10 1.26E-09 1.60E-09 2.07E-09 8.59E-10 6.59E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.09E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11 1.12E-10 1.45E-10 6.02E-11 4.61E-11 3.45E-13
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Ac = Sc * (1/F EAC = (Ac * EF Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(a)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther	ene	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.99E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.35E-01 1.43E+04 8.31E-01 5.35E-01 3.26E-01 3.26E-01 3.76E-12 5.34E-08 1.46E-10 3.57E-10 4.53E-10 5.88E-10 1.47E-10	Carcinogens 2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44F-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t Into proper units, ug/m3 EAC for Carcinogens 1.08E-11 1.88E-05 5.14E-10 1.26E-09 1.60E-09 9.59E-10 4.93E-10 4.93E-12 1.70E-09	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11 1.12E-10 1.45E-10 6.02E-11 4.61E-11 3.45E-13 1.19E-10
Chemical I,4-DDD Numinum rocolor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Rocolor Rocolor	ene	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-04 3.85E-04 3.85E+04 3.35E+04 3.26E-01 Is necessary to ge Ac 3.07E-12 5.34E-06 1.46E-10 3.57E-10 4.53E-10 1.40E-12 4.83E-10 1.40E-12 4.83E-10 1.40E-12	2.35E-11 1.50E-06 7.03E-10 8.13E-10 1.05E-09 1.44E-09 4.78E-10 4.47E-10 2.69E-12 1.16E-09 3.32E-06 2.51E-09 1.24E-08 9.85E-10 t Into proper units, ug/m3 EAC for Carcinogens 1.08E-11 1.88E-05 5.14E-10 1.26E-09 1.60E-09 2.07E-09 8.59E-10 6.59E-10	Noncarcinogens 1.64E-09 1.05E-04 4.92E-08 5.69E-08 7.36E-08 1.01E-07 3.34E-08 3.13E-08 1.88E-10 8.15E-08 2.32E-04 1.76E-07 8.71E-07 6.90E-08 EAC for Noncarcinogens 7.57E-13 1.32E-06 3.60E-11 8.80E-11 1.12E-10 1.45E-10 6.02E-11 4.81E-11 3.45E-13 1.19E-10 4.02E-06

TABLE C-6 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN RME - CONSTRUCTION WORKER

	* EF * ED * CF) / (BW * AT)				
nenmala.	Doffailles			Value	Deference
arameter Itake	Definition Intake of chemical (mg/kg-day)			calculated	Reference
C	Soil concentration (mg/kg)			see data page	
С	Air concentration (mg/m^3)			see below	
AC	Effective air concentration (mg/r			calculated	
PEF	Particulate Emission Factor (m^	3/kg)		1.00E+09	EPA, 2004a
₹ •^	Ingestion rate of soil (mg/day)			330 3300	EPA, 2001
SA JF	Skin surface area (cm2) Soil to skin adherence factor (m	alem2)		0.3	EPA, 2004a EPA, 2004b
NBSd	Dermal absorption fraction (unit			see chemprop page	
F	Exposure frequency (day/yr)	,		250	professional judgment
D	Exposure duration (yr)			1	professional judgment
F	Conversion factor (kg/mg)			1.00E-06	EPA, 1989
3W	Body weight (kg)			70	EPA, 1989
ATC	Averaging time for carcinogens			25550	EPA, 1989
Tnc	Averaging time for noncarcinoge	ens (days)		365	EPA, 1989
			Sc	Intake for	Intake for
Chemical				Carcinogens	Noncarcinogens
,4-DDD			5.08E-02	2.34E-09	1.64E-07
luminum			8.20E+03	3.78E-04	2.65E-02
roclor-1254			7.73E-01	3.57E-08	2.50E-06
enzo(a)anthracer	ne		6.43E-01	2.97E-08	2.08E-06
Benzo(a)pyrene			7.63E-01	3.52E-08	2.46E-06
Benzo(b)fluoranthe			8.22E-01 3.81E-01	3.79E-08 1.76E-08	2.65E-06 1,23E-06
Benzo(k)fluoranthe			3,81E-01 1,80E-01	1.76E-08 8.30E-09	
Dibenz(a,h)anthrad Dieldrin	Lette		1.80E-01 2.11E-03	8.30E-09 9.73E-11	5,81E-07 6,81E-09
nelarin ndeno(1,2,3-cd)py	rene		6.58E-01	3.04E-08	2.12E-06
ron	,,		1.75E+04	8.05E-04	5.64E-02
sopropylbenzene	(cumene)		5,85E+00	2.70E-07	1,89E-05
ead			1.04E+02	4.80E-06	3,36E-04
lapthalene			2.65E-03	1.22E-10	8.56E-09
ERMAL CONTAC NTAKE = (Sc * SA	\ * AF * ABSd * EF * ED * CF) / (BW	' * AT)			
		ABSd	Sc	Intake for	Intake for
Chemical				Carcinogens	Noncarcinogens
I.4-DDD		1.30E-01	5.08E-02	9.14E-10	6.40E-08
		1.30E-01 1.00E-02	5.08E-02 8.20E+03	9.14E-10 1.13E-05	6.40E-08 7.94E-04
luminum					
Aluminum Aroclor-1254	ne	1.00E-02	8,20E+03	1.13E-05	7.94E-04
Aluminum Aroclor-1254 Benzo(a)anthracer Benzo(a)pyrene		1.00E-02 1.40E-01 1.30E-01 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01	1.13E-05 1.50E-08 1.16E-08 1.37E-08	7.94E-04 1.05E-06 8.10E-07 9.61E-07
Aluminum Aroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe	ene	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06
.luminum kroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe	ene ene	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07
.luminum Aroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac	ene ene	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07
Aluminum Aroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin	ene ene cene	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09
.luminum vroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe b)tbenz(a,h)anthrac b)eldrin ndeno(1,2,3-cd)py	ene ene cene	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07
.luminum kroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Bieldrin Indeno(1,2,3-cd)pyron	ene ene cene vrene	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03
Juminum Aroclor-1254 Benzo(a)anthracer Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin ndeno(1,2,3-cd)py Sopropylbenzene	ene ene cene vrene	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07
Juminum vroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(k)fluoranthe Dieldrin ndeno(1,2,3-cd)py on sopropylbenzene Lead	ene ene cene vrene	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06
Numinum voclor-1254 senzo(a)anthracer senzo(a)pyrene senzo(b)fluoranthe senzo(h)fluoranthe senzo(h)fluoranthe b)benz(a,h)anthrac bieldrin ndeno(1,2,3-cd)py ron sopropylbenzene e.ead lapthalene	ene ene cene vrene (cumene)	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05
Aluminum vocior-1254 benzo(a)anthracer Benzo(a)anthracer Benzo(a)pyene Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthrac Diedrin ndeno(1,2,3-cd)py ron sopropylbenzene Lead dapthalene NHALATION PATI CC = Sc* (1/	ene ene cene (cumene) HWAY	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05
Aluminum vocior-1254 benzo(a)anthracer Benzo(a)anthracer Benzo(a)pyene Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthrac Diedrin ndeno(1,2,3-cd)py ron sopropylbenzene Lead dapthalene NHALATION PATI CC = Sc* (1/	ene ene cene (cumene) HWAY	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07	7.94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05
EAC = (Ac * EI	ene ene cene (cumene) HWAY	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09
Juminum vorolor-1254 Jenzo(a)anthracer Jenzo(a)anthracer Jenzo(a)pyrene Jenzo(b)livoranthe Jenzo(b)livoranth	ene ene cene (currene (currene) HWAY PEF+ 1/VF) F * ED) / AT *for carcinogen	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 6.85E-09 3.24E-09 3.90E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09
iuminum roclor-1254 enzo(a)anthracer enzo(a)anthracer enzo(b)fluoranthe enzo(b)fluoranthe enzo(b)fluoranthe enzo(b)fluoranthe enzo(b)fluoranthe enzo(b)fluoranthe enzo(b)fluoranthe enzo(b)fluoranthe enzo(b)fluoranthrace enzo enzo enzo enzo enzo enzo enzo enz	ene ene cene (curnene) HWAY PPEF+ 1N/F) F * ED) / AT * for carcinogen Sc 2.70E-0	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.85E-03 Is necessary to ge Ac	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.48E-08 1.48E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.84E-12	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09
Juminum roclor-1254 lenzo(a)anthracer lenzo(a)apyrene lenzo(a)pyrene lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(l)fluoranthe l	ene ene cene (cumene) HWAY PEF+ 1/VF) F * ED) / AT * for carcinogen Sc 2.70E-0 5.95E+0	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	8.20E-03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to ge Ac 2.70E-13 5.95E-06	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.48E-08 1.48E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06
Juminum roctor-1254 lenzo(a)anthracer lenzo(a)anthracer lenzo(a)pyrene lenzo(b)fluoranthe lbenzo(b)fluoranthe lbenzo(b)fluoranthe lbenzo(b)fluoranthe lbenzo(c)fluoranthe lbenzo(c)fluoranthe lenzo(k)fluoranthe lenzo(k)fluor	ane ene cene (cumene) HWAY PEF+ 1N/F) F * ED) / AT *for carcinogen Sc 2.70E-0 5.95E+0 7.64E-0	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.48E-08 1.48E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10
Juminum roclor-1254 lenzo(a)anthracer lenzo(a)anthracer lenzo(a)pryene lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(a,h)anthrac leldrin ddeno(1,2,3-cd)py onoppylibenzene ead lapthalene NHALATION PATI c.= Sc * (1/4 AC * El Chemical ,4-DDD luminum roclor-1254 lenzo(a)anthracer	ene ene cene (cumene) HWAY PEF+ 1NF) F * ED) / AT *for carcinogen \$c 2.70E-0 5.95E+0 7.64E-0 ne 9.03E-0	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	8.20E+03 7.73E+01 6.43E+01 7.63E+01 8.22E+01 3.81E+01 1.80E+01 1.75E+04 5.85E+00 1.04E+02 2.85E-03 is necessary to ge Ac 2.70E-13 5.95E-06 7.04E-10 9.03E-10	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09 8.84E-09	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10
Juminum vocolor-1254	ene ene cene (cumene) HWAY PEF+ 1/VF) F * ED) / AT * for carcinogen Sc 2.70E-0 5.95E+0 7.64E-0 9.03E-0 1.09E+0 1.09E+0	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	B.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.85E-03 is necessary to ge Ac 2.70E-13 5.95E-08 7.64E-10 9.03E-10 1.09E-09	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.37E-08 1.48E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 1.47E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09 1.06E-08	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-08 5.23E-10 6.18E-10 7.43E-10
Juminum roclor-1254 lenzo(a)anthracer lenzo(a)anthracer lenzo(a)pyrene lenzo(b)fluoranthe lenzo(b)ffluoranthe lenzo(b)ffluoranthe lenzo(b)ffluoranthe lenzo(b)ffluoranthe lenzo(b)ffluoranthe lenzo(a)hanthrace lead lapthalene WHALATION PATI .c. = Sc * (1/ .c. = KaC = (Ac * Ei Chemical .4-DDD luminum roclor-1254 lenzo(a)anthracer lenzo(a)pyrene lenzo(a)pyrene	ene ene cene (curnene) HWAY PEF+ 1/VF) F * ED) / AT *for carcinogen Sc 2.70E-0 5.95E+0 7.64E-0 9.03E-0 1.99E+0 1.10E+0 ene 1.10E+0	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	8.20E-03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to ge Ac 2.70E-13 5.95E-06 7.64E-10 9.03E-10 1.09E-09	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.48E-09 1.48E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10
Juminum roclor-1254 lenzo(a)anthracer lenzo(a)anthracer lenzo(a)pryene lenzo(b)fluoranthe	### Property of the content of the c	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	8.20E-03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E-00 1.04E+02 2.65E-03 is necessary to ge Ac 2.70E-13 5.95E-06 7.64E-10 9.03E-10 1.09E-09 1.10E-09 6.58E-10	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.06E-08 6.44E-09	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10
Juminum roctor-1254 lenzo(a)anthracer lenzo(a)anthracer lenzo(a)pyrene lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(b)fluoranthe lenzo(c)fluoranthe lenzo(c)fluoranthe lenzo(c)fluoranthe lenzo(c)fluoranthe lenzo(d)fluoranthe lenzo(d)fluoranthe lenzo(d)fluoranthe lenzo(b)fluoranthe	######################################	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	B.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 Is necessary to ge Ac 2.70E-13 5.95E-06 7.64E-10 9.03E-10 1.09E-09 1.10E-09 6.58E-10 2.45E-10	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.37E-08 1.48E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09 1.06E-08 1.08E-08 6.44E-09 2.40E-09	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.55E-10 4.51E-10 1.68E-10
Juminum roclor-1254 lenzo(a)anthracer lenzo(a)anthracer lenzo(a)pryene lenzo(b)fluoranthe	### Property of the carcinogen #### Property of the carcinogen #### Property of the carcinogen #### Sc #### 2.70E-0 ### 5.95E-0 ### 7.64E-0 ### 1.05E-0 ### 6.58E-0 ### 6.58E-0 ### 2.45E-0 ### 3.44E-0 ### 3.44E-0	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	8.20E-03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E-00 1.04E+02 2.65E-03 is necessary to ge Ac 2.70E-13 5.95E-06 7.64E-10 9.03E-10 1.09E-09 1.10E-09 6.58E-10	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.48E-08 6.85E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.06E-08 6.44E-09	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10
Aluminum vocior-1254 benzo(a)anthracer Benzo(a)anthracer Benzo(a)pyene Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthrac Diedrin ndeno(1,2,3-cd)py ron sopropylbenzene Lead dapthalene NHALATION PATI CC = Sc* (1/	### Property of the carcinogen #### Property of the carcinogen #### Property of the carcinogen #### Sc #### 2.70E-0 ### 5.95E-0 ### 7.64E-0 ### 1.05E-0 ### 6.58E-0 ### 6.58E-0 ### 2.45E-0 ### 3.44E-0 ### 3.44E-0	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00F-02 1.30E-01 1.00F-02 1.30E-01	8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to ge Ac 2.70E-13 5.55E-06 7.64E-10 9.03E-10 1.09E-09 1.10E-09 6.58E-10 2.45E-10 3.14E-12	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.48E-09 3.24E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.06E-08 1.06E-08 1.06E-09 3.07E-11	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 1.68E-10 2.15E-12
Juminum rocolor-1254	### Property of the content of the c	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	B.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to ge Ac 2.70E-13 5.95E-06 7.04E-10 9.03E-10 1.09E-09 1.10E-09 6.58E-10 2.45E-10 3.14E-12	1.13E-05 1.50E-08 1.16E-08 1.37E-08 1.48E-08 1.48E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09 1.06E-08 1.08E-09 1.06E-08 6.44E-09 2.40E-09 3.07E-11 9.11E-09	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-08 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10 1.68E-10 2.15E-12 6.38E-10
Juminum roclor-1254 lenzo(a)anthracer lenzo(a)anthracer lenzo(a)pyrene lenzo(b)fluoranthe lenzo(k)ffluoranthe lenzo(k)ffluoranthe lenzo(k)ffluoranthe lenzo(k)ffluoranthe lenzo(k)ffluoranthe lenzo(l)fluoranthe ledirin ledeno(1,2,3-cd)py on lenzo(b)fluoranthe lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(b)fluoranthe lenzo(k)fluoranthe lenzo(k)fluoranthe lenzo(k)fluoranthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(b)fluoranthe lenzo(k)fluoranthe lenzo(k)fluoranthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(b)fluoranthracer lenzo(a)anthracer lenzo(b)fluoranthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(b)fluoranthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(b)fluoranthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(b)anthracer lenzo(a)anthracer lenzo(b)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(a)anthracer lenzo(b)anthracer lenzo(b	### Property of the content of the c	1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B.20E-03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to ge Ac 2.70E-13 5.95E-06 7.84E-10 9.03E-10 1.09E-09 6.58E-10 2.45E-10 3.14E-12 9.31E-10	1.13E-05 1.50E-08 1.16E-08 1.16E-08 1.16E-08 1.48E-09 3.24E-09 3.24E-09 3.80E-11 1.18E-08 2.42E-05 1.05E-07 1.44E-07 4.77E-11 t into proper units, ug/m3 EAC for Carcinogens 2.64E-12 5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09 2.40E-09 3.07E-11 9.11E-09 2.34E-04	7,94E-04 1.05E-06 8.10E-07 9.61E-07 1.04E-06 4.80E-07 2.27E-07 2.66E-09 8.29E-07 1.69E-03 7.36E-06 1.01E-05 3.34E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10 1.68E-10 2.15E-12 6.38E-10 1.64E-05

TABLE C-7 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE — INDUSTRIAL WORKER

SOIL INGESTION						
NTAKE = (Sc * IR *	EF * ED * CF) / (BW * AT)					
Parameter	Definition			Value	Reference	
ntake	Intake of chemical (mg/kg-day	1 .		calculated	TOTOTOTO	
Sc	Soil concentration (mg/kg)	,		see data page		
Ac				see data page see below		
	Air concentration (mg/m^3)	-/A2\				
EAC	Effective air concentration (mg			calculated		
PEF	Particulate Emission Factor (n	n^3/kg)		1.00E+09	EPA, 2004a	
R	Ingestion rate of soil (mg/day)			50	EPA, 2004a	
SA .	Skin surface area (cm2)			3300	EPA, 2004a	
AF.	Soil to skin adherence factor (ma/cm2)		0.021	EPA, 2004a	
ABSd	Dermal absorption fraction (ur			see chemprop page	,	
EF.	Exposure frequency (day/yr)	illiossj		250	EPA, 2004a	
ED	Exposure duration (yr)			25	EPA, 2004a	
CF	Conversion factor (kg/mg)			1,00E-06	EPA, 1989	
BW	Body weight (kg)			70	EPA, 1989	
ATc	Averaging time for carcinogen	s (days)		25550	EPA, 1989	
ATnc	Averaging time for noncarcino	gens (days)		9125	EPA, 1989	
						_
Chemical			Sc	Intake for Carcinogens	Intake for Noncarcinogens	
4.4-DDD			7.76E-03	1.36E-09	3.80E-09	
Aluminum			6.45E+03	1,13E-03	3,16E-03	
Aroclor-1254			2.16E-01	3.77E-08	1.06E-07	
Benzo(a)anthracene			2.69E-01	4.70E-08	1.32E-07	
Benzo(a)pyrene			3.48E-01	6.08E-08	1.70E-07	
Benzo(b)fluoranthene	9		4.77E-01	8.33E-08	2.33E-07	
Benzo(k)fluoranthene	•		1.58E-01	2.76E-08	7.73E-08	
Dibenz(a,h)anthracer			1.48E-01	2.59E-08	7.24E-08	
Dieldrin			8.89E-04	1.55E-10	4.35E-10	
Indeno(1,2,3-cd)pyre	ne		3.85E-01	6.73E-08	1.88E-07	
ron			1.43E+04	2.49E-03	6.98E-03	
sopropylbenzene (cu	imene)		8.31E-01	1.45E-07	4.07E-07	
Lead			5.35E+01	9.35E-06	2.62E-05	
Napthalene			3,26E-01		1.59E-07	
	AF * ABSd * EF * ED * CF) / (B	W * AT)	3,20E-01	5,70E-08	1.052.07	
INTAKE = (Sc * SA *		W * AT) ABSd	Sc	Intake for	Intake for	
DERMAL CONTACT INTAKE = (Sc * SA * Chemical		· · · · · · · · · · · · · · · · · · ·				
INTAKE = (Sc * SA *		ABSd	Sc	Intake for Carcinogens	Intake for Noncarcinogens	
INTAKE = (Sc * SA * Chemical		ABSd	Sc 7.76E-03	Intake for Carcinogens 2.44E-10	Intake for Noncarcinogens 6.84E-10	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum		ABSd 1.30E-01 1.00E-02	Sc 7.76E-03 6.45E+03	Intake for Carcinogens 2.44E-10 1.56E-05	Intake for Noncarcinogens 6.84E-10 4.37E-05	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum		ABSd	Sc 7.76E-03	Intake for Carcinogens 2.44E-10	Intake for Noncarcinogens 6.84E-10	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum Arodor-1254		ABSd 1.30E-01 1.00E-02	Sc 7.76E-03 6.45E+03	Intake for Carcinogens 2.44E-10 1.56E-05	Intake for Noncarcinogens 6.84E-10 4.37E-05	
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene		1.30E-01 1.00E-02 1.40E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08	
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08	
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluorantheno	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 4.77E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08	
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08	
NTAKE = (Sc * SA * Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.39E-08	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracer	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 1.58E-01 1.48E-01 8.89E-04	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 1.39E-08 1.30E-08 7.84E-11	
Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracero Dibenz(a,h)anthracero Dibenz(a,ch)anthracero Dibenz(a,ch)ant	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.59E-01 3.48E-01 4.77E-01 1.48E-01 8.89E-04 3.85E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.30E-08 7.84E-11 3.39E-08	
NTAKE = (Sc * SA * Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthraceroledrin deno(1,2,3-cd)pyre	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 1.58E-01 1.48E-01 8.89E-04	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 1.39E-08 1.30E-08 7.84E-11	
Chemical 4,4-DDD Aluminum Arcolor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dienz(a,h)anthracero Dieldrin ndeno(1,2,3-cd)pyrer oron	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.59E-01 3.48E-01 4.77E-01 1.48E-01 8.89E-04 3.85E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.30E-08 7.84E-11 3.39E-08	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracero Diedrin ndeno(1,2,3-cd)pyre ron sopropylbenzene (ct	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.55E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 7.84E-11 3.39E-08 9.68E-05	
NTAKE = (Sc * SA * Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04 8.31E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 3.07E-08 4.20E-08 1.39E-08 1.30E-08 7.84E-11 3.39E-08 9.68E-05 7.33E-08	
Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dibenz(a,ch)anthracene Dibenz(a,ch)an	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04 8.31E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.30E-08 7.84E-11 3.39E-08 9.68E-05 7.33E-08	
Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Diedrin ndeno(1,2,3-cd)pyre ron sopropylbenzene (ct.ead Napthalene	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04 8.31E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.30E-08 7.84E-11 3.39E-08 9.68E-05 7.33E-08	
Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dibetz(a,h)anthracene Dibetz(a	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.55E-01 1.43E+04 8.31E-01 5.35E-01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.30E-08 7.84E-11 3.39E-08 9.68E-05 7.33E-08	
Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dibetz(a,h)anthracene Dibetz(a	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-02 1.30E-01 1.00E-02 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.39E-08 7.84E-11 3.39E-08 9.68E-05 7.33E-08 3.63E-07 2.87E-08	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(k)fluoranthene Dibenz(a,h)anthracene Diedrin ndeno(1,2,3-cd)pyre ron sopropylbenzene (ct. ead Napthalene NHALATION PATHW Ac = Sc * (1/PE EAC = (Ac * EF *	AF * ABSd * EF * ED * CF) / (B	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.55E-01 1.43E+04 8.31E-01 5.35E-01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.30E-08 7.84E-11 3.39E-08 9.68E-05 7.33E-08	
Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dibetz(a,h)anthracene Dibetz(a	AF * ABSd * EF * ED * CF) / (B a	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.55E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.48E-05 2.62E-08 1.30E-07 1.03E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.39E-08 7.84E-11 3.39E-08 3.63E-05 7.33E-08 3.63E-07 2.87E-08	
NTAKE = (Sc * SA * Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracer Benzo(k)fluoranthene Dibenz(a,h)anthracer Dieldrin adeno(1,2,3-cd)pyre ron sopropylbenzene (ct. ead Vapthalene NHALATION PATHV Ac = Sc * (1/PE EAC = (Ac * EF * Chemical 4,4-DDD	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.59E-01 4.77E-01 4.77E-01 1.58E-01 1.48E-01 8.39E-04 3.35E-01 3.26E-01 3.26E-01 3.26E-01 3.27E-02 Ac	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.39E-08 1.39E-08 9.68E-05 7.34E-11 3.39E-08 9.68E-05 7.33E-08 3.63E-07 2.87E-08	
Chemical 4.4-DDD 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene NHALATION PATHV Ac = Sc * (1/PIE EAC = (Ac * EF * Chemical 4.4-DDD Aluminum	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 VF	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.99E-04 3.16E-01 3.26E-01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 at into proper units, ug/m3 EAC for Carcinogens 7.51E-10 1.31E-03	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.30E-08 7.84E-11 3.39E-08 9.68E-05 7.33E-08 3.63E-07 2.87E-08	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(k)fluoranthene Dibenz(a,h)anthracene Benzo(k)fluoranthene Niedrin 2,3-cd)pyre ron sopropylbenzene (ct.ead Napthalene NHALATION PATHW Ac = Sc * (1/PE EAC = (Ac * EF * Chemical 4,4-DDD Aluminum Aroclor-1254	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 VF	7.76E-03 6.45E-03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 3.58E-01 1.49E-04 3.35E-01 1.32E-04 3.32E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 at into proper units, ug/m3 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 1.39E-08 1.39E-08 1.39E-08 7.84E-11 3.39E-08 3.63E-05 7.33E-08 3.63E-07 2.87E-08	
NTAKE = (Sc * SA * Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(k)fluoranthene Dibenz(a,2,3-cd)pyre ron Sopropylbenzene (ct. Bed = Sc * (1/Pt. Bed = Kac * EF * Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 VF	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 1.48E-01 3.26E-01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 at Into proper units, ug/m3 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.39E-08 9.68E-05 7.33E-08 9.68E-05 7.33E-08 9.68E-05 2.87E-08	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene NHALATION PATHV Ac = Sc * (1/PE EAC = (Ac * EF * Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene	AF * ABSd * EF * ED * CF) / (B a	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.35E-01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08 1.11E-07	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.39E-08 7.84E-11 3.39E-08 3.63E-05 7.33E-08 3.63E-07 2.87E-08	
NTAKE = (Sc * SA * Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene NHALATION PATHV Ac = Sc * (1/PR EAC = (Ac * EF * Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)pryene Benzo(a)pryene Benzo(a)pryene Benzo(a)pryene Benzo(a)pryene	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 1.48E-01 3.26E-01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 at Into proper units, ug/m3 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.39E-08 9.68E-05 7.33E-08 9.68E-05 7.33E-08 9.68E-05 2.87E-08	
NTAKE = (Sc * SA * Chemical i.4DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene NHALATION PATHV Ac = Sc * (1/PR EAC = (Ac * EF * Chemical I.4DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 VF	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.35E-01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08 1.11E-07	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.39E-08 7.84E-11 3.39E-08 3.63E-05 7.33E-08 3.63E-07 2.87E-08	
Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene NHALATION PATHV Ac = Sc * (1/PE EAC = (Ac * EF * Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.43E+04 8.31E-01 3.26E-01 3.26E-01 3.26E-01 4.53E-10 4.53E-10 5.84E-10 5.86E-10 5.86E-10 5.86E-10	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 at Into proper units, ug/m3 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08 1.11E-07 1.44E-07 5.97E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.39E-08 9.88E-05 7.33E-08 9.88E-05 7.33E-08 9.88E-05 7.33E-08 2.87E-08	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracero Benzo(b)fluoranthene Dibenz(a,h)anthracero Benzo(b)fluoranthene NHALATION PATHW Ac = Sc * (1/PE EAC = (Ac * EF * Chemical 1,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	Sc 7.76E-03 6.45E+03 2.16E-01 2.16E-01 4.77E-01 1.58E-01 1.48E-01 8.99E-04 3.35E-01 1.43E-04 8.31E-01 5.35E+01 3.26E-01 3.26E-01 3.07E-12 5.34E-06 1.46E-10 3.57E-10 4.53E-10 2.44E-10 1.45E-10	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.39E-08 1.39E-08 9.68E-05 7.33E-08 3.63E-07 2.87E-08	
NTAKE = (Sc * SA * Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracen Benzo(k)fluoranthene Dibenz(a,c)anthracene Benzo(k)fluoranthene Dibenz(a,h)anthracene Benzo(k)fluoranthene NHALATION PATHV Ac = Sc * (1/PE EAC = (Ac * EF * Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	AF * ABSd * EF * ED * CF) / (B a a a a a a a a a a a a a a a a a a a	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF	7.76E-03 6.45E-03 2.16E-01 2.96E-01 3.48E-01 4.77E-01 1.88E-01 4.87E-01 1.48E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.57E-10 4.53E-10 2.44E-10 1.47E-10 1.47E-10	Intake for Carcinogens 2.44E-10 1.59E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 at Into proper units, ug/m3 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08 1.11E-07 1.44E-07 1.44E-07 1.97E-08 3.42E-10 3.42E-10	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.39E-08 9.68E-05 7.33E-08 9.68E-05 7.33E-08 2.87E-08 EAC for Noncarcinogens 2.10E-12 3.65E-06 1.00E-10 3.10E-10 4.03E-10 1.67E-10 1.28E-10	
NTAKE = (Sc * SA * Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene NHALATION PATHV Ac = Sc * (1/PE EAC = (Ac * EF * Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene	AF * ABSd * EF * ED * CF) / (B a	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 001 001 001 001 001 001 001 001 001	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.85E-01 3.26E-01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 2.80E-11 1.21E-08 3.48E-05 2.62E-08 1.30E-07 1.03E-08 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08 1.11E-07 1.44E-07 5.97E-08 3.42E-10 1.18E-07	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.39E-08 7.84E-11 3.39E-08 3.63E-05 7.33E-08 8.63E-07 2.87E-08	
NTAKE = (Sc * SA * Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene NHALATION PATHW Ac = Sc * (1/PE EAC = (Ac * EF * Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Diedrin ndeno(1,2,3-cd)pyrer ron	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 VF 03 03 03 01 01 01 01 01 01 01 01 01 01 01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 1.48E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 4.46E-10 3.57E-10 4.53E-10 5.38E-10 1.46E-10 1.46E-10 1.46E-10 1.46E-10 1.46E-10 1.46E-10	Intake for Carcinogens 2.44E-10 1.50E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 et into proper units, ug/m3 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08 1.11E-07 1.44E-07 5.97E-08 4.57E-08 3.42E-10 1.10E-07 3.98E-03	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.39E-08 1.39E-08 9.68E-05 7.33E-08 3.83E-07 2.87E-08 EAC for Noncarcinogens 2.10E-12 3.65E-06 1.00E-10 2.45E-10 3.10E-10 1.28E-10 9.59E-13 3.31E-10 1.12E-05	
Chemical 4.4-DDD 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a, h)anthracen Dietdrin ndeno(1,2,3-cd)pyre ron Sopropylbenzene (cu.ead Napthalene NHALATION PATHV Ac = Sc * (1/PI EAC = (Ac * EF * Chemical 4.4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a, h)anthracer Dietdrin indeno(1,2,3-cd)pyre ron sopropylbenzene (cu.	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 8.89E-04 3.35E-01 1.43E+04 8.31E-01 5.35E+01 3.26E-01	Intake for Carcinogens 2.44E-10 1.56E-05 7.32E-09 8.47E-09 1.10E-08 4.97E-09 4.66E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 et into proper units, ug/m3 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08 1.11E-07 1.44E-07 5.97E-08 3.42E-10 1.18E-07 3.98E-03 5.49E-03	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 3.07E-08 4.20E-08 1.39E-08 1.39E-08 9.88E-05 7.33E-08 9.88E-05 7.33E-08 8.83E-07 2.87E-08 EAC for Noncarcinogens 2.10E-12 3.65E-06 1.00E-10 4.03E-10 4.03E-10 1.28E-10 1.28E-10 1.12E-05 1.54E-05	
NTAKE = (Sc * SA * Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene NHALATION PATHW Ac = Sc * (1/PE EAC = (Ac * EF * Chemical 4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Diedrin ndeno(1,2,3-cd)pyrer ron	AF * ABSd * EF * ED * CF) / (B	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01 1.00E-02 1.30E-01	Sc 7.76E-03 6.45E+03 2.16E-01 2.69E-01 3.48E-01 4.77E-01 1.58E-01 1.48E-01 1.48E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 3.26E-01 4.46E-10 3.57E-10 4.53E-10 5.38E-10 1.46E-10 1.46E-10 1.46E-10 1.46E-10 1.46E-10 1.46E-10	Intake for Carcinogens 2.44E-10 1.50E-05 7.32E-09 8.47E-09 1.10E-08 1.50E-08 4.97E-09 2.80E-11 1.21E-08 3.46E-05 2.62E-08 1.30E-07 1.03E-08 et into proper units, ug/m3 EAC for Carcinogens 7.51E-10 1.31E-03 3.57E-08 8.73E-08 1.11E-07 1.44E-07 5.97E-08 4.57E-08 3.42E-10 1.10E-07 3.98E-03	Intake for Noncarcinogens 6.84E-10 4.37E-05 2.05E-08 2.37E-08 4.20E-08 1.39E-08 1.39E-08 1.39E-08 9.68E-05 7.33E-08 3.83E-07 2.87E-08 EAC for Noncarcinogens 2.10E-12 3.65E-06 1.00E-10 2.45E-10 3.10E-10 1.28E-10 9.59E-13 3.31E-10 1.12E-05	

TABLE C-8 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN RME — INDUSTRIAL WORKER

NTAKE = (Sc * IR	* EF * ED * CF) / (BW * AT)					
Parameter	Definition			Value	Reference	
ntake	Intake of chemical (mg/kg-day)			calculated	TOTOTOTIOS	
SC .	Soil concentration (mg/kg)			see data page		
\C	Air concentration (mg/m^3)			see below		
AC	Effective air concentration (mg/m^:	3)		calculated		
PEF	Particulate Emission Factor (m^3/k			1.00E+09	EPA, 2004a	
R.	Ingestion rate of soil (mg/day)	·9/		50	EPA, 2004a	
Ä	Skin surface area (cm2)			3300	EPA, 2004a	
F	Soil to skin adherence factor (mg/c	·m2\		0.2	EPA, 2004a	
BSd					EFA, 2004a	
ibou F	Dermal absorption fraction (unitles	s)		see chemprop page 250	EDA 0004-	
	Exposure frequency (day/yr)				EPA, 2004a EPA, 2004a	
D	Exposure duration (yr)			25		
F	Conversion factor (kg/mg)			1.00E-06	EPA, 1989	
SW.	Body weight (kg)			70	EPA, 1989	
Tc	Averaging time for carcinogens (da			25550	EPA, 1989	
Tnc	Averaging time for noncarcinogens	s (days)		9125	EPA, 1989	
			Sc	Intake for	Intake for	
Chemical				Carcinogens	Noncarcinogens	
,4-DDD			5.08E-02	8.88E-09	2.49E-08	
luminum			8.20E+03	1.43E-03	4.01E-03	
roclor-1254			7.73E-01	1.35E-07	3.78E-07	
enzo(a)anthracer	ne		6,43E-01	1.12E-07	3.15E-07	
enzo(a)pyrene			7.63E-01	1,33E-07	3,73E-07	
enzo(b)fluoranthe	ene		8.22E-01	1.44E-07	4.02E-07	
enzo(k)fluoranthe			3.81E-01	6.66E-08	1.86E-07	
Dibenz(a,h)anthrac	cene		1.80E-01	3.15E-08	8.81E-08	
ieldrin			2.11E-03	3.69E-10	1.03E-09	
ndeno(1,2,3-cd)py	rene		6.58E-01	1.15E-07	3.22E-07	
on			1.75E+04	3.05E-03	8,54E-03	
sopropylbenzene	(cumene)		5.85E+00	1.02E-06	2.86E-06	
ead			1.04E+02	1.82E-05	5.09E-05	
lapthalene			2.65E-03	4.63E-10	1.30E-09	
		AT)		4.051-10		
	CT ^ A F * ABSd * EF * ED * CF) / (BW * /	AT)		4.001-10		
DERMAL CONTAC NTAKE = (Sc * SA Chemical		AT) ABSd	Sc	Intake for Carcinogens	Intake for Noncarcinogens	
NTAKE = (Sc * SA		ABSd		Intake for Carcinogens	Intake for Noncarcinogens	
NTAKE = (Sc * SA Chemical		ABSd 1.30E-01	5.08E-02	Intake for Carcinogens 1.52E-08	Intake for Noncarcinogens 4.26E-08	
NTAKE = (Sc * SA Chemical ,4-DDD lluminum		ABSd 1.30E-01 1.00E-02	5.08E-02 8.20E+03	Intake for Carcinogens 1.52E-08 1.89E-04	Intake for Noncarcinogens 4.26E-08 5.29E-04	
NTAKE = (Sc * SA Chemical ,4-DDD .luminum roclor-1254	4 * AF * ABSd * EF * ED * CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.40E-01	5.08E-02 8.20E+03 7.73E-01	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07	
NTAKE = (Sc * SA Chemical ,4-DDD ,luminum ,roclor-1254 denzo(a)anthracer	4 * AF * ABSd * EF * ED * CF) / (BW * /	1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07	
NTAKE = (Sc * SA Chemical ,4-DDD Numinum rocdor-1254 senzo(a)anthracer senzo(a)pyrene	4 * AF * ABSd * EF * ED * CF) / (BW * .	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.41E-07	
Chemical ,4-DDD Juminum rocior-1254 lenzo(a)pyrene lenzo(b)fluoranthe	A * AF * ABSd * EF * ED * CF) / (BW * ,	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.41E-07 6.90E-07	
NTAKE = (Sc * SA Chemical ,4-DDD ,luminum ,voclor-1254 Benzo(a)apyrene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(b)fluoranthe	A * AF * ABSd * EF * ED * CF) / (BW * ,	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07 1.14E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.41E-07 6.90E-07 3.20E-07	
NTAKE = (Sc * SA Chemical ,4-DDD ,luminum ,roclor-1254 enzo(a)anthracer enzo(b)fluoranth elenzo(fluoranth elenzo(h)anthrach libenz(a,h)anthrach	A * AF * ABSd * EF * ED * CF) / (BW * ,	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07 1.14E-07 5.40E-08	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.90E-07 3.20E-07 1.51E-07	
NTAKE = (Sc * SA Chemical ,4-DDD ,luminum ,roclor-1254 enzo(a)anthracer enzo(a)pyrene enzo(b)fluoranthe elmzo(k)fluoranthe blenzo(k)fluoranthe blenzo(h)anthracer ble	A * AF * ABSd * EF * ED * CF) / (BW * /	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07 1.14E-07 5.40E-08 6.33E-10	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.90E-07 3.20E-07 1.51E-07 1.77E-09	
NTAKE = (Sc * SA Chemical ,4-DDD iluminum voclor-1254 tenzo(a)pyrene tenzo(a)pyrene tenzo(b)iluoranthe tibenz(a,h)anthracoletacy tibenz(a,h)anthracoletacy tibenz(a,h)anthracoletacy tibenz(a,h)anthracoletacy tibenz(a,h)anthracoletacy	A * AF * ABSd * EF * ED * CF) / (BW * /	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.51E-07 1.77E-09 5.52E-07	
NTAKE = (Sc * SA Chemical ,4-DDD ,luminum ,voclor-1254 tenzo(a)anthracer enzo(a)ijuoranthre tenzo(k)ijuoranthre jibenz(a,h)anthrac jibenz(a,h)anth	A * AF * ABSd * EF * ED * CF) / (BW * ne ene ene ene cene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07 1.14E-07 5.40E-08 6.33E-10	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 3.20E-07 1.51E-07 1.77E-09 5.52E-07	
NTAKE = (Sc * SA Chemical ,4-DDD ,luminum ,voclor-1254 tenzo(a)anthracer enzo(a)ijuoranthre tenzo(k)ijuoranthre jibenz(a,h)anthrac jibenz(a,h)anth	A * AF * ABSd * EF * ED * CF) / (BW * ne ene ene ene cene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.51E-07 1.77E-09 5.52E-07	
NTAKE = (Sc * SA Chemical ,4-DDD sluminum roclor-1254 enzo(a)pyrene tenzo(a)pyrene tenzo(b)fluoranthe ten	A * AF * ABSd * EF * ED * CF) / (BW * ne ene ene ene cene	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.51E-07 1.77E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06	
Chemical ,4-DDD luminum roclor-1254 enzo(a)plyrene enzo(b)fluoranth enzo(b)fluoranth eibenz(a,h)anthracel iddrin opropylbenzene opropylbenzene ead	A * AF * ABSd * EF * ED * CF) / (BW * ne ene ene ene cene	1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.41E-07 6.90E-07 1.51E-07 1.51E-07 1.3E-03 4.91E-06	
NTAKE = (Sc * SA Chemical ,4-DDD Numinum voclor-1254 benzo(a)anthracer senzo(a)pyrene senzo(b)fluorantha blbenz(a,h)anthraci bledrin ndeno(1,2,3-cd)py on sopropylbenzene aad lapthalene	A * AF * ABSd * EF * ED * CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.51E-07 1.77E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06	
Chemical ,4-DDD ,tuminum ,voclor-1254 ,benzo(a)anthracer ,benzo(a)pyrene ,benzo(a)pyrene ,benzo(a)pluoranth ,blenz(a,h)anthrac ,blenz(a,h)	A * AF * ABSd * EF * ED * CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.51E-07 1.77E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06	
NTAKE = (Sc * SA Chemical ,4-DDD Numinum Arcolor-1254 Jenzo(a)anthracer Jenzo(a)pyrene Jenzo(b)fluoranthe Jenzo(k)fluoranthe Jenzo(k)fluoranthe Jenzo(k)fluoranthe Jelzo(k)fluoranthe Jelzo(k)fluoranthe Jelzo(k)fluoranthe Jelzo(k)fluoranthe Jelzo(k)fluoranthe Jelzo(k)fluoranthe Jenzo(k)fluoranthe Jenzo(k)fluoranthe Jenzo(k)fluoranthe Jenzo(k)fluoranthe NHALATION PATI LC = Sc * (1/ ZAC = (Ac * El	A * AF * ABSd * EF * ED * CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.90E-07 3.20E-07 1.57E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09	
Chemical ,4-DDD sluminum voctor-1254 senzo(a)anthracer senzo(b)ilouranth senzo(b)il	A * AF * ABSd * EF * ED * CF) / (BW * / ne ene ene ene cene //rene (cumene) HWAY PEF + 1/VF) F * ED) / AT * for carcinogens, Sc	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.90E-07 3.20E-07 1.57E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09	
NTAKE = (Sc * SA Chemical ,4-DDD Juminum roclor-1254 lenzo(a)anthracer lenzo(a)pyrene lenzo(b)fluoranthe	A * AF * ABSd * EF * ED * CF) / (BW * ne ene ene ene ene cene (currene) HWAY PEF + 1/VF) F * ED) / AT * for carcinogens, Sc 2.70E-04	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.41E-07 1.51E-07 1.51E-07 1.32E-03 1.32E-03 4.91E-06 6.72E-06 2.22E-09	
Chemical ,4-DDD Juminum roclor-1254 enzo(a)anthracer enzo(a)pyrene enzo(b)fluoranthe iblenz(a,h)anthracel ieldrin ideno(1,2,3-cd)py on opropyibenzene read lapthalene NHALATION PATI c = Sc* (1/AC = (Ac*El	A * AF * ABSd * EF * ED * CF) / (BW * ne ene ene ene cene //rene (cumene) HWAY PEF + 1/VF) F * ED) / AT * for carcinogens, Sc 2.70E-04 5.95E+03	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to get	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.51E-07 1.77E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06	
Chemical 4-DDD Juminum roclor-1254 enzo(a)anthracer enzo(b)ijuoranthe enzo(b)ijuoranthe ibeldin deno(1,2,3-cd)py on opropylbenzene ead apthalene NHALATION PATI c = Sc * (1/ AC = (Ac * El Chemical J-DDD Juminum roclor-1254	A * AF * ABSd * EF * ED * CF) / (BW * ne ene ene ene ene cene (cumene) HWAY PEF + 1/VF) F * ED) / AT *for carcinogens, Sc 2.70E-04 5.95E+03 7.64E-01	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.82E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to get	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.48E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.90E-07 3.20E-07 1.57E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09	
Chemical 4-DDD Iuminum roclor-1254 enzo(a)anthracer enzo(a)pryene enzo(b)fluoranthe ibenz(a,h)anthracel ieldrin ideno(1,2,3-cd)py on opropylbenzene ead apthalene HALATION PATI c = Sc * (1/ AC = (Ac * El Chemical 4-DDD Iuminum roclor-1254 enzo(a)anthracer	A * AF * ABSd * EF * ED * CF) / (BW * The series of t	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to get	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.57E-09 1.57E-09 1.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09	
NTAKE = (Sc * SA Chemical ,4-DDD ,luminum ,roclor-1254 lenzo(a)anthracer lenzo(a)pyrene lenzo(a)pyrene lenzo(b)fluoranthe lenzo(b)fluoranthe iblenz(a,h)anthrac leidrin deno(1,2,3-cd)py on sopropylbenzene ead lapthalene NHALATION PATI c.= Sc * (1/ AC = (Ac * El Chemical ,4-DDD ,luminum roclor-1254 lenzo(a)anthracer	A * AF * ABSd * EF * ED * CF) / (BW * ne ene ene ene ene cene (cumene) HWAY PEF + 1/VF) F * ED) / AT *for carcinogens, Sc 2.70E-04 5.95E+03 7.64E-01	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.82E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to get	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.48E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.90E-07 3.20E-07 1.57E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09	
NTAKE = (Sc * SA Chemical ,4-DDD Juminum rocolor-1254 enzo(a)anthracer enzo(a)pyrene enzo(b)fluoranthe iblenzo(k)fluoranthe iblenzo(k)fluoranthe iblenzo(k)fluoranthe iblenzo(k)fluoranthe iblenzo(a)pyrene ead lapthalene NHALATION PATI AC = Sc * (1/AC = Sc * (1	A * AF * ABSd * EF * ED * CF) / (BW * and a * AF * ABSd * EF * ED * CF) / (BW * be ene ene ene ene ene ene ene ene ene e	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to get	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.57E-09 1.57E-09 1.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09	
Chemical .4-DDD .luminum .roclor-1254 .enzo(a)anthracer .enzo(a)anthracer .enzo(b)fluoranthe .enzo(k)fluoranthe .enzo(k)fluoranthe .enzo(k)fluoranthe .enzo(k)fluoranthe .enzo(k)fluoranthe .enzo(k)fluoranthe .enzo(k)fluoranthe .enzo(k)fluoranthe .enzo(b)fluoranthe .enzo(b)fluoranthe .enzo(b)fluoranthe .enzo(a)anthracer .enzo(a)anthracer .enzo(a)anthracer .enzo(a)anthracer .enzo(a)anthracer .enzo(a)gluoranthe	A * AF * ABSd * EF * ED * CF) / (BW * The same same same same same same same sam	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to get	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07 2.85E-07 2.70E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.41E-07 6.90E-07 1.51E-07 1.77F-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10	
NTAKE = (Sc * SA Chemical ,4-DDD Juminum ,voclor-1254 Jenzo(a)anthracer Jenzo(b)illouranthe AC = Sc * (J/AC = (Ac * El AC-DDD Juminum roclor-1254 Jenzo(a)anthracer Jenzo(a)pyrene Jenzo(a)pyrene Jenzo(a)pyrene	A * AF * ABSd * EF * ED * CF) / (BW * A * AF * ABSd * EF * ED * CF) / (BW * Bene ene ene ene ene ene ene ene ene ene	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to get Ac	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 Into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07 2.65E-07 2.70E-07 1.61E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.51E-07 1.77E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 7.43E-10 7.43E-10 7.45E-10	
Chemical 4-DDD Juminum roclor-1254 enzo(a)anthracer enzo(a)ljuoranthe enzo(b)ljuoranthe enzo(b)ljuoranthe iblenz(a,h)anthrace ieldrin deno(1,2,3-cd)py on oppropylbenzene ie apithaliene NHALATION PATI C = Sc * (1/ AC = (Ac * El Chemical 4-DDD Juminum roclor-1254 enzo(a)anthracer enzo(a)pyrene enzo(b)fluoranthe	A * AF * ABSd * EF * ED * CF) / (BW * A * AF * ABSd * EF * ED * CF) / (BW * Bene ene ene ene ene ene ene ene ene ene	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.82E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to gel Ac 2.70E-13 5.95E-06 7.64E-10 9.03E-10 1.09E-09 1.10E-09 6.58E-10 2.45E-10	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.48E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07 2.65E-07 2.70E-07 1.61E-07 5.99E-08	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.41E-07 1.57E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10	
NTAKE = (Sc * SA Chemical ,4-DDD ,luminum ,roclor-1254 lenzo(a)anthracer lenzo(a)pyrene lenzo(b)fluoranthe lenzo(b)fluorant	A * AF * ABSd * EF * ED * CF) / (BW * The sense s	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to gel Ac	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.49E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07 2.65E-07 2.70E-07 1.61E-07 5.99E-08 7.68E-10	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.41E-07 6.90E-07 1.57E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.28E-10 7.43E-10 6.18E-10 7.45E-10 1.68E-10 2.15E-12	
Chemical ,4-DDD Juminum roclor-1254 enzo(a)anthracer enzo(a)pyrene enzo(b)fluoranthe ibbenz(a,h)anthrace leidrin deno(1,2,3-cd)py on opropylbenzene ead apthalene HALATION PATI CC = Sc* (1/AC = GC) Luminum roclor-1254 enzo(a)anthracer enzo(a)pyrene enzo(a)pyrene enzo(a)pyrene enzo(a)pyrene enzo(a)pyrene enzo(b)fluoranthe ibenz(a,h)anthraci eidrin ibenz(a,h)anthraci eidrin ibenz(a,h)anthraci eidrin ibenz(a,h)anthraci eidrin ibenz(a,h)anthraci eidrin ibenz(a,h)anthraci	A * AF * ABSd * EF * ED * CF) / (BW * A * AF * ABSd * EF * ED * CF) / (BW * Bene ene ene ene ene ene ene ene ene ene	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to get Ac 2.70E-13 5.95E-06 7.64E-10 9.03E-10 1.09E-09 1.10E-09 1.10E-09 1.10E-09 1.10E-09 1.10E-09 1.31E-12 9.31E-10	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.48E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t Into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07 2.21E-07 2.70E-07 1.61E-07 5.99E-08 7.89E-10 2.28E-07	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 6.40E-07 6.40E-07 1.51E-07 1.77E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.45E-10 7.65E-10 1.68E-10 2.15E-12 6.38E-10	
NTAKE = (Sc * SA Chemical .4-DDD .luminum roclor-1254 renzo(a)anthracer renzo(a)pyrene renzo(b)fluoranthe renzo(k)fluoranthe renzo(k)fluoranthe renzo(k)fluoranthe renzo(k)fluoranthe renzo(k)fluoranthe renzo(k)fluoranthe renzo(k)fluoranthe renzo(k)fluoranthe renzo(h)fluoranthe renzo(a)anthracer renzo(b)fluoranthe renzo(b)fluoranthe renzo(b)fluoranthe renzo(b)fluoranthe renzo(b)fluoranthe renzo(b)fluoranthe renzo(b)fluoranthe renzo(b)fluoranthe renzo(c)fluoranthe	A * AF * ABSd * EF * ED * CF) / (BW * A * AF * ABSd * EF * ED * CF) / (BW * and a second s	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.82E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 Ac 2.70E-13 5.95E-06 7.64E-10 9.03E-10 1.09E-09 1.10E-09 6.58E-10 3.14E-12 9.31E-10 2.40E-05	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07 2.25E-07 1.61E-07 5.99E-08 7.68E-10 2.28E-07 5.86E-03	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.41E-07 6.90E-07 1.51E-07 1.77F-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.45E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10	
Chemical ,4-DDD Juminum roclor-1254 enzo(a)anthracer enzo(a)pyrene enzo(b)fluoranthe iblenz(a,h)anthrace leidrin deno(1,2,3-cd)py on opropyibenzene i ead lapthalene NHALATION PATI C= Sc* (1/4 AC = (Ac*El A-DDD Juminum roclor-1254 enzo(a)pyrene enzo(b)fluoranthe iblenz(a,d)anthracer enzo(a)pyrene enzo(b)fluoranthe iblenz(a,h)anthracel ieldrin ideno(1,2,3-cd)py on opropyibenzene i oproproyibenzene i	A * AF * ABSd * EF * ED * CF) / (BW * A * AF * ABSd * EF * ED * CF) / (BW * Bene ene ene ene ene ene ene ene ene ene	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.22E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 is necessary to get Ac 2.70E-13 5.95E-06 7.64E-10 9.03E-10 1.09E-09 1.10E-09 6.58E-10 2.45E-10 2.45E-10 2.15E-10 2.40E-05 1.58E-04	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.45E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t Into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07 2.65E-07 2.70E-07 1.61E-07 5.99E-08 7.68E-10 2.28E-07 5.89E-03 3.86E-02	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.90E-07 1.51E-07 1.77E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 7.43E-10 7.45E-10 7.45E-10 1.68E-10 1.68E-10 1.64E-05 1.09E-04	
chemical 4-DDD luminum noclor-1254 enzo(a)anthracer enzo(a)ljuoranthe enzo(k)fluoranthe ibenz(a,h)anthrac leidrin opropylbenzene ead apthalene IHALATION PATI c = Sc * (1/ AC = (Ac * Eil Chemical 4-DDD luminum roclor-1254 enzo(a)anthracer enzo(b)fluoranthe ibenz(a,h)anthracer enzo(b)fluoranthe ibenz(a,h)anthracer enzo(b)fluoranthe ibenz(a,h)anthracer leidrin ideno(1,2,3-cd)pyon	A * AF * ABSd * EF * ED * CF) / (BW * A * AF * ABSd * EF * ED * CF) / (BW * and a second s	ABSd 1.30E-01 1.00E-02 1.40E-01 1.30E-01	5.08E-02 8.20E+03 7.73E-01 6.43E-01 7.63E-01 8.82E-01 3.81E-01 1.80E-01 2.11E-03 6.58E-01 1.75E+04 5.85E+00 1.04E+02 2.65E-03 Ac 2.70E-13 5.95E-06 7.64E-10 9.03E-10 1.09E-09 1.10E-09 6.58E-10 3.14E-12 9.31E-10 2.40E-05	Intake for Carcinogens 1.52E-08 1.89E-04 2.50E-07 1.93E-07 2.29E-07 2.46E-07 1.14E-07 5.40E-08 6.33E-10 1.97E-07 4.03E-04 1.75E-06 2.40E-06 7.95E-10 t into proper units, ug/m3 EAC for Carcinogens 6.60E-11 1.45E-03 1.87E-07 2.21E-07 2.25E-07 1.61E-07 5.99E-08 7.68E-10 2.28E-07 5.86E-03	Intake for Noncarcinogens 4.26E-08 5.29E-04 6.99E-07 5.40E-07 6.41E-07 6.90E-07 1.51E-07 1.57E-09 5.52E-07 1.13E-03 4.91E-06 6.72E-06 2.22E-09 EAC for Noncarcinogens 1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.45E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10 1.68E-10	

APPENDIX C-2
INTAKE CALCULATIONS
NORTH OF MARLIN SOIL

TABLE C-9
EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs
SOIL NORTH OF MARLIN AVE.

Parameter	Average		95% UCL	Statistic Used
1,2-Dichloroethane	1.95E-02	<	1.27E-04	median
Aluminum	1.23E+04		1.33E+04	95% Student's-t
Aroclor-1254	1.81E-01	<	4.30E-03	median
Benzo(a)anthracene	1.09E-01	<	1.11E-02	median
Benzo(a)pyrene	9.37E-02		3.78E-01	97.5% KM (Chebyshev)
Benzo(b)fluoranthene	1.44E-01		2.52E-01	95% KM (Bootstrap)
Dibenz(a,h)anthracene	6.88E-02	<	1.08E-02	median
Indeno(1,2,3-cd)pyrene	1.15E-01		3.96E-01	97.5% KM (Chebyshev)
Iron	2.09E+04		3.69E+04	95% Chebyshev
Tetrachloroethene	1.26E-02	<	2.11E-04	median

TABLE C-10
EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs
SURFACE SOIL NORTH OF MARLIN AVE.

Parameter	Average		95% UCL	Statistic Used
1,2-Dichloroethane	0		0	NS
Aluminum	1.07E+04		1.22E+04	95% Student's-t
Aroclor-1254	1.22E-02	<	4.29E-03	median
Benzo(a)anthracene	1.18E+00	<	1.10E-02	median
Benzo(a)pyrene	1.19E-01	<	1.16E-02	median
Benzo(b)fluoranthene	1.69E-01		3.73E-01	95% KM (BCA)
Dibenz(a,h)anthracene	7.69E-02	<	1.10E-02	median
Indeno(1,2,3-cd)pyrene	1.55E-01		6.82E-01	97.5% KM (Chebyshev)
Iron	1.95E+04		4.11E+04	95% Chebyshev
Tetrachloroethene	. 0		0	NS

Notes

NS -- Not Sampled in surface soil.

TABLE C-11
CALCULATION OF OUTDOOR AIR CONCENTRATION FROM EXPOSED SOIL - VOLATILE EMISSIONS

	De =	H' *		1^2 + Dw * nw^3.33 + nw + na * H'	/n^2		Kd = Foc * Kd	ос	
							na = n - nw		
	VF =		* De * T)^0.5 * (* Pb * De) * CF	2/C				Source: EPA,	1996
_									
Parameter	Definition						Value	Reference	
Da			r (cm^2/sec)				see below	EPA, 1996	
Dw			ater (cm^2/sec)				see below	EPA, 1996	
De			cient (cm^2/sec)			see below	calculated	
VF	Volatilization						see below	calculated	
n	Total porosi	ty (dimensio	nless)				0.35	TNRCC, 1993	
nw	Water filled	soil porosity	(dimensionless)			0.15	EPA, 1996	
na	Air filled soil	porosity (dia	mensionless)				0.2	n-nw	
H'	Henry's law	constant (di	mensionless)				see below	TRRP	
Pb	Dry Bulk De	nsity (g/cm^	3)				1.5	EPA, 1996	
Foc	Fraction org	anic carbon	(g/g)				0.006	EPA, 1996	
Koc	Organic car	bon-water pa	artition coefficie	nt (cm^3/g)			see below	EPA, 1996	
Kd	Soil-water p	artition coeff	ficient (cm^3/g)				see below	calculated	
CF	Conversion	factor (cm^2	2/m^2)				1.00E+04	standard	
Q/C	Inverse of the	e mean con	ic. at center of s	ource (g/m^2-s per	kg/m^3)		see below	EPA, 1996	
Т	Exposure in	terval (sec)		,			see below	EPA, 1996	
Chemical	Da	Dw	De	H'	Koc	Kd	Q/C	T	VF
1,2-Dichloroethane	7.10E-02	7.90E-06	7.86E-05	1.58E-02		0,2622	68.81	9.50E+08	1.41E+04
Tetrachloroethene	7.10E-02 7.20E-02	8.20E-06	6.84E-03	7.65E+00		0.93	68.81	9.50E+08	1.51E+03

TABLE C-12 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- YOUTH TRESPASSER

INTAKE = (Sc * IR	* EF * ED * CF) / (BW * AT)				
•				V-l	Deference
Parameter ntake	Definition	dow		Value calculated	Reference
icake Sc	Intake of chemical (mg/kg- Soil concentration (mg/kg)			see data page	
AC	Air concentration (mg/m^3			see data page see below	
AC	Effective air concentration			calculated	
PEF	Particulate Emission Factor			1,00E+09	EPA, 2004a
/F	Volatilization Factor (m^3/			calculated	EPA, 1996
₹	Ingestion rate of soil (mg/c	iay)		100 3500	TNRCC, 1998 TNRCC, 1998
SA.	Skin surface area (cm2)	1 (/ O)			
F	Soil to skin adherence fac			0.1	TNRCC, 1998
ABSd	Dermal absorption fraction			see chemprop page	
F	Exposure frequency (day/	yr)		25	professional judgment
D	Exposure duration (yr)			6	professional judgment
F	Conversion factor (kg/mg)	l		1.00E-06	EPA, 1989
BW -T-	Body weight (kg)			40 25550	EPA, 1991a
Tc	Averaging time for carcino				EPA, 1989
Tnc	Averaging time for noncar	cinogens (days)		9125	EPA, 1989
			Sc	Intake for	Intake for
Chemical				Carcinogens	Noncarcinogens
,2-Dichloroethane			1.95E-02	2.86E-10	8.01E-10
Juminum			1.23E+04	1.80E-04	5.04E-04
roclor-1254			1.81E-01	2.66E-09	7.44E-09
Benzo(a)anthracen	e		1.09E-01	1.60E-09	4.48E-09
Benzo(a)pyrene			9.37E-02	1,38E-09	3,85E-09
Benzo(b)fluoranthe	ne		1.44E-01	2.11E-09	5.92E-09
ibenz(a,h)anthrac			6.88E-02	1.01E-09	2.83E-09
ndeno(1,2,3-cd)pyr			1.15E-01	1.69E-09	4.73E-09
			2.09E+04	3.07E-04	8,58E-04
UII					
			1.26E-02	1.85E-10	5.18E-10
Iron Tetrachloroethene DERMAL CONTAC	т		1.26E-02	1.85E-10	5.18E-10
Tetrachloroethene	*AF*ABSd*EF*ED*CF)	/ (BW * AT)	1.26E-02	1.85E-10	5.18E-10
Tetrachloroethene		/ (BW * AT)	1.26E-02	1.85E-10	5.18E-10
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA					
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA				Intake for	Intake for
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane		ABSd	Sc	Intake for Carcinogens	Intake for Noncarcinogens
etrachloroethene ERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane		ABSd 1.30E-01	Sc 1.95E-02	Intake for Carcinogens 1.30E-10	Intake for Noncarcinogens 3.65E-10
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Juminum roclor-1254	* AF * ABSd * EF * ED * CF)	ABSd 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09
etrachloroethene ERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane luminum roclor-1254 enzo(a)anthracen	* AF * ABSd * EF * ED * CF)	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09
etrachloroethene ERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane luminum roclor-1254 enzo(a)anthracene enzo(a)pyrene	*AF * ABSd * EF * ED * CF)	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane luminum luminum luminum lucolor-1254 lenzo(a)anthraceni lenzo(b)fluoranthei lenzo(b)fluoranthei	*AF * ABSd * EF * ED * CF) e e	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane aluminum vroclor-1254 lenzo(a)anthracen lenzo(a)pyrene tenzo(b)fluoranthei libenz(a,h)anthracy	*AF *ABSd *EF *ED *CF) e ne enne	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09
etrachloroethene ERMAL CONTAC ITAKE = (Sc * SA Chemical ,2-Dichloroethane luminum roclor-1254 enzo(a)anthracenenzo(a)pyrene enzo(a)pyrene enzo(b)fluoranthen ibenz(a,h)anthracendeno(1,2,3-cd)pyr	*AF *ABSd *EF *ED *CF) e ne enne	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10	Intake for Noncarcinogens 3,65E-10 1,76E-05 3,38E-09 2,04E-09 1,75E-09 2,69E-09 1,29E-09 2,15E-09
etrachloroethene ERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane luminum rocolor-1254 eenzo(a)anthracenelenzo(b)fluoranthei iblenz(a,h)anthracen iblenz(a,h)anthracen on (1,2,3-cd)pyr on	*AF *ABSd *EF *ED *CF) e ne enne	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthen Benzo(b)fluoranthen Dibenz(a,h)anthracen deno(1,2,3-cd)pyr on Tetrachloroethene	*AF *ABSd *EF *ED *CF) e ne ene ene	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 2.15E-09 3.00E-05
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracendenzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthet Dibenz(a,h)anthracendeno(1,2,3-cd)pyr fron etrachloroethene	* AF * ABSd * EF * ED * CF) e ne ene ene	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 2.15E-09 3.00E-05
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Biblenz(a,h)anthracen deno(1,2,3-cd)pyr on Tetrachloroethene NHALATION PATH Ac = Sc * (1/fi	*AF *ABSd *EF *ED *CF) e ne ene ene HWAY	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 2.15E-09 3.00E-05
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Dibenz(a,h)anthracen deno(1,2,3-cd)pyr on Tetrachloroethene NHALATION PATH	*AF *ABSd *EF *ED *CF) e ne ene ene HWAY	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1,95E-02 1,23E+04 1,81E-01 1,09E-01 9,37E-02 1,44E-01 6,88E-02 1,15E-01 2,09E+04 1,26E-02	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 2.15E-09 3.00E-05 2.36E-10
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane sluminum voclor-1254 Benzo(a)anthracen Benzo(b)fluoranthen Benzo(b)fluoranthen bichez(a,h)anthracen deno(1,2,3-cd)pyron Tetrachloroethene NHALATION PATH AC = Sc * (1/f EAC = (Ac * EF	*AF *ABSd *EF *ED *CF) e ne ene ene HWAY	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 2.15E-09 3.00E-05
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane duminum vocolor-1254 denzo(a)anthracen denzo(a)pyrene tenzo(b)fluoranthen bibenz(a,h)anthracen deno(1,2,3-cd)pyr on etrachloroethene NHALATION PATH cc = Sc * (1/f cAC = (Ac * EF	* AF * ABSd * EF * ED * CF) e ne ene ene +WAY PEF+1/VF) * * ED) / AT	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 3.00E-05 2.36E-10
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane aluminum voclor-1254 lenzo(a)anthracen- lenzo(a)pyrene elenzo(b)fluoranthei bibenz(a,h)anthracen- deno(1,2,3-cd)pyron retrachloroethene NHALATION PATH- AC = Sc * (1/f AC = (Ac * EF Chemical ,2-Dichloroethane	* AF * ABSd * EF * ED * CF) e me enne enne enne * AWAY PEF+1/VF) * ED) / AT * for card	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11 Into proper units, ug/m3 EAC for Carcinogens	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 2.15E-09 3.00E-05 2.36E-10
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane aluminum rocolor-1254 tenzo(a)anthracene tenzo(a)pyrene tenzo(b)inoranthei Dibenz(a,h)anthracen tenzo(b)fuloranthei Dibenz(a,h)anthracen tenzo(b)fuloranthei Dibenz(a,h)anthracen tenzo(b)fuloranthei Dibenz(a,h)anthracen tenzo(b)fuloranthei Dibenz(a,h)anthracen tenzo(b)fuloranthei Dibenz(a,h)anthracen tenzo(b)fuloranthei Chemical ,2-Dichloroethane luminum	* AF * ABSd * EF * ED * CF) e ne ene ene HWAY PEF+1/VF) * * ED) / AT 1. 1.	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11 Linto proper units, ug/m3 EAC for Carcinogens 8.10E-06 6.27E-05	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 2.15E-09 3.00E-05 2.36E-10 EAC for Noncarcinogens 2.27E-08 1.75E-07
etrachloroethene ERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane luminum roclor-1254 renzo(a)anthracenienzo(a)pyrene renzo(b)flooranthei renzo(b)floorant	* AF * ABSd * EF * ED * CF) e ne ene ene erre #WAY PEF+1/VF) * * ED) / AT * for care 1. 1. 1.	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11 Into proper units, ug/m3 EAC for Carcinogens 8.10E-06 6.27E-05 7.16E-11	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 2.15E-09 3.00E-05 2.36E-10 EAC for Noncarcinogens 2.27E-08 1.75E-07 2.01E-13
etrachloroethene ERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Iluminum ,2-Dichloroethane Iluminum enzo(a)pyrene enzo(b)fluoranther ilibenz(a,h)anthracen ideno(1,2,3-cd)pyr on etrachloroethene NHALATION PATH Ca = Sc * (1/f AC = (Ac * EF Chemical ,2-Dichloroethane Iluminum ,rocolor-1254 enzo(a)anthracen	* AF * ABSd * EF * ED * CF) e me ene ene HWAY PEF+1/VF) * ED) / AT 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11 t into proper units, ug/m3 EAC for Carcinogens 8.10E-06 6.27E-05 7.16E-11 6.93E-09	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 3.00E-05 2.36E-10 EAC for Noncarcinogens 2.27E-08 1.75E-07 2.01E-13 1.94E-11
etrachloroethene ERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Iluminum roclor-1254 tenzo(a)anthracentenzo(b)fluoranthen ilbenz(a,h)anthracentenzo(b)fluoranthen ilbenz(a,h)anthracentenzo(b)fluoranthen NHALATION PATH AC = Sc * (1/f AC = (Ac * EF Chemical ,2-Dichloroethane Iluminum roclor-1254 tenzo(a)anthracentenzo(a)pyrene	* AF * ABSd * EF * ED * CF) e ne ene ene HWAY PEF+1/VF) * ED) / AT 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 1.07E-05 8.41E-11 t into proper units, ug/m3 EAC for Carcinogens 8.10E-06 6.27E-05 7.16E-11 6.93E-09 6.99E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 3.00E-05 2.36E-10 EAC for Noncarcinogens 2.27E-08 1.75E-07 2.01E-13 1.94E-11 1.96E-12
etrachloroethene ERMAL CONTAC ITAKE = (Sc * SA Chemical 2-Dichloroethane luminum roclor-1254 enzo(a)anthracenenzo(a)pyrene enzo(b)fluoranthei ibenz(a,h)anthracenenzo(b)fluoranthei roclor-1254 enzo(a)anthracenenzo(b)fluoranthei ibenz(a,h)anthracenenzo(b)fluoranthei ibenz(a,h)anthracenenzo(b)fluoranthei c = Sc * (1/f AC = (Ac * EF Chemical ,2-Dichloroethane luminum roclor-1254 enzo(a)anthracenenzo(a)pyrene enzo(b)fluoranthei	* AF * ABSd * EF * ED * CF) e ne ene ene erne HWAY PEF+1/VF) * * ED) / AT * for care 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10 1.69E-10	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11 Into proper units, ug/m3 EAC for Carcinogens 8.10E-06 6.27E-05 7.16E-11 6.93E-09 6.99E-10 9.92E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 2.15E-09 3.00E-05 2.36E-10 EAC for Noncarcinogens 2.27E-08 1.75E-07 2.01E-13 1.94E-11 1.96E-12 2.78E-12
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane aluminum voclor-1254 lenzo(a)anthracen- lenzo(a)pyrene elorzo(b)fluoranthen lolbenz(a,h)anthrac- ideno(1,2,3-cd)pyron etrachloroethene NHALATION PATH- ide = Sc * (1/fi idea = Sc * (1/f	* AF * ABSd * EF * ED * CF) e me enne enne enne *WAY PEF+1/VF) * ED) / AT 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ABSd 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10 1.69E-10 7.69E-11	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11 t into proper units, ug/m3 EAC for Carcinogens 8.10E-06 6.27E-05 7.16E-11 6.93E-09 6.99E-10 9.92E-10 4.51E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 3.00E-05 2.36E-10 EAC for Noncarcinogens 2.27E-08 1.75E-07 2.01E-13 1.94E-11 1.96E-12 2.78E-12
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthei Dibenz(a,h)anthracene Chemical NHALATION PATH Ac = Sc * (1/f CAC = (Ac * EF Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthei Dibenz(a,h)anthracene Denzo(a)anthracene Denzo(a)anthracene Denzo(a)anthracene Denzo(a)anthracene Denzo(a)nthracene	* AF * ABSd * EF * ED * CF) e ne ene ene ene HWAY PEF+1/VF) * * ED) / AT * for card 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10 1.69E-10 7.69E-11	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11 It into proper units, ug/m3 EAC for Carcinogens 8.10E-06 6.27E-05 7.16E-11 6.93E-09 6.99E-10 9.92E-10 4.51E-10 9.10E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 3.00E-05 2.36E-10 EAC for Noncarcinogens 2.27E-08 1.75E-07 2.01E-13 1.94E-11 1.96E-12 2.78E-12 1.26E-12
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pryene Benzo(a)pryene Benzo(a)pryene Chemical Che	* AF * ABSd * EF * ED * CF) e ne ene ene ene HWAY PEF+1/VF) * ED) / AT * for card 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ABSd 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10 7.69E-11 7.59E-10 1.95E-05	Intake for Carcinogens 1.30E-10 6.30E-06 1.21E-09 7.28E-10 6.26E-10 9.62E-10 4.59E-10 7.68E-10 1.07E-05 8.41E-11 t into proper units, ug/m3 EAC for Carcinogens 8.10E-06 6.27E-05 7.16E-11 6.93E-09 6.99E-10 9.92E-10 4.51E-10	Intake for Noncarcinogens 3.65E-10 1.76E-05 3.38E-09 2.04E-09 1.75E-09 2.69E-09 1.29E-09 3.00E-05 2.36E-10 EAC for Noncarcinogens 2.27E-08 1.75E-07 2.01E-13 1.94E-11 1.96E-12 2.78E-12

TABLE C-13 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- YOUTH TRESPASSER (age 6 to 18)

11111111111111111111111111111111111111	* EF * ED * CF) / (BW * AT)				
Parameter	Definition			Value	Reference
ntake	Intake of chemical (mg/kg-day)			calculated	
Sc	Soil concentration (mg/kg)			see data page	
/C	Air concentration (mg/m^3)	.0)		see below	
AC	Effective air concentration (mg/m^	(3)		calculated	EDA 4000
/F	Volatilization Factor (m^3/kg)	1		calculated	EPA, 1996
PEF	Particulate Emission Factor (m^3/	Kg)		1.00E+09	EPA, 2004a
R	Ingestion rate of soil (mg/day)			100	TNRCC, 1998
SA	Skin surface area (cm2)	am 2\		3500	TNRCC, 1998
AF ABSd	Soil to skin adherence factor (mg/c			0.1	TNRCC, 1998
1654 EF	Dermal absorption fraction (unitles Exposure frequency (day/yr)	ss)		see chemprop page 50	TNRCC, 1998
ED	Exposure frequency (day/yr) Exposure duration (yr)			12	TNRCC, 1998
DF	Conversion factor (kg/mg)			1.00E-06	EPA, 1989
SW .	Body weight (kg)			40	EPA, 1991a
ATC	Averaging time for carcinogens (d	ave)		25550	EPA, 1989
ATnc	Averaging time for carcinogens (di Averaging time for noncarcinogens			9125	EPA, 1989
11110	Averaging unite for noncarcinogen	- (uays)		3123	El A, 1005
			Sc	Intake for	Intake for
Chemical				Carcinogens	Noncarcinogens
,2-Dichloroethane			1.27E-04	7.46E-12	2.09E-11
\luminum			1.33E+04	7.83E-04	2.19E-03
Aroclor-1254			4.30E-03	2,52E-10	7.07E-10
Benzo(a)anthracen	e		1.11E-02	6.52E-10	1.82E-09
Benzo(a)pyrene	· -		3.78E-01	2.22E-08	6.21E-08
Benzo(b)fluoranthe	ne		2,52E-01	1.48E-08	4.14E-08
Dibenz(a,h)anthrac			1.08E-02	6.34E-10	1.78E-09
ndeno(1,2,3-cd)py			3.96E-01	2,32E-08	6.51E-08
ron			3,69E+04		
			3,090704	2.17E-03	6.06E-03
Tetrachloroethene	CT .*AF *ABSd *EF *ED *CF) / (BW *	AT)	2.11E-04	2.17E-03 1.24E-11	6.06E-03 3.47E-11
Tetrachloroethene		AT) ABSd			
Tetrachloroethene			2.11E-04	1.24E-11	3.47E-11
Fetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA	* AF * ABSd * EF * ED * CF) / (BW *	ABSd	2.11E-04 Sc	1.24E-11 Intake for Carcinogens	3.47E-11 Intake for Noncarcinogens
Chemical	* AF * ABSd * EF * ED * CF) / (BW *	ABSd 1.30E-01	2.11E-04 Sc 1.27E-04	Intake for Carcinogens 3.39E-12	3.47E-11 Intake for Noncarcinogens 9.50E-12
Fetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum	* AF * ABSd * EF * ED * CF) / (BW *	ABSd 1.30E-01 1.00E-02	2.11E-04 Sc 1.27E-04 1.33E+04	Intake for Carcinogens 3.39E-12 2.74E-05	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical J.2-Dichloroethane Aluminum Aroclor-1254	* AF * ABSd * EF * ED * CF) / (BW *	ABSd 1.30E-01 1.00E-02 1.30E-01	Sc Sc 1.27E-04 1.33E+04 4.30E-03	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.88E-05 3.22E-10
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane kluminum kroclor-1254 benzo(a)anthracen	* AF * ABSd * EF * ED * CF) / (BW *	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01	Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Muminum vroclor-1254 Benzo(a)anthracen Benzo(a)pyrene	*AF *ABSd *EF *ED *CF)/(BW *	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08
Chemical ,2-Dichloroethane Auroior-1254 Benzo(a)anthracen Benzo(b)fluoranthe	* AF * ABSd * EF * ED * CF) / (BW *	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01	1.24E-11 Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)fluoranthe Dibenz(a,h)anthrac	* AF * ABSd * EF * ED * CF) / (BW * e ne ene	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Murninum vrocior-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(a)phanthracon deno(1,2,3-cd)py	* AF * ABSd * EF * ED * CF) / (BW * e ne ene	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01	1.24E-11 Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane kluminum kroclor-1254 Senzo(a)anthracen Senzo(a)pyrene Senzo(b)fluoranthe blbenz(a,h)anthrac adeno(1,2,3-cd)py ron	* AF * ABSd * EF * ED * CF) / (BW * e ne ene	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Dibenz(a,h)anthrac ndeno(1,2,3-cd)py ron Tetrachloroethene	*AF *ABSd * EF *ED *CF) / (BW *	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.96E-01	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04
Tetrachloroethene DERMAL CONTAC INTAKE = (Sc * SA Chemical 1,2-Dichloroethane Alminium Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac indeno(1,2,3-cd)py iron Tetrachloroethene	*AF *ABSd * EF *ED *CF) / (BW *	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.96E-01	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Dibenz(a,h)anthrac ndeno(1,2,3-cd)py ron Tetrachloroethene NHALATION PATI	e ne ene ene ene ene ene ene ene ene	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04
Tetrachloroethene DERMAL CONTAC INTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)py ron Tetrachloroethene NHALATION PATI Ac = Sc * (1/	e ne ene rene HWAY PEF+1/VF) *for carcinogens	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 1.33E+04 1.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04 1.58E-11
Chemical "2-Dichloroethane Aurninum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthrac ndeno(1,2,3-cd)py ron Fetrachloroethene NHALATION PATI AC = Sc * (1/2) EAC = (Ac * Eli	e ne ene ene ene ene ene ene ene ene en	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04
Chemical J.2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(a)huranthe Bibenz(a,h)anthrac ndeno(1,2,3-cd)py ron Fetrachloroethene NHALATION PATI Ac = Sc * (1/2 CAC = (Ac * El	e ne ene ene ene ene ene ene ene ene en	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12 It into proper units, ug/m3 EAC for Carcinogens	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04 1.58E-11
Chemical J.2-Dichloroethene Chemical J.2-Dichloroethane Aurninum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)py ron Cetrachloroethene NHALATION PATI AC = Sc * (1/ EAC = (Ac * Ei Chemical	e ne ene rene HWAY PEF+1/VF) * *For carcinogens Sc 1.27E-04	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12 t into proper units, ug/m3 EAC for Carcinogens 2.11E-07	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04 1.58E-11 EAC for Noncarcinogens 5.91E-10
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac ancolority, 2,3-cd)py ron Tetrachloroethene NHALATION PATI Ac = Sc * (1/ EAC = (Ac * EI Chemical ,2-Dichloroethane Aluminum	e ne ene ene ene + ED * CF) / (BW* HWAY PEF+1/VF) * * * * * * * * * * * * * * * * * * *	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05	1.24E-11 Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12 t into proper units, ug/m3 EAC for Carcinogens 2.11E-07 2.86E-04	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 2.96E-08 2.12E-04 1.58E-11 EAC for Noncarcinogens 5.91E-10 8.01E-07
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum ,2-Dichloroethane Numinum Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthracen deno(1,2,3-cd)py ron Tetrachloroethene NHALATION PATI AC = Sc * (1/ EAC = (Ac * El Chemical ,2-Dichloroethane Numinum Arcolor-1254	e ne ene ene ene ene tene HWAY PEF+1/VF) * *For carcinogens Sc 1.27E-04 1.22E+04 4.29E-03	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 1.33E+04 1.35E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 is necessary to ge Ac 8.99E-09 1.22E-05 4.29E-12	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12 It into proper units, ug/m3 EAC for Carcinogens 2.11E-07 2.86E-04 1.01E-10	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04 1.58E-11
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane kluminum vacolor-1254 benzo(a)anthracen senzo(a)pyrene bibenz(a,h)anthracen deno(1,2,3-cd)py ron Tetrachloroethene NHALATION PATI Ac = Sc * (1/ EAC = (Ac * Ei Chemical ,2-Dichloroethane kluminum vacolor-1254 benzo(a)anthracen charachloroethane kluminum vacolor-1254 benzo(a)anthracen	e ne ene rene HWAY PEF+1/VF) - *ED) / AT *for carcinogens Sc 1.27E-04 1.22E+04 4.29E-03 e 1.10E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12 t into proper units, ug/m3 EAC for Carcinogens 2.11E-07 2.86E-04 1.01E-10 2.58E-10	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 2.08E-10 2.96E-08 2.12E-04 1.58E-11 EAC for Noncarcinogens 5.91E-10 8.01E-07 2.82E-13 7.23E-13
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe Chemical ,2-Dichloroethene Chemical ,2-Dichloroethane Ac = Sc * (1/EAC = (Ac * EI Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene	e ne ene ene ene ene ene ene ene ene en	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11	1.24E-11 Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12 It into proper units, ug/m3 EAC for Carcinogens 2.11E-07 2.86E-04 1.01E-10 2.58E-10 2.72E-10	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04 1.58E-11 EAC for Noncarcinogens 5.91E-10 8.01E-07 2.82E-13 7.23E-13 7.63E-13
etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum ,2-Dichloroethane Numinum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Dibenz(a,h)anthracen deno(1,2,3-cd)py retrachloroethene NHALATION PATI AC = Sc * (1/ EAC = (Ac * El Chemical ,2-Dichloroethane Auminum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(a)pyrene Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(b)fluoranthe	e ne ene ene erene HWAY PEF+1/VF) = *ED) / AT *for carcinogens	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12 It into proper units, ug/m3 EAC for Carcinogens 2.11E-07 2.86E-04 1.01E-10 2.58E-10 2.72E-10 8.76E-09	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04 1.58E-11 EAC for Noncarcinogens 5.91E-10 8.01E-07 2.82E-13 7.23E-13 7.63E-13 2.45E-11
Chemical J.2-Dichloroethene Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)prene Bolbenz(a,h)anthrac Indeno(1,2,3-cd)py Inden	e ne ene rene + WAY PEF+1/VF) ** ** ** ** ** ** ** ** ** ** ** ** **	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10 1.10E-11	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12 t into proper units, ug/m3 EAC for Carcinogens 2.11E-07 2.86E-04 1.01E-10 2.58E-10 2.72E-10 8.76E-09 2.58E-10	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04 1.58E-11 EAC for Noncarcinogens 5.91E-10 8.01E-07 2.82E-13 7.63E-13 2.45E-11 7.23E-13
Chemical J.2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)prene Bolbenz(a,h)anthrac Indeno(1,2,3-cd)py Inden	e ne ene rene + WAY PEF+1/VF) ** ** ** ** ** ** ** ** ** ** ** ** **	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 VF 1.41E+04	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10	Intake for Carcinogens 3.39E-12 2.74E-05 1.15E-10 2.97E-10 1.01E-08 6.73E-09 2.88E-10 1.06E-08 7.58E-05 5.64E-12 It into proper units, ug/m3 EAC for Carcinogens 2.11E-07 2.86E-04 1.01E-10 2.58E-10 2.72E-10 8.76E-09	3.47E-11 Intake for Noncarcinogens 9.50E-12 7.68E-05 3.22E-10 8.30E-10 2.83E-08 1.88E-08 8.08E-10 2.96E-08 2.12E-04 1.58E-11 EAC for Noncarcinogens 5.91E-10 8.01E-07 2.82E-13 7.23E-13 7.63E-13 2.45E-11

TABLE D-10 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- YOUTH TRESPASSER (age 6 to 18)

Cancer Risk =	Intake*CSF	HQ =	Intake / RfD					
	or EAC * IUR		<i>or</i> EAC / RfC					
Parameter	Definition					Default		
Intake	Intake of chemical	(mg/kg-dav)			see intake		
EAC	Effective Air Conce					see intake		
CSF	Cancer slope factor					see chemprop	o	
IUR	Inhalation unit risk		3) .			see chempro		
RfD	Reference dose (n					see chemprop		
RfC	Inhalation reference		ition (mg/m^3)			see chemprop		
INGESTION								
Chemical	Slop Facto			Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotient	·
1,2-Dichloroethane	9.10E-	02 2.00E-	02	7.46E-12	2.09E-11	6.78E-13	1.04E-09	
Aluminum		1.00E-		7.83E-04	2.19E-03		2.19E-02	
Aroclor-1254	2 00=	·00 2.00E-		2.52E-10	7.07E-10	5.05E-10	3.53E-05	
Benzo(a)anthracer				6.52E-10	1.82E-09	4.76E-10	0.002-00	
Benzo(a)pyrene	7.30E-			2.22E-08	6.21E-08	1.62E-07		
Benzo(b)fluoranthe				1.48E-08	4.14E-08	1.08E-08		
Dibenz(a,h)anthrad				6.34E-10	1.78E-09	4.63E-09		
Indeno(1,2,3-cd)py	rene 7.30E-			2.32E-08	6.51E-08	1.70E-08		
lron Totrachloroothono	- F 00F	7.00E-		2.17E-03	6.06E-03	6 44F 49	8.66E-03	
Tetrachloroethene	5.20E-	02 1.00E-	UZ	1.24E-11	3.47E-11	6.44E-13	3.47E-09	
			PAT	HWAY TOTA	\L =	1.95E-07	3.06E-02	
DERMAL CONTAC	T						-	
						_		
Chamiaal	Slop			Intake	Intake	Cancer	Hazard	
Chemical	Facto)[Carc	Noncarc	Risk	Quotient	
4.0 Diskings of		00 000=	00	0.005.40	0.505.40	0.005.40	4 7FF 40	
1,2-Dichloroethane	9.10E-	02 2.00E-		3.39E-12	9.50E-12	3.09E-13	4.75E-10	
Aluminum		1.00E-		2.74E-05	7.68E-05		7.68E-04	
Aroclor-1254		-00 2.00E-	05	1.15E-10	3.22E-10	2.30E-10	1.61E-05	
Benzo(a)anthracer				2.97E-10	8.30E-10	2.16E-10		
Benzo(a)pyrene	7.30E+	-00		1.01E-08	2.83E-08	7.37E-08		
Benzo(b)fluoranthe	ne 7.30E-	01		6.73E-09	1.88E-08	4.91E-09		
Dibenz(a,h)anthrad		00		2.88E-10	8.08E-10	2.11E-09		
Indeno(1,2,3-cd)py				1.06E-08	2.96E-08	7.72E-09		
Iron		7.00E-	01	7.58E-05	2.12E-04		3.03E-04	
Tetrachloroethene	5.20E-			5.64E-12	1.58E-11	2.93E-13	1.58E-09	
			PAT	HWAY TOTA	\L =	8.89E-08	1.09E-03	
INHALATION								
	IUR	RfC		EAC	EAC	Cancer	Hazard	
Chemical				Carc (ug/m3)	Noncarc (mg/m3)	Risk	Quotient	,
1,2-Dichloroethane	2.60E-	05 2,40E+	-00	2.11E-07	5.91E-10	5.49E-12	2.46E-10	
Aluminum		5.00E-		2.86E-04	8.01E-07		1.60E-04	
Aroclor-1254	5.70E-			1.01E-10	2.82E-13	5.74E-14		
Benzo(a)anthracer				2.58E-10	7.23E-13	2.27E-14		
Benzo(a)pyrene	8.80E-			2.72E-10	7.63E-13	2.40E-13		
Benzo(b)fluoranthe				8.76E-09	2.45E-11	7.71E-13		
					7.23E-13	2.27E-13		
Dihanz/a h\anth				2.58E-10				
	rene 8.80E-			1.60E-08	4.48Ė-11	1.41E-12		
Indeno(1,2,3-cd)py				9.66E-04	2.70E-06	1 005 10		
Indeno(1,2,3-cd)py Iron			0.4					
Dibenz(a,h)anthrad Indeno(1,2,3-cd)py Iron Tetrachloroethene	5,80E-	07 2.70E-	01	3.27E-06	9.16E-09	1.90E-12	3.39E-08	
Indeno(1,2,3-cd)py Iron	 5,80E-	07 2.70E-		3.27E-06 HWAY TOTA		1.90E-12 1.01E-11	3.39E-08 1.60E-04	·

TABLE C-14 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- CONSTRUCTION WORKER

SOIL INGESTION						
INTAKE = (Sc * IR *	* EF * ED * CF) / (BW * A	AT)				
	Definition	,			Value	Deference
Parameter ntake	Intake of chemical (m	alka davi)			calculated	Reference
Sc .	Soil concentration (mg				see data page	
∤c	Air concentration (mg				see below	
EAC	Effective air concentra		i)		calculated	
/F	Volatilization Factor (r	m^3/kg)			calculated	EPA, 1996
PEF	Particulate Emission I	Factor (m^3/kg	g)		1.00E+09	EPA, 2004a
R	Ingestion rate of soil (mg/day)			165	professional judgment
SA	Skin surface area (cm				3300	EPA, 2004a
AF	Soil to skin adherence		m2)		0.14	EPA, 2004b
 NBSd	Dermal absorption fra				see chemprop page	
F	Exposure frequency ("		90	
						professional judgment
ED.	Exposure duration (yr					professional judgment
CF	Conversion factor (kg.	/mg)			1.00E-06	EPA, 1989
3W	Body weight (kg)				70	EPA, 1989
\Tc	Averaging time for car	rcinogens (da	ys)		25550	EPA, 1989
Tnc	Averaging time for no	ncarcinogens	(days)		365	EPA, 1989
Chemical				Sc	Intake for Carcinogens	Intake for Noncarcinogens
1,2-Dichloroethane				1.95E-02	1.62E-10	1.13E-08
Aluminum				1.23E+04	1.02E-04	7.13E-03
Aroclor-1254				1.81E-01	1.50E-09	1.05E-07
Benzo(a)anthracene	9		•	1.09E-01	9,05E-10	6.34E-08
Benzo(a)pyrene				9.37E-02	7.78E-10	5.45E-08
Benzo(b)fluoranthe				1.44E-01	1.20E-09	8.37E-08
Dibenz(a,h)anthrace				6,88E-02	5.71E-10	4.00E-08
ndeno(1,2,3-cd)pyr	ene			1.15E-01	9.55E-10	6.68E-08
ron				2.09E+04	1.73E-04	1.21E-02
Tetrachloroethene						
	*AF*ABSd*EF*ED*	CF) / (BW * #	AT)	1.26E-02	1.05E-10	7.32E-09
		CF) / (BW * A				
NTAKE = (Sc * SA		CF) / (BW * #	AT) ABSd	Sc Sc	Intake for Carcinogens	Intake for Noncarcinogens
NTAKE = (Sc * SA		CF) / (BW * A	ABSd	Sc	Intake for Carcinogens	Intake for Noncarcinogens
NTAKE = (Sc * SA Chemical J.2-Dichloroethane		CF) / (BW * A	ABSd 1.30E-01	Sc 1.95E-02	Intake for Carcinogens 5.89E-11	Intake for Noncarcinogens 4.13E-09
NTAKE = (Sc * SA Chemical ,2-Dichloroethane		CF) / (BW * A	ABSd 1.30E-01 1.00E-02	Sc 1.95E-02 1.23E+04	Intake for Carcinogens 5.89E-11 2.85E-06	Intake for Noncarcinogens 4.13E-09 2.00E-04
NTAKE = (Sc * SA Chemical ,2-Dichloroethane duminum Arcolor-1254	* AF * ABSd * EF * ED *	CF) / (BW * A	ABSd 1.30E-01 1.00E-02 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08
Chemical 2-Dichloroethane duminum vacolor-1254 lenzo(a)anthracen	* AF * ABSd * EF * ED *	CF) / (BW*#	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08
NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum rocolor-1254 Benzo(a)anthracene Benzo(a)pyrene	* AF * ABSd * EF * ED *	CF) / (BW * A	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08
NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum rocolor-1254 Benzo(a)anthracene Benzo(a)pyrene	* AF * ABSd * EF * ED *	CF) / (BW * A	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08
Chemical ,2-Dichloroethane luminum voclor-1254 senzo(a)anthracene senzo(b)fluoranther	* AF * ABSd * EF * ED *	CF) / (BW * A	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08
Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranther bibenz(a,h)anthrace	* AF * ABSd * EF * ED *	CF) / (BW * #	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08
Chemical ,2-Dichloroethane duminum vocolor-1254 denzo(a)anthracen denzo(b)fluoranther blenzo(b)fluoranther chdeno(1,2,3-cd)pyr	* AF * ABSd * EF * ED *	CF) / (BW * A	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08
Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther bibenz(a,h)anthracendeno(1,2,3-cd)pyrron	* AF * ABSd * EF * ED *	CF) / (BW * A	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08
DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene deno(1,2,3-cd)pyr ron Tetrachloroethene NHALATION PATH	* AF * ABSd * EF * ED * e ne ene ene	CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04
Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracend Benzo(a)pyrene Benzo(b)fluoranther Dibenz(a,h)anthracendeno(1,2,3-cd)pyron Fetrachloroethene NHALATION PATHAC = Sc*(1/fi	* AF * ABSd * EF * ED * en en en en en en en en en e		ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04
Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracend Benzo(a)pyrene Benzo(b)fluoranther Dibenz(a,h)anthracendeno(1,2,3-cd)pyron Fetrachloroethene NHALATION PATHAC = Sc*(1/fi	* AF * ABSd * EF * ED * en ene ene elway PEF + 1/VF)		ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04
Chemical 1,2-Dichloroethane Aluminum 4roclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Dibenz(a,h)anthracendeno(1,2,3-cd)pyron Tetrachloroethene NHALATION PATHAC Sc * (1/F	* AF * ABSd * EF * ED * en en en en en en en en en e	carcinogens,	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 a conversion	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04 2.67E-09
Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracendenzo(a)pyrene Benzo(b)fluoranther Dibenz(a,h)anthracendeno(1,2,3-cd)pyr oror Tetrachloroethene NHALATION PATHACE = Sc * (1/fi	* AF * ABSd * EF * ED * en en en en en en en en en e		ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04
Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracendenzo(a)pyrene Benzo(a)pyrene Benzo(b)huoranther Dibenz(a,h)anthracendeno(1,2,3-cd)pyr on Fetrachloroethene NHALATION PATH AC = SC * (1/F EAC = (AC * EF	* AF * ABSd * EF * ED * en en en en en en en en en e	carcinogens,	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 2.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11 t into proper units, ug/m3 EAC for Carcinogens	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04 2.67E-09
Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthraceni Benzo(a)pyrene Benzo(b)fluoranther Dibenz(a,h)anthraceni deno(1,2,3-cd)pyr on Tetrachloroethene NHALATION PATH Ac = Sc * (1/F EAC = (Ac * EF	* AF * ABSd * EF * ED * en en en en en en en en en e	carcinogens, Sc 1.95E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 a conversion	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11 t into proper units, ug/m3 EAC for Carcinogens 4.86E-06	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04 2.67E-09
Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Dibenz(a,h)anthracene Benzo(b)fluoranther Dibenz(a,h)anthracene Benzo(b)fluoranther Dibenz(a,h)anthracene Benzo(b)fluoranther Dibenz(a,h)anthracene Benzo(b)fluoranther Dibenz(a,h)anthracene Benzo(b)fluoranther Dibenz(a,h)anthracene Benzo(b)fluoranther Chemical 1,2-Dichloroethane Aluminum	* AF * ABSd * EF * ED * en en en en en en en en en e	carcinogens, Sc 1.95E-02 1.07E+04	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 2.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.63E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11 t into proper units, ug/m3 EAC for Carcinogens 4.86E-06 3.76E-05	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04 2.67E-09 EAC for Noncarcinogens 3.40E-07 2.63E-06
Chemical ,2-Dichloroethane duminum ,2-Dichloroethane duminum rocolor-1254 Benzo(a)anthracend benzo(a)pyrene benzo(b)fluoranther Dibenz(a,h)anthracend deno(1,2,3-cd)pyr ron etrachloroethene NHALATION PATH c= Sc*(1/F EAC = (Ac*EF Chemical ,2-Dichloroethane duminum rocolor-1254	* AF * ABSd * EF * ED * ene ene ene WAY PEF + 1/VF) * * ED) / AT * for	Sc 1.95E-02 1.07E+04 1.22E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11 t into proper units, ug/m3 EAC for Carcinogens 4.86E-06 3.76E-05 4.30E-11	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04 2.67E-09 EAC for Noncarcinogens 3.40E-07 2.63E-06 3.01E-12
Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranther Dibenz(a,h)anthracen deno(1,2,3-cd)pyr oretrachloroethene NHALATION PATHACE Sc * (1/F EAC = (Ac * EF Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen	* AF * ABSd * EF * ED * ene ene ene WAY PEF + 1/VF) * * ED) / AT * for	carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11 t into proper units, ug/m3 EAC for Carcinogens 4.86E-06 3.76E-05 4.30E-11 4.16E-09	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04 2.67E-09 EAC for Noncarcinogens 3.40E-07 2.63E-06 3.01E-12 2.91E-10
Chemical ,2-Dichloroethane January (1) Senzo (2) Senzo (3) Senzo (3) Senzo (3) Senzo (4) Senzo (4) Senzo (4) Senzo (4) Senzo (5) Senzo (4) Senzo (5) Senzo (4) Senzo (5) Senzo (6) Senzo	* AF * ABSd * EF * ED * ane ane ane ene HWAY PEF + 1/VF) * ED) / AT * for	Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00 1.19E-01	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11 t into proper units, ug/m3 EAC for Carcinogens 4.86E-06 3.76E-05 4.30E-11 4.16E-09 4.19E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-09 EAC for Noncarcinogens 3.40E-07 2.63E-06 3.01E-12 2.91E-10 2.93E-11
Chemical ,2-Dichloroethane January (1) Senzo (2) Senzo (3) Senzo (3) Senzo (3) Senzo (4) Senzo (4) Senzo (4) Senzo (4) Senzo (5) Senzo (4) Senzo (5) Senzo (4) Senzo (5) Senzo (6) Senzo	* AF * ABSd * EF * ED * ane ane ane ene HWAY PEF + 1/VF) * ED) / AT * for	carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11 t into proper units, ug/m3 EAC for Carcinogens 4.86E-06 3.76E-05 4.30E-11 4.16E-09	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04 2.67E-09 EAC for Noncarcinogens 3.40E-07 2.63E-06 3.01E-12 2.91E-10
Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracendenzo(b)fluoranther Dibenz(a,h)anthracendenzo(b,a-c)denzo(b)fluoranther Dibenz(a,h)anthracendeno(1,2,3-cd)pyr fon Fetrachloroethene NHALATION PATH AC = SC * (1/F EAC = (Ac * EF Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranther Benzo(a)pyrene Benzo(b)fluoranther	* AF * ABSd * EF * ED * a ne ene ene ene ene * WAY PEF + 1/VF) * ED) / AT *for	Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00 1.19E-01	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11 t into proper units, ug/m3 EAC for Carcinogens 4.86E-06 3.76E-05 4.30E-11 4.16E-09 4.19E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-09 EAC for Noncarcinogens 3.40E-07 2.63E-06 3.01E-12 2.91E-10 2.93E-11
Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranther Dibenz(a,h)anthracen deno(1,2,3-cd)pyr refrachloroethene NHALATION PATHACE Sc * (1/F EAC = (Ac * EF Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranther Dibenz(a,h)anthracen	* AF * ABSd * EF * ED * The same ene SWAY PEF + 1/VF) * ED) / AT The same ene	carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00 1.19E-01 1.69E-01	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Is necessary to get Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.83E-10 4.35E-10 2.08E-10 3.48E-10 4.86E-06 3.81E-11 t into proper units, ug/m3 EAC for Carcinogens 4.86E-06 3.76E-05 4.30E-11 4.16E-09 4.19E-10 5.95E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04 2.67E-09 EAC for Noncarcinogens 3.40E-07 2.63E-06 3.01E-12 2.91E-10 2.93E-11 4.17E-11
Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracendenzo(b)fluoranther Dibenz(a,h)anthracendenzo(b,a-c)denzo(b)fluoranther Dibenz(a,h)anthracendeno(1,2,3-cd)pyr fon Fetrachloroethene NHALATION PATH AC = SC * (1/F EAC = (Ac * EF Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranther Benzo(a)pyrene Benzo(b)fluoranther	* AF * ABSd * EF * ED * The same ene SWAY PEF + 1/VF) * ED) / AT The same ene	carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00 1.19E-01 1.69E-01 7.69E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10 1.69E-10	Intake for Carcinogens 5.89E-11 2.85E-06 5.47E-10 3.29E-10 2.08E-10 4.35E-10 4.35E-10 4.36E-10 3.48E-11 t into proper units, ug/m3 EAC for Carcinogens 4.86E-06 3.76E-05 4.30E-11 4.16E-09 4.19E-10 5.95E-10 2.71E-10	Intake for Noncarcinogens 4.13E-09 2.00E-04 3.83E-08 2.31E-08 1.98E-08 3.05E-08 1.46E-08 2.43E-08 3.40E-04 2.67E-09 EAC for Noncarcinogens 3.40E-07 2.63E-06 3.01E-12 2.91E-10 2.93E-11 4.17E-11 1.90E-11

TABLE C-15 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- CONSTRUCTION WORKER

SOIL INGESTION						
INTAKE = (Sc * ID *	EF * ED * CF) / (BW *.	Δ Τ\				
INTAKE - (SC IK		AI)				
Parameter	Definition				Value	Reference
Intake	Intake of chemical (n				calculated	
Sc Ac	Soil concentration (m				see data page	
EAC	Air concentration (mg Effective air concent		21		see below calculated	
VF	Volatilization Factor		P)		calculated	EPA, 1996
PEF	Particulate Emission		a)		1,00E+09	EPA, 2004a
IR .	Ingestion rate of soil		9)		330	EPA, 2001
SA	Skin surface area (cr				3300	EPA, 2004a
AF.	Soil to skin adherence		m2)		0.3	EPA, 2001b
ABSd	Dermal absorption fr				see chemprop page	
EF	Exposure frequency	(day/yr)			250	professional judgment
ED	Exposure duration (y				1	professional judgment
CF	Conversion factor (kg	g/mg)			1.00E-06	EPA, 1989
BW	Body weight (kg)				70	EPA, 1989
ATc	Averaging time for ca				25550	EPA, 1989
ATnc	Averaging time for no	oncarcinogens	(days)		365	EPA, 1989
	······································			Sc	Intake for	Intake for
Chemical					Carcinogens	Noncarcinogens
1.2 Diablaraathar				1 275 04	F 00T 40	4.105.40
1,2-Dichloroethane				1.27E-04	5.86E-12	4.10E-10
Aluminum Aroclor-1254				1.33E+04 4.30E-03	6.16E-04 1.98E-10	4.31E-02
Arocior-1254 Benzo(a)anthracene	•			4.30E-03 1.11E-02	1.98E-10 5.12E-10	1.39E-08 3.58E-08
senzo(a)antiracene Benzo(a)pyrene	•			3.78E-01	5.12E-10 1.74E-08	3.58E-08 1.22E-06
Benzo(b)fluoranthen	10			2,52E-01	1.16E-08	8.14E-07
Dibenz(a,h)anthrace				1,08E-02	4.98E-10	3.49E-08
ndeno(1,2,3-cd)pyre				3.96E-01	1.83E-08	1,28E-06
	3116					
				3 60=+04	1.70E_03	1 105-01
				3.69E+04 2.11F-04	1.70E-03 9.73F-12	1.19E-01 6.81F-10
Iron Tetrachloroethene DERMAL CONTAC	T			3.69E+04 2.11E-04	1.70E-03 9.73E-12	1,19E-01 6,81E-10
Tetrachloroethene DERMAL CONTAC	T *AF*ABSd*EF*ED	* CF) / (BW * /		2.11E-04	9.73E-12	6.81E-10
Tetrachloroethene DERMAL CONTAC		* CF) / (BW * /	AT) ABSd			
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical		* CF) / (BW * /	ABSd	2.11E-04 Sc	9.73E-12 Intake for Carcinogens	6.81E-10 Intake for Noncarcinogens
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane		* CF) / (BW * /	ABSd 1.30E-01	2.11E-04 Sc 1.27E-04	9.73E-12 Intake for Carcinogens 2.28E-12	6.81E-10 Intake for Noncarcinogens 1.60E-10
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum		* CF) / (BW * /	ABSd 1.30E-01 1.00E-02	Sc 1.27E-04 1.33E+04	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05	Intake for Noncarcinogens 1.60E-10 1.29E-03
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254	* AF * ABSd * EF * ED	* CF) / (BW * /	ABSd 1.30E-01	2.11E-04 Sc 1.27E-04	9.73E-12 Intake for Carcinogens 2.28E-12	6.81E-10 Intake for Noncarcinogens 1.60E-10
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracenee	* AF * ABSd * EF * ED	* CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.30E-01	Sc Sc 1.27E-04 1.33E+04 4.30E-03	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene	*AF * ABSd * EF * ED	* CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)pyrene	*AF *ABSd *EF *ED	* CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Dibenz(a,h)anthrace	* AF * ABSd * EF * ED	* CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01	Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthen Dibenz(a,h)anthrace deno(1,2,3-cd)pyre ron	* AF * ABSd * EF * ED	* CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthen Dibenz(a,h)anthrace ndeno(1,2,3-cd)pyre ron	* AF * ABSd * EF * ED	* CF) / (BW * /	1,30E-01 1,00E-02 1,30E-01 1,30E-01 1,30E-01 1,30E-01 1,30E-01	Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07
Tetrachloroethene DERMAL CONTAC INTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Dibenz(a,h)anthrace indeno(1,2,3-cd)pyre ron Tetrachloroethene NHALATION PATH Ac = Sc * (1/P)	* AF * ABSd * EF * ED e e ne ene WAY EF + 1/VF)		1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Dibenz(a,h)anthrace ndeno(1,2,3-cd)pyre ron Tetrachloroethene NHALATION PATH Ac = Sc * (1/P)	* AF * ABSd * EF * ED e e ne ene WAY EF + 1/VF)		1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Dibenz(a,h)anthrace ndeno(1,2,3-cd)pyre for ron Tetrachloroethene NHALATION PATH Ac = Sc * (1/P EAC = (Ac * EF	* AF * ABSd * EF * ED e e ne ene WAY EF + 1/VF)	r carcìnogens, Sc	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12 t into proper units, ug/m3 EAC for Carcinogens	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10 EAC for Noncarcinogens
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthen Dibenz(a,h)anthracendeno(1,2,3-cd)pyre ron Tetrachloroethene NHALATION PATH Ac = Sc * (1/P EAC = (Ac * EF Chemical 1,2-Dichloroethane	* AF * ABSd * EF * ED e e ne ene WAY EF + 1/VF)	r carcinogens, Sc 1.27E-04	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12 t into proper units, ug/m3 EAC for Carcinogens 8.80E-08	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10 EAC for Noncarcinogens 6.16E-09
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthen Dibenz(a,h)anthracene Benzo(b)fluoranthen Contact (1,2,3-cd)pyre Fon Fetrachloroethene NHALATION PATH Ac = Sc * (1/P EAC = (Ac * EF Chemical 1,2-Dichloroethane Aluminum	* AF * ABSd * EF * ED e e ne ene WAY EF + 1/VF)	r carcinogens, Sc 1.27E-04 1.22E+04	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12 t into proper units, ug/m3 EAC for Carcinogens 8.80E-08 1.19E-04	6.81E-10 Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Dibenz(a,h)anthracene Benzo(b)fluoranthen Dibenz(a,h)anthracene Benzo(b)fluoranthen Dibenz(a,h)anthracene Benzo(b)fluoranthen Dibenz(a,h)anthracene Benzo(b)fluoranthen Cherchene NHALATION PATH Ac = Sc * (1/P EAC = (Ac * EF Chemical 1,2-Dichloroethane Aluminum Arcolor-1254	* AF * ABSd * EF * ED e e ne e ne way EF + 1/VF) * ED) / AT * fo	r carcinogens, Sc 1.27E-04 1.22E+04 4.29E-03	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 1.33E+04 1.33E+01 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 is necessary to ge Ac 8.99E-09 1.22E-05 4.29E-12	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12 It into proper units, ug/m3 EAC for Carcinogens 8.80E-08 1.19E-04 4.20E-11	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Dibenz(a,h)anthracen Indeno(1,2,3-cd)pyre Fetrachloroethene NHALATION PATH Ac = Sc * (1/P EAC = (Ac * EF Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene	* AF * ABSd * EF * ED e e ne e ne way EF + 1/VF) * ED) / AT * fo	r carcinogens, Sc 1.27E-04 1.22E+04 4.29E-03 1.10E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12 t into proper units, ug/m3 EAC for Carcinogens 8.80E-08 1.19E-04 4.20E-11 1.08E-10	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.53E-12
Fetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthen Benzo(b)fluoranthen Benzo(b)fluoranthen Benzo(b)fluoranthen Benzo(b)fluoranthen Benzo(b)fluoranthen Benzo(b)fluoranthen Benzo(b)fluoranthen NHALATION PATH Ac = Sc * (1/P EAC = (Ac * EF Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)gyrene	* AF * ABSd * EF * ED e ene ene way EF + 1NF) * ED) / AT * fo	r carcinogens, Sc 1.27E-04 1.22E+04 4.29E-03 1.10E-02 1.16E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12 t into proper units, ug/m3 EAC for Carcinogens 8.80E-08 1.19E-04 4.20E-11 1.08E-10 1.14E-10	6.81E-10 Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.53E-12
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene NHALATION PATH Ac = Sc * (1/P EAC = (Ac * EF Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthene	* AF * ABSd * EF * ED e e ne way EF + 1/VF) * ED) / AT * fo	1.27E-04 1.22E+04 4.29E-03 1.10E-02 1.16E-02 3.73E-01	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Is necessary to ge Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12 t into proper units, ug/m3 EAC for Carcinogens 8.80E-08 1.19E-04 4.20E-11 1.08E-10 1.14E-10 3.65E-09	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.53E-12 7.95E-12 2.55E-10
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Chemical NHALATION PATH Ac = Sc * (1/P EAC = (Ac * EF Chemical 1,2-Dichloroethane Aluminum Accide (Ac * EF Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Dibenz(a,h)anthracene	*AF * ABSd * EF * ED e e ne e ne e ne e >>>>>>>>>>>>>>>>>>	1.27E-04 1.22E+04 4.29E-03 1.10E-02 1.16E-02 3.73E-01 1.10E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10 1.10E-11	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12 t into proper units, ug/m3 EAC for Carcinogens 8.80E-08 1.19E-04 4.20E-11 1.08E-10 1.14E-10 3.65E-09 1.08E-10	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.53E-12 7.95E-12 2.55E-10 7.53E-12
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(b)fluoranthen Dibenz(a,h)anthracendeno(1,2,3-cd)pyre ron Tetrachloroethene NHALATION PATH Ac = Sc * (1/P EAC = (Ac * EF	*AF * ABSd * EF * ED e e ne e ne e ne e >>>>>>>>>>>>>>>>>>	1.27E-04 1.22E+04 4.29E-03 1.10E-02 1.16E-02 3.73E-01	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 Is necessary to ge Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10	9.73E-12 Intake for Carcinogens 2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12 t into proper units, ug/m3 EAC for Carcinogens 8.80E-08 1.19E-04 4.20E-11 1.08E-10 1.14E-10 3.65E-09	Intake for Noncarcinogens 1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.53E-12 7.95E-12 2.55E-10

TABLE C-16 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- INDUSTRIAL WORKER

SOIL INGESTION						
NTAKE = (Sc * IR	* EF * ED * CF) / (B\	V * AT)				
					Value	Reference
Parameter ntake	Definition Intake of chemica	al (ma/ka day)			Value calculated	Releience
	Soil concentration				see data page	
Sc ∖c	Air concentration				see data page see below	
AC		,	21		calculated	
		centration (mg/m^3	2)			EDA 1006
/F	Volatilization Fac				calculated	EPA, 1996
PEF		sion Factor (m^3/k	(g)		1.00E+09	EPA, 2004a
R	Ingestion rate of				50	EPA, 2004a
SA	Skin surface area		0\		3300 0.021	EPA, 2004a
NF.		rence factor (mg/c				EPA, 2001a
ABSd		n fraction (unitless	s)		see chemprop page	FD4 0004
EF.	Exposure frequer				250	EPA, 2004a
ED	Exposure duration				25	EPA, 2004a
CF NA	Conversion factor	r (kg/mg)			1.00E-06	EPA, 1989
SW AT-	Body weight (kg)				70	EPA, 1989
ATc		or carcinogens (da			25550	EPA, 1989
\Tnc	Averaging time fo	or noncarcinogens	(days)		9125	EPA, 1989
				Sc	Intake for	Intake for
Chemical					Carcinogens	Noncarcinogens
1,2-Dichloroethane	•			1.95E-02	3.41E-09	9,54E-09
,,z-Dichioroethane Numinum	•			1.95E-02 1.23E+04	2,14E-03	6,00E-03
Aroclor-1254				1.23E+04 1.81E-01	2.14E-03 3.16E-08	8.86E-08
Arocior-1254 Benzo(a)anthracer	10			1.81E-01 1.09E-01	3.16E-08 1.90E-08	5.33E-08
	ie					
Benzo(a)pyrene				9.37E-02	1.64E-08	4.58E-08
Benzo(b)fluoranthe				1.44E-01	2.52E-08	7.05E-08
Dibenz(a,h)anthrac				6.88E-02	1.20E-08	3.37E-08
ndeno(1,2,3-cd)py						
	iene			1.15E-01	2.01E-08	5.63E-08
	iene			2.09E+04	3.65E-03	1.02E-02
Tetrachloroethene		ED * CF) / (BW * /	A T)			
ron Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA	CT	ED * CF) / (BW * /		2.09E+04 1.26E-02	3,65E-03 2,20E-09	1.02E-02 6.16E-09
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA	CT	ED * CF) / (BW * /	AT) ABSd	2.09E+04	3.65E-03	1.02E-02
Tetrachloroethene DERMAL CONTAG NTAKE = (Sc * SA	CT *AF*ABSd*EF*	ED * CF) / (BW * /	ABSd	2.09E+04 1.26E-02	3,65E-03 2,20E-09 Intake for Carcinogens	1.02E-02 6.16E-09
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane	CT *AF*ABSd*EF*	ED * CF) / (BW * /	ABSd 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02	3.65E-03 2.20E-09 Intake for Carcinogens 6.14E-10	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09
Tetrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum	CT *AF*ABSd*EF*	ED * CF) / (BW * /	ABSd 1.30E-01 1.00E-02	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05	Intake for Noncarcinogens 1.72E-09 8.32E-05
Tetrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum Aroclor-1254	CT *AF *ABSd *EF *	ED * CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Jenzo(a) anthracer	CT * AF * ABSd * EF *	ED * CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09
Tetrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numlnum Aroclor-1254 Benzo(a)anthracer Benzo(a)pyrene	CT *AF *ABSd *EF *	ED * CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09
Chemical ,2-Dichloroethane Audininum Aroclor-1254 Benzo(a)anthracer Benzo(b)fluoranthe	CT * AF * ABSd * EF * ie	ED * CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08
Tetrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac	CT * AF * ABSd * EF * b c deenee	ED * CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08 6.06E-09
Chemical J.2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracer Benzo(b)fluoranthe Benzo(b)hanthracen dideno(1,2,3-cd)py	CT * AF * ABSd * EF * b c deenee	ED * CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09 3,62E-09	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08 6.06E-09 1.01E-08
etrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical ,2-Dichloroethane ,tuminum vocior-1254 senzo(a)anthracer senzo(b)fluoranthe sienzo(b)fluoranthe sienzo(b)fluoranthe olibenz(a,h)anthrac adeno(1,2,3-cd)py ron	CT * AF * ABSd * EF * b c deenee	ED * CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08 6.06E-09
etrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum Aroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac ndeno(1,2,3-cd)pyron	CT * AF * ABSd * EF * b c deenee	ED * CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09 3,62E-09	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08 6.06E-09 1.01E-08
Tetrachloroethene	CT * AF * ABSd * EF * . te	ED * CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09 3,62E-09 5,06E-05	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)pyron Tetrachloroethene NHALATION PAT Ac = Sc * (1/2)	CT * AF * ABSd * EF * . te		1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09 3,62E-09 5,06E-05	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcoclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac ndeno(1,2,3-cd)pyron Tetrachloroethene NHALATION PAT Ac = Sc * (1/2)	*AF *ABSd *EF * *AF *ABSd *EF * * * * * * * * * * * * *		1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(a)fluoranthe Dibenz(a,h)anthrac ndeno(1,2,3-cd)py ron Tetrachloroethene NHALATION PAT Ac = Sc * (1) EAC = (Ac * E	A* AF * ABSd * EF * Interpretation of the state of the st	*for carcinogens,	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10 t into proper units, ug/m3 EAC for Carcinogens	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09
Chemical ,2-Dichloroethane Aurnirum Arcolor-1254 Benzo(a)anthracer Benzo(b)fluoranthe Benzo(a)hanthracer Benzo(a)hanthracer Benzo(a)complete (a)complete (a)compl	A* AF * ABSd * EF * Interpretation of the state of the st	*for carcinogens, Sc 1.95E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10 t into proper units, ug/m3 EAC for Carcinogens 3,38E-04	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum Arcolor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac ndeno(1,2,3-cd)py ron Tetrachloroethene NHALATION PAT Ac = Sc * (1) EAC = (Ac * E Chemical ,2-Dichloroethane NLUMINUM AC = Chemical ,2-Dichloroethane NLUMINUM AC = Chemical	A* AF * ABSd * EF * Interpretation of the state of the st	*for carcinogens, Sc 1.95E-02 1.07E+04	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10 Into proper units, ug/m3 EAC for Carcinogens 3,38E-04 2,61E-03	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 8.26E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthracer Benzo(b)fluoranthe Dibenz(a,h)anthracer Chemical Ac = Sc * (1) EAC = (Ac * E	A* AF * ABSd * EF * Interpretation of the state of the st	*for carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10 t Into proper units, ug/m3 EAC for Carcinogens 3,38E-04 2,61E-03 2,98E-09	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09
Chemical ,2-Dichloroethane Albenzo(a) anthracer Boltonzoethane Albenzo(a) anthracer Bonzo(a) pyrene Boltonzo(a) hyrene Boltonzo(a), h) anthracer Boltonzo(a) pyrene Boltonzo(a) pyrene Boltonzo(a) pyrene Boltonzo(a) h) anthracer Boltonzo(a) pyrene Boltonzo(a) pyrene Boltonzo(a) pyrene Boltonzoethane Chemical ,2-Dichloroethane Aluminum Accionzoethane Aluminum	A* AF * ABSd * EF * Interpretation of the state of the st	*for carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10 t into proper units, ug/m3 EAC for Carcinogens 3,38E-04 2,61E-03 2,98E-09 2,89E-07	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09 EAC for Noncarcinogens 9.45E-07 7.31E-06 8.36E-12 8.08E-10
retrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum rocolor-1254 Benzo(a)anthracer senzo(a)pyrene senzo(b)fluoranthe Dibenz(a,h)anthrac deno(1,2,3-cd)py ron retrachloroethene NHALATION PAT Ac = Sc * (1) cAC = (Ac * E Chemical ,2-Dichloroethane Numinum rocolor-1254 Benzo(a)anthracer Benzo(a)anthracer Benzo(a)pyrene	CT * AF * ABSd * EF * the state of the sta	*for carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10 Into proper units, ug/m3 EAC for Carcinogens 3,38E-04 2,61E-03 2,98E-09 2,89E-07 2,91E-08	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09
etrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical ,2-Dichloroethane duminum voclor-1254 denzo(a)anthracer denzo(a)pyrene denzo(a)pyrene denzo(b)fluoranthe dibtenz(a,h)anthrac rideno(1,2,3-cd)py ron retrachloroethene NHALATION PAT Ac = Sc * (1/ EAC = (Ac * E Chemical ,2-Dichloroethane duminum voclor-1254 denzo(a)anthracer	CT * AF * ABSd * EF * the state of the sta	*for carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10 t into proper units, ug/m3 EAC for Carcinogens 3,38E-04 2,61E-03 2,98E-09 2,89E-07	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09 EAC for Noncarcinogens 9.45E-07 7.31E-06 8.36E-12 8.08E-10
Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum ,2-Dichloroethane Numinum ,2-Dichloroethane Numinum ,2-Dichloroethane Numinum ,2-Dichloroethane Numinum ,2-Dichloroethene NHALATION PAT Ac = Sc * (1) CAC = (Ac * E Chemical ,2-Dichloroethane Numinum ,2-Dichloroethane ,2-Dichlo	CT * AF * ABSd * EF * the state of the sta	*for carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00 1.19E-01	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10 Into proper units, ug/m3 EAC for Carcinogens 3,38E-04 2,61E-03 2,98E-09 2,89E-07 2,91E-08	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09 EAC for Noncarcinogens 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11
etrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical ,2-Dichloroethane duminum voclor-1254 senzo(a)anthracer senzo(a)pyrene solibenz(a,h)anthrac retrachloroethene NHALATION PAT Ac = Sc * (1) EAC = (Ac * E Chemical ,2-Dichloroethane duminum voclor-1254 senzo(a)anthracer senzo(a)anthracer senzo(a)anthracer senzo(a)apyrene senzo(a)pyrene senzo(a)pyrene senzo(a)pyrene senzo(a)pyrene senzo(b)fluoranthe senzo(a)phranthracer	A*AF*ABSd*EF* A*AF*ABSd*EF* A the sene tene tene tene tene tene tene ten	*for carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00 1.19E-01 1.69E-01 7.69E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10 1.69E-10	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 5,06E-05 3,97E-10 t into proper units, ug/m3 EAC for Carcinogens 3,38E-04 2,61E-03 2,98E-09 2,89E-07 2,91E-08 4,13E-08 1,88E-08	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09 EAC for Noncarcinogens 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11
retrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum Arcolor-1254 Benzo(a)anthracer Benzo(b)fluoranthe Dibenz(a,h)anthrac deno(1,2,3-cd)py ron Tetrachloroethene NHALATION PAT Ac = Sc * (1/ EAC = (Ac * E Chemical ,2-Dichloroethane NHALATION PAT Benzo(a)anthracer Benzo(a)anthracer Benzo(a)anthracer Benzo(a)anthracer Benzo(a)anthracer Benzo(a)anthracer Benzo(a)anthracer Benzo(a)hjunthracer	A*AF*ABSd*EF* A*AF*ABSd*EF* A the sene tene tene tene tene tene tene ten	*for carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00 1.19E-01 1.69E-01 7.69E-02 1.55E-01	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10 1.69E-10 7.69E-11 1.55E-10	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,17E-09 3,62E-09 5,06E-05 3,97E-10 Into proper units, ug/m3 EAC for Carcinogens 3,38E-04 2,61E-03 2,98E-09 2,89E-07 2,91E-08 4,13E-08 3,79E-08	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09 EAC for Noncarcinogens 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11
etrachloroethene DERMAL CONTAG NTAKE = (Sc * SA Chemical ,2-Dichloroethane duminum voclor-1254 senzo(a)anthracer senzo(a)pyrene solibenz(a,h)anthrac retrachloroethene NHALATION PAT Ac = Sc * (1) EAC = (Ac * E Chemical ,2-Dichloroethane duminum voclor-1254 senzo(a)anthracer senzo(a)anthracer senzo(a)anthracer senzo(a)apyrene senzo(a)pyrene senzo(a)pyrene senzo(a)pyrene senzo(a)pyrene senzo(b)fluoranthe senzo(a)phranthracer	A*AF*ABSd*EF* A*AF*ABSd*EF* A the sene tene tene tene tene tene tene ten	*for carcinogens, Sc 1.95E-02 1.07E+04 1.22E-02 1.18E+00 1.19E-01 1.69E-01 7.69E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	2.09E+04 1.26E-02 Sc 1.95E-02 1.23E+04 1.81E-01 1.09E-01 9.37E-02 1.44E-01 6.88E-02 1.15E-01 2.09E+04 1.26E-02 Ac 1.38E-06 1.07E-05 1.22E-11 1.18E-09 1.19E-10 1.69E-10	3,65E-03 2,20E-09 Intake for Carcinogens 6,14E-10 2,97E-05 5,70E-09 3,43E-09 2,95E-09 4,53E-09 5,06E-05 3,97E-10 t into proper units, ug/m3 EAC for Carcinogens 3,38E-04 2,61E-03 2,98E-09 2,89E-07 2,91E-08 4,13E-08 1,88E-08	1.02E-02 6.16E-09 Intake for Noncarcinogens 1.72E-09 8.32E-05 1.60E-08 9.61E-09 1.27E-08 6.06E-09 1.01E-08 1.42E-04 1.11E-09 EAC for Noncarcinogens 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11

TABLE C-17 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- INDUSTRIAL WORKER

SOIL INGESTION							
NTAKE = (Sc * IP	* EF * ED * CF) / (BW *	AT)					
		Λ1)					
Parameter	Definition				Value	Reference	
ntake	Intake of chemical (r				calculated		
Sc	Soil concentration (r				see data page		
Ac _	Air concentration (m				see below		
EAC	Effective air concen		3)		calculated		
/F	Volatilization Factor	(m^3/kg)			calculated	EPA, 1996	
PEF	Particulate Emission	Factor (m^3/k	g)		1.00E+09	EPA, 2004a	
R	Ingestion rate of soil	(mg/day)			50	EPA, 2004a	
SA SA	Skin surface area (c	m2)			3300	EPA, 2004a	
۸F	Soil to skin adheren	ce factor (mo/c	m2)		0.2	EPA, 2004a	
ABSd	Dermal absorption fi				see chemprop page		
F	Exposure frequency		-,		250	EPA, 2004a	
 ED	Exposure duration (25	EPA, 2004a	
DF	Conversion factor (k				1.00E-06	EPA, 1989	
		g/mg)					
SW NT-	Body weight (kg)		\		70	EPA, 1989	
ATc	Averaging time for c				25550	EPA, 1989	
ATnc	Averaging time for n	oncarcinogens	(days)		9125	EPA, 1989	
				Po.	Intelled for	Intoko for	
Chemical				Sc	Intake for Carcinogens	Intake for Noncarcinogens	
2 Dieblessetts				4 97E 04	0.005.44	6 04E 44	
1,2-Dichloroethane				1.27E-04	2.22E-11	6.21E-11	
Aluminum				1.33E+04	2,33E-03	6.53E-03	
Aroclor-1254				4.30E-03	7.51E-10	2.10E-09	
Benzo(a)anthracen	e			1.11E-02	1.94E-09	5.43E-09	
Benzo(a)pyrene				3.78E-01	6.60E-08	1.85E-07	
Benzo(b)fluoranther	ne			2.52E-01	4.40E-08	1,23E-07	
Dibenz(a,h)anthrace	ene			1.08E-02	1.89E-09	5,28E-09	
ndeno(1,2.3-cd)nvr	ene			3.96E-01	6.92E-08	1.94E-07	
	rene			3.96E-01 3.69E+04	6.92E-08 6.45E-03	1.94E-07 1.80E-02	
ron Tetrachloroethene				3.96E-01 3.69E+04 2.11E-04	6.92E-08 6.45E-03 3.69E-11	1.94E-07 1.80E-02 1.03E-10	
Indeno(1,2,3-cd)pyr Iron Tetrachloroethene DERMAL CONTAC INTAKE = (Sc * SA		* CF) / (BW * /	AT)	3.69E+04	6.45E-03	1.80E-02	
ron Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA	т	* CF) / (BW * /	AT) ABSd	3.69E+04	6.45E-03 3.69E-11	1.80E-02 1.03E-10	
ron Fetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA	т	* CF) / (BW * /		3.69E+04 2.11E-04	6.45E-03 3.69E-11	1.80E-02 1.03E-10	
ron Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA	т	* CF) / (BW * /		3.69E+04 2.11E-04	6.45E-03 3.69E-11	1.80E-02 1.03E-10	
ron Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane	т	* CF) / (BW * /	ABSd	3.69E+04 2.11E-04	6.45E-03 3.69E-11 Intake for Carcinogens	1.80E-02 1.03E-10	
ron Fetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane kluminum	т	* CF) / (BW * /	ABSd 1.30E-01	3.69E+04 2.11E-04 Sc	6.45E-03 3.69E-11	1.80E-02 1.03E-10	
ron Fetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane kluminum kroclor-1254	*AF * ABSd * EF * ED	* CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09	
con etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane uluminum vroclor-1254 lenzo(a)anthracen	*AF * ABSd * EF * ED	* CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02	6.45E-03 3.69E-11	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09	
ron fetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Numinum rocolor-1254 Benzo(a)anthracene Benzo(a)apyrene	:T *AF *ABSd *EF *ED	* CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07	
ron retrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane \u00e4\u00	*AF * ABSd * EF * ED	* CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07	
ron Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)huoranthei Dibenz(a,h)anthrace	*AF * ABSd * EF * ED . . e	*CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02	6.45E-03 3.69E-11	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09	
con etrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane duminum voclor-1254 lenzo(a)anthracen- denzo(b)fluoranthei blenzo(a)hanthracindeno(1,2,3-cd)pyr	*AF * ABSd * EF * ED . . e	* CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 2.11E-04 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01	6.45E-03 3.69E-11	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-07	
DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane duminum sroclor-1254 lenzo(a)anthracen- lenzo(b)fluoranther elenzo(b)fluoranther deno(1,2,3-cd)pyron	T *AF*ABSd*EF*ED e	* CF) / (BW * /	1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.00E-02	3.69E+04 2.11E-04 2.11E-04 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E-01	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-07 2.38E-03	
Chemical ,2-Dichloroethane Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranther Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranther Benzo(a)pyrene	T *AF*ABSd*EF*ED e	* CF) / (BW * /	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 2.11E-04 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01	6.45E-03 3.69E-11	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-07	
Tetrachloroethene DERMAL CONTAC INTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)lpuoranthei Dibenz(a,h)anthracindeno(1,2,3-cd)pyriron Tetrachloroethene INHALATION PATHAC = Sc * (1/6)	*AF * ABSd * EF * ED . e ne ene ene eway		1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-07 2.38E-03	
ron Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthei Dibenz(a,n)anthracen deno(1,2,3-cd)pyr or	*AF * ABSd * EF * ED . e ne ene ene eway		1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	6.45E-03 3.69E-11	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-07 2.38E-03	
ron Fetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical ,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthei Dibenz(a,h)anthracendeno(1,2,3-cd)pyren Fetrachloroethene NHALATION PATH AC = Sc * (1/f EAC = (Ac * EF	*AF * ABSd * EF * ED . e ne ene ene eway	or carcinogens,	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.38E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 et into proper units, ug/m3 EAC for Carcinogens	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-07 2.38E-03 1.77E-10	
Chemical J.2-Dichloroethane Auminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthei Dibenz(a,h)anthracentendeno(1,2,3-cd)pyr Fetrachloroethane NHALATION PATH AC = SC*(1/f EAC = (Ac * EF	*AF * ABSd * EF * ED . e ne ene ene eway	or carcinogens, Sc 1.27E-04	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 2.11E-04 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 is necessary to ge	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 et into proper units, ug/m3 EAC for Carcinogens 2.20E-06	1.80E-02 1.03E-10	
Chemical ,2-Dichloroethane delenco(a) pyrene denco(a) pyrene denco(a) pyrene denco(b) fluoranthrace denco(a) pyrene denco(b) fluoranthrace denco(1,2,3-cd) pyr fon fetrachloroethene NHALATION PATH ACE SC*(1/f EAC = (Ac * EF	*AF * ABSd * EF * ED . e ne ene ene eway	or carcinogens,	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E-04 2.11E-04 is necessary to ge	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.38E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 et into proper units, ug/m3 EAC for Carcinogens	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-07 2.38E-03 1.77E-10	
Chemical 2-Dichloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 2-Dichloroethane Arcolor-1254 Benzo(a)anthracent Benzo(b)fluoranther Benzo(b)fluoranther Benzo(b)fluoranther Chemical NHALATION PATH ACE Sc * (1/f CACE (Ac * EF	*AF * ABSd * EF * ED . e ne ene ene eway	or carcinogens, Sc 1.27E-04	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 2.11E-04 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 is necessary to ge	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 et into proper units, ug/m3 EAC for Carcinogens 2.20E-06	1.80E-02 1.03E-10	
Chemical Derachloroethene Derachloroethe	*AF * ABSd * EF * ED . be the ene ene ene #WAY PEF + 1/VF) * * ED) / AT *fc	or carcinogens, Sc 1.27E-04 1.22E+04	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E-04 2.11E-04 is necessary to ge	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 et into proper units, ug/m3 EAC for Carcinogens 2.20E-06 2.98E-03	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-07 2.12E-07 9.07E-10	
Chemical ,2-Dichloroethane denco(a) anthracen denco(a) pyrene denco(a) pyrene denco(b) fluoranthrac denco(a) pyrene denco(b) fluoranthrac denco(1,2,3-cd) pyr fon etrachloroethane NHALATION PATH AC = SC*(1/f EAC = (Ac * EF	*AF * ABSd * EF * ED . be the ene ene ene #WAY PEF + 1/VF) * * ED) / AT *fc	or carcinogens, Sc 1.27E-04 1.22E+04 4.29E-03 1.10E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 2.11E-04 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 is necessary to get Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 EAC for Carcinogens 2.20E-06 2.98E-03 1.05E-09 2.69E-09	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-07 2.12E-07 9.07E-09 3.32E-07 2.38E-03 1.77E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.55E-12	
Chemical J.2-Dichloroethane Arcolor-1254 Benzo(a)anthracen Benzo(b)fluoranther Chemical J.2-Dichloroethane Arcolor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranther Chemical NHALATION PATH AC = Sc * (1/if EAC = (Ac * EF Chemical J.2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracen Benzo(a)anthracen Benzo(a)anthracen Benzo(a)anthracen Benzo(a)pyrene	*AF *ABSd *EF *ED . e ne ene ene ene ever tiway PEF + 1/VF) *ED) / AT *fore e	1.27E-04 1.22E+04 4.29E-03 1.10E-02 1.16E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.96E-01 3.96E-01 3.96E-04 2.11E-04 is necessary to ge Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 EAC for Carcinogens 2.20E-06 2.98E-03 1.05E-09 2.69E-09 2.84E-09	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-03 1.77E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.53E-12	
ron Tetrachloroethene DERMAL CONTAC NTAKE = (Sc * SA Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthei Dibenz(a,h)anthracen Dibenz(a,h)anthracen Cetrachloroethene NHALATION PATH AC = Sc * (1/f EAC = (Ac * EF Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthei Benzo(a)pyrene Benzo(b)fluoranthei Benzo(b)fluoranthei Benzo(b)fluoranthei	*AF * ABSd * EF * ED . ane ene ene HWAY PEF + 1/VF) * * ED) / AT *fc	or carcinogens, Sc 1.27E-04 1.22E+04 4.29E-03 1.10E-02 1.16E-02 3.73E-01	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 is necessary to ge Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.38E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 et into proper units, ug/m3 EAC for Carcinogens 2.20E-06 2.99E-03 1.05E-09 2.69E-09 2.69E-09 9.12E-08	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-03 1.77E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.53E-12 7.95E-12 2.55E-10	
Chemical J.2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthei Dibenz(a,h)anthracen Chemical J.2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthei Celeration Control Celeration	*AF *ABSd *EF *ED . Be the the the the the the the the the th	1.27E-04 1.22E+04 4.29E-03 1.10E-02 1.16E-02 3.73E-01 1.10E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 is necessary to ge Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10 1.10E-11	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 EAC for Carcinogens 2.20E-06 2.98E-03 1.05E-09 2.84E-09 9.12E-08 2.69E-09	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-07 2.12E-07 9.07E-09 3.32E-07 2.38E-03 1.77E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.55E-12 7.95E-12 2.55E-10 7.53E-12	
Chemical J.2-Dichloroethane Arcolor-1254 Benzo(a)pyrene Benzo(b)fluoranther Arcolor-1254 Benzo(a)cothane Arcolor-1254 Benzo(a)cothane NHALATION PATH Ac = Sc * (1/f EAC = (Ac * EF Chemical J.2-Dichloroethane Aluminum Arcolor-1254 Benzo(a)anthracendeno(1,2,3-cd)pyrene Benzo(b)fluoranther Benzo(a)nanthracendeno(1,2,3-cd)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a,h)anthracendeno(1,2,3-cd)pyrene Benzo(a,h)anthracendeno(1,2,3-cd)pyrene	*AF *ABSd *EF *ED . Be the the the the the the the the the th	1.27E-04 1.22E+04 4.29E-03 1.10E-02 1.16E-02 3.73E-01 1.10E-02 6.82E-01	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 is necessary to ge Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10 1.10E-11 6.82E-10	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 Et into proper units, ug/m3 EAC for Carcinogens 2.20E-06 2.98E-03 1.05E-09 2.69E-09 9.12E-08 2.69E-09 9.12F-08 2.69E-09 1.67E-07	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-09 3.17E-07 2.12E-07 9.07E-09 3.32E-07 2.38E-03 1.77E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.53E-12 2.55E-10 7.53E-12 4.67E-10	
Chemical ,2-Dichloroethane derzo(a)pyrene denzo(a)pyrene denzo(a)pyrene denzo(a)pyrene denzo(a)pyrene denzo(a)pyrene denzo(a)pyrene denzo(a)pyrene denzo(a)pyrene denzo(a)pyrene denzo(b)fluoranthei NHALATION PATH ACE SC*(1/f EAC = (AC*EF Chemical ,2-Dichloroethane duminum Arcolor-1254 denzo(a)pyrene denzo(a)pyrene denzo(b)fluoranthei denzo(a)pyrene denzo(b)fluoranthei denzo(a)pyrene denzo(b)fluoranthei denzo(a)pyrene	*AF *ABSd *EF *ED . Be the the the the the the the the the th	1.27E-04 1.22E+04 4.29E-03 1.10E-02 1.16E-02 3.73E-01 1.10E-02	ABSd 1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	3.69E+04 2.11E-04 Sc 1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04 is necessary to ge Ac 8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10 1.10E-11	6.45E-03 3.69E-11 Intake for Carcinogens 3.81E-11 3.08E-04 1.29E-09 3.33E-09 1.13E-07 7.56E-08 3.24E-09 1.19E-07 8.51E-04 6.33E-11 EAC for Carcinogens 2.20E-06 2.98E-03 1.05E-09 2.84E-09 9.12E-08 2.69E-09	1.80E-02 1.03E-10 Intake for Noncarcinogens 1.07E-10 8.62E-04 3.61E-09 9.32E-07 2.12E-07 9.07E-09 3.32E-07 2.38E-03 1.77E-10 EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12 7.55E-12 7.95E-12 2.55E-10 7.53E-12	

APPENDIX C-3
INTAKE CALCULATIONS
SEDIMENT

TABLE C-18 EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCS SEDIMENT INTRACOASTAL WATERWAY

Parameter	Average		95% UCL	Statistic Used	
Benzo(a)pyrene	9.46E-02	<	1.58E-02	median	
Dibenz(a,h)anthracene	7.12E-02	<	1.57E-02	median	
Iron	1.34E+04		2.20E+04	97.5% Chebyshev	

TABLE C-19 INTAKE CALCULATIONS FOR SEDIMENT INTRACOASTAL WATERWAY AVERAGE

SEDIMENT INGESTION								
INTAKE = (Sc * IR * EF * ED * CF) / (BW * AT)								
Parameter	Definition				Value	Reference		
Intake	Intake of chemical (mg/kg-day)			Ca	lculated			
Sc	Sediment concentration (mg/kg)			see	data page			
IR	Ingestion rate of soil (mg/day)				100	TRRP-24		
SA	Skin surface area (cm2)				4400	TRRP-24		
AF	Sediment to skin adherence factor (mg/cn	n2)			0.3	TRRP-24		
ABSd	Dermal absorption fraction (unitless)			see ch	emprop page	9		
EF	Exposure frequency (day/yr)				19	professional judgment		
ED	Exposure duration (yr)				13	professional judgment		
CF	Conversion factor (kg/mg)			1	.00E-06	EPA, 1989		
BW	Body weight (kg)				70	EPA, 1989		
ATc	Averaging time for carcinogens (days)				25550	EPA, 1989		
ATnc	Averaging time for noncarcinogens (days))			9125	EPA, 1989		
	<u> </u>							
		ark that	ALCANY TELEPIS		6.4	Section 1		
	化碱基甲烷 医抗压缩 医艾克克		Sc	al Ir	take for	Intake for		
Chemical	The state of the s	Maria,		∨ Ca	rcinogens	Noncarcinogens	7.0	
				_				
Benzo(a)pyrene			9.46E-02	-	.31E-09	3.66E-09		
Dibenz(a,h)anthracen	9 ·		7.12E-02	-	.83E-10	2.75E-09		
Iron			1.34E+04	1	.84E-04	5.16E-04		
DERMAL CONTACT								
DERMAL CONTACT								
INITAKE - (80 * 64 * 4	AF * ABSd * EF * ED * CF) / (BW * AT)							
MINIANE - (00 0A")	A ADOU EF ED CF)/(DVV AT)							
4 14 14 14 15 15 15 15 15		Tuby 9	in pilos X or intelle	na rational and a state of	and the second	Approximation and the second states of	42	
	ΔΡΟ	Sá	Sc	i de la como	take for	Intake for		
Chemical			i i i i i i i i i i i i i i i i i i i			Noncarcinogens		
	er and de later en en til Language i Salanda om Salanda de la filig ble en per salanda de la filigio de la fili	an-rate Hoper	on a substance of the second	man was a seriou	20.0901033	www.i.i.sinoniouioanioasississi	CONCERNION TO BE	
Benzo(a)pyrene	1.30	E-01	9.46E-02	2	.24E-09	6.28E-09		
Dibenz(a,h)anthracen		E-01	7.12E-02	_	.69E-09	4.72E-09		
Iron		E-02	1.34E+04		.43E-05	6.82E-05		
								

TABLE C-20 INTAKE CALCULATIONS FOR SEDIMENT INTRACOASTAL WATERWAY RME

SEDIMENT INGESTION								
INTAKE = (Sc * IR * EF * ED * CF) / (BW * AT)								
Parameter	Definition		•	Value	Reference			
Intake	Intake of chemical (mg/kg-day)			calculated				
Sc	Sediment concentration (mg/kg)			see data page				
IR	Ingestion rate of soil (mg/day)			100	TRRP-24			
SA	Skin surface area (cm2)			4400	TRRP-24			
AF	Sediment to skin adherence factor (n	ng/cm2)		0.3	TRRP-24			
ABSd	Dermal absorption fraction (unitless)			see chemprop page				
EF	Exposure frequency (day/yr)			39	TRRP-24			
ED	Exposure duration (yr)			25	EPA, 1989			
CF	Conversion factor (kg/mg)			1.00E-06	EPA, 1989			
BW	Body weight (kg)			70	EPA, 1989			
ATc	Averaging time for carcinogens (days			25550	EPA, 1989			
ATnc	Averaging time for noncarcinogens (days)		9125	EPA, 1989			
	and the second second			and the second				
Chemical .			Sc	lintake for Carcinogens	Intake for Noncarcinogens			
Benzo(a)pyrene			1.58E-02	8.61E-10	2.41E-09			
Dibenz(a,h)anthracene	е		1.57E-02	8.56E-10	2.40E-09			
Iron			2.20E+04	1.20E-03	3.36E-03			
DERMAL CONTACT			-					
INTAKE = (Sc * SA * AF * ABSd * EF * ED * CF) / (BW * AT)								
(Chemical	Partie tylkinger (* 1871)	ABSd		∉Intake for Carcinogens	and the second s			
Benzo(a)pyrene Dibenz(a,h)anthracene Iron	e	1.30E-01 1.30E-01 1.00E-02	1.58E-02 1.57E-02 2.20E+04	1.48E-09 1.47E-09 1.58E-04	4.14E-09 4.11E-09 4.43E-04			

TABLE C-21 EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs SEDIMENT NORTH OF MARLIN AVE.

Parameter	Average		95% UCL	Statistic Used
Aluminum	1.32E+04		1.40E+04	95% Student's-t
Benzo(a)pyrene	1.10E-01		3.47E-01	97.5% KM (Chebyshev)
Dibenz(a,h)anthracene	2.87E-01	<	3.75E-02	median
Indeno(1,2,3-cd)pyrene	2.20E-01		3.17E-01	95% KM (BCA)
Iron	1.72E+04		1.88E+04	95% Student's-t

ŤABLE C-22 INTAKE CALCULATIONS FOR SEDIMENT NORTH OF MARLIN AVE. AVERAGE

TOEDINENT INCES	2011							
SEDIMENT INGEST	ION							
 INTAKE = (Sc * IR * EF * ED * CF) / (BW * AT)								
INVARE - (SC IK EF ED CF)/(BW AT)								
Parameter	Definition			Value	Reference			
Intake	Intake of chemical (mg/kg-day)			calculated				
Sc	Sediment concentration (mg/kg)			see data page				
lir.	Ingestion rate of soil (mg/day)			100	TRRP-24			
SA	Skin surface area (cm2)			4400	TRRP-24			
AF	Sediment to skin adherence factor (mg/cm2)		0.3	TRRP-24			
ABSd	Dermal absorption fraction (unitless	<u> </u>		see chemprop page	•			
EF	Exposure frequency (day/yr)	•		19	professional judgment			
ED	Exposure duration (yr)			13	professional judgment			
CF	Conversion factor (kg/mg)			1.00E-06	EPA, 1989			
BW	Body weight (kg)			70	EPA, 1989			
ATc	Averaging time for carcinogens (day	/s)		25550	EPA, 1989			
ATnc	Averaging time for noncarcinogens			9125	EPA, 1989			
i		`			·			
1. M. M. 1887		474 000	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	3 100 100 110 1	ore detection in the contract become			
			- Sc	Intaké for	Intake for			
Chemical		40	Fig. 5		Noncarcinogens			
Service Control Control Control	20 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1 A C 1	***************************************	Section of the sectio	Water Company Charles C Carlo Charles				
Aluminum			1.32E+04	1.83E-04	5.12E-04			
Benzo(a)pyrene			1.10E-01	1.52E-09	4.25E-09			
Dibenz(a,h)anthrace	ne		2.87E-01	3.96E-09	1.11E-08			
Indeno(1,2,3-cd)pyre			2.20E-01	3.04E-09	8.51E-09			
Iron			1.72E+04	2.37E-04	6.63E-04			
1					0.002 0 .			
DERMAL CONTACT								
DERWAL GONTAG								
INTAKE = (Sc * SA	* AF * ABSd * EF * ED * CF) / (BW * A	T)						
MATARE - (SC OA	A ABOU LI LD OIJI(BW A	.17						
Sala Sala Sala Sala Sala Sala Sala Sala		ver a lateral service	Access with a contract at the first	A CONTRACTOR OF THE PARTY OF TH	the section of the section of the section of			
	A SECTION OF STREET	ABSd	- Sc	Intake for	Intake for			
Chambal		ADSU	, OC		Noncarcinogens			
Chemical		STATE OF THE PARTY		varcinogens v	inoncalcinogens			
Aluminum		0.00E+00	1.32E+04	0.00E+00	0.00E+00			
Aluminum		1.30E-01	1.32E+04 1.10E-01	2.61E-09	7.30E-09			
Benzo(a)pyrene		1.30E-01 1.30E-01	1.10E-01 2.87E-01	6.80E-09	7.30E-09 1.90E-08			
Dibenz(a,h)anthrace		1.30E-01 0.00E+00	2.87E-01 2.20E-01					
Indeno(1,2,3-cd)pyre	ene		2.20E-01 1.72E+04	0.00E+00	0.00E+00			
Iron		1.00E-02	1.742+04	3.13E-05	8.75E-05			
L								

TABLE C-23
INTAKE CALCULATIONS FOR SEDIMENT NORTH OF MARLIN AVE.
RME

SEDIMENT INGES	STION				
INTAKÉ = (Sc * IR	* EF * ED * CF) / (BW * AT)				
Parameter	Definition			Value	Reference
Intake	Intake of chemical (mg/kg-day)			calculated	
Sc	Sediment concentration (mg/kg)			see data page	
IR	Ingestion rate of soil (mg/day)			100	TRRP-24
SA	Skin surface area (cm2)			4400	TRRP-24
AF	Sediment to skin adherence factor	(mg/cm2)		0.3	TRRP-24
ABSd	Dermal absorption fraction (unitless	s)		see chemprop page	
EF	Exposure frequency (day/yr)			39	TRRP-24
ED	Exposure duration (yr)			25	EPA, 1989
CF	Conversion factor (kg/mg)			1.00E-06	EPA, 1989
BW	Body weight (kg)			70	EPA, 1989
ATc	Averaging time for carcinogens (da	ıys)		25550	EPA, 1989
ATnc	Averaging time for noncarcinogens	(days)		9125	EPA, 1989
to the same of the		e di La Partici			
			Sc	Intake for	Intake for
Chemical				Carcinogens	Noncarcinogens .
Aluminum			1.40E+04	7.63E-04	2.14E-03
Benzo(a)pyrene			3.47E-01	1.89E-08	5.30E-08
Dibenz(a,h)anthrac	cene		3,75E-02	2.04E-09	5.72E-09
Indeno(1,2,3-cd)py			3.17E-01	1.73E-08	4.84E-08
Iron			1.88E+04	1.03E-03	2.87E-03
DERMAL CONTAC	OT CT			·	
	- •				
INTAKE = (Sc * SA	A * AF * ABSd * EF * ED * CF) / (BW * A	AT)			
		,			
		* C. C. D & 161 312	(60 millions) Provide Service		AND THE RESERVE OF STREET
	The second Party	ABSd	Sc	Intake for	Intake for
Chemical		. / ibou		Carcinogens	
S. J. Striboti				A STATE OF THE PARTY OF THE PAR	With the state of
Aluminum		0.00E+00	1.40E+04	0.00E+00	0.00E+00
Benzo(a)pyrene		1.30E-01	3,47E-01	3.25E-08	9.09E-08
Dibenz(a,h)anthrac	rane	1.30E-01	3.75E-02	3.51E-09	9.82E-09
Indeno(1,2,3-cd)py		0.00E+00	3.17E-01	0.00E+00	0.00E+00
Iron	iono	1.00E-02	1.88E+04	1.35E-04	3.79E-04
		1.001-02	1.000-104	1.3310-7	3.7 3 L-04

TABLE C-24 EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs POND SEDIMENT

Parameter.	Average		RME	Statistic Used 4
Aluminum	1.17E+04		1.40E+04	95% Student's t
Iron	1.53E+04		1.74E+04	95% Student's t
m,p-Cresol	3.75E-02	<	2.34E-02	median

TABLE C-25 INTAKE CALCULATIONS FOR POND SEDIMENT AVERAGE

SEDIMENT INGES	STION		 		
INTAKE - (So * ID	* EF * ED * CF) / (BW * AT)				
1141AKE - (50 1K	C El ED OFFI (BW AT)				
Parameter	Definition			Value	Reference
Intake	Intake of chemical (mg/kg-day)			calculated	
Sc	Sediment concentration (mg/kg)			see data page	
IR	Ingestion rate of soil (mg/day)			100	TRRP-24
SA	Skin surface area (cm2)			4400	TRRP-24
AF	Sediment to skin adherence factor (mg	g/cm2)		0.3	TRRP-24
ABSd	Dermal absorption fraction (unitless)			see chemprop page	
EF	Exposure frequency (day/yr)			19	professional judgment
ED	Exposure duration (yr)			13	professional judgment
CF	Conversion factor (kg/mg)			1.00E-06	EPA, 1989
BW	Body weight (kg)			70	EPA, 1989
ATc	Averaging time for carcinogens (days)			25550	EPA, 1989
ATnc	Averaging time for noncarcinogens (da	ays)		9125	EPA, 1989
156 - 166 -		LANGE OF PRINCIPLE		No contract and an extension of the contract and the	
Chemical		100	. Sc	Intake for	A STATE OF THE STA
Chemicals				Garcinogens	Noncarcinogens
Aluminum			1.17E+04	1.62E-04	4.54E-04
Iron			1.53E+04	2.11E-04	5.91E-04
m,p-Cresol			3.75E-02	5.18E-10	1.45E-09
11.,,5 0.000.			0.702 02	01102 10	1,102 00
DERMAL CONTA	СТ			······································	
					•
INTAKE = (Sc * S/	A * AF * ABSd * EF * ED * CF) / (BW * AT)				
				and the second	
			Sc		
Chemical	NAMES OF A STATE OF STREET			Carcinogens	Noncarcinogens
Aluminum	4	1.00E-02	1.17E+04	2.14E-05	6.00E-05
Iron		1.00E-02	1.53E+04	2.78E-05	7.80E-05
m,p-Cresol		1.00E-02	3.75E-02	6.84E-10	1.91E-09
,,p-0,000,	'		0.7 JL-02	0.07L-10	1.012-00
<u> </u>					

TABLE C-26 INTAKE CALCULATIONS FOR POND SEDIMENT RME

SEDIMENT INGES	TION				
INITAKE - (0- * ID	+ FF + FD + OF\ / / / / / / AT\				`
INTAKE = (SC " IR	* EF * ED * CF) / (BW * AT)				
Parameter	Definition			Value	Reference
Intake	Intake of chemical (mg/kg-day)			calculated	
Sc	Sediment concentration (mg/kg)			see data page	
IR	Ingestion rate of soil (mg/day)			100	TRRP-24
SA	Skin surface area (cm2)			4400	TRRP-24
AF	Sediment to skin adherence factor (mg/	cm2)		0.3	TRRP-24
ABSd	Dermal absorption fraction (unitless)			see chemprop page	
EF	Exposure frequency (day/yr)			39	TRRP-24
ED	Exposure duration (yr)			25	EPA, 1989
CF	Conversion factor (kg/mg)			1.00E-06	EPA, 1989
BW	Body weight (kg)			70	EPA, 1989
ATc	Averaging time for carcinogens (days)			25550	EPA, 1989
ATnc	Averaging time for noncarcinogens (day	/s)		9125	EPA, 1989
Court of the court	Services of the continue to the service of the serv	COLO LINEAR SOCIAL	Service Control of the Control of th		
10.00	And the second s		Sc	Intake for	Intake for
Chemical				Carcinogens	
		2000	A STATE OF THE PROPERTY OF THE PARTY OF THE		
Aluminum			1.40E+04	7.63E-04	2.14E-03
Iron			1.74E+04	9.49E-04	2.66E-03
m,p-Cresol			2.34E-02	1.28E-09	3.57E-09
DERMAL CONTAC	T		· · · · · · · · · · · · · · · · · · ·		
DEKINAL CONTAC	, i				
INTAKE = (Sc * SA	* AF * ABSd * EF * ED * CF) / (BW * AT)				
Carater Selvan State Teachers Caratellan		0.00 - 0.00 - 0.00	15 MOVE SERVICE AND CONTRACTOR OF THE WALL OF	# 1 P. C.	AND THE STATE OF T
		DC4	Sc	Intake for	
Chemical	A	DOU	20	Intake for	
TO STATE OF THE ST	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	one Marriadio	A CANADA STATE OF THE STATE OF		ovalozanama A ria zeraneli (h. 1994)
Aluminum	1.0	00E-02	1.40E+04	1.01E-04	2.82E-04
Iron	1.0	00E-02	1.74E+04	1.25E-04	3.51E-04
m,p-Cresol	1.0	00E-01	2.34E-02	1.68E-09	4.71E-09

APPENDIX D

RISK CALCULATIONS

APPENDIX D-1
RISK CALCULATIONS
SOUTH OF MARLIN SOIL

TABLE D-1
CHEMICAL SPECIFIC TOXICITY VALUES*

Compound	EPA weight- of-evidence classification	CAS Number	Chronic RfD mg/kg-day	Notes:	Inhalaiton RfC mg/m3	Notes:	Oral Slope Factor 1/mg/kg-day	Notes:	Inhalation Unit Risk 1/ug/m3	Dermal Absorption Notes: (unitless)	Notes
	Classification		mg/kg-day	Notes.	Highiis	Notes.	i/ilig/kg-day	NOIGS.	1/ug/11/3	Notes. (unitiess)	NOLES
4.4-DDD	B2	72-54-8					2.40E-01		_	1.30E-01	
Aluminum	Not available	7429-90-5	1.00E+00		5.00E-03					1.00E-02	
Aroclor-1254	B2	1336-36-3	2.00E-05				2.00E+00		5.70E-04	1.40E-01	
Arsenic	Α	7440-38-2	3.00E-04				1.50E+00		4.30E-03	3.00E-02	
Benzo(a)anthracene	B2	56-55-3					7.30E-01		8.80E-05	1.30E-01	
Benzo(a)pyrene	B2	50-32-8					7.30E+00		8.80E-04	1.30E-01	
Benzo(b)fluoranthene	B2	205-99-2					7.30E-01		8.80E-05	1.30E-01	
Benzo(k)fluoranthene	B2	207-08-9					7.30E-02		8.80E-06	1.30E-01	
Dibenz(a,h)anthracene	B2	53-70-3					7.30E+00		8.80E-04	1.30E-01	
Dieldrin	B2	60-57-1	5.00E-05				1.60E+01		4.60E-03	1.30E-01	
ndeno(1,2,3-cd)pyrene	B2	193-39-5					7.30E-01		8.80E-05	1.30E-01	
ron	Not available	7439-89-6	7.00E-01	NCEA, 2006						1.00E-02	
sopropylbenzene (cumene)	D	98-82-8	1.00E-01	,	4.00E-01					1.30E-01	
Lead	B2	7439-92-1								1.00E-02	
Napthalene	D	91-20-3	2.00E-02		3.00E-03					1.30E-01	

Notes:

^{*} Unless otherwise noted, the values were obtained from the EPA's on-line database, IRIS.

TABLE D-2 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE -- YOUTH TRESPASSER

or EAC * IUF Parameter Definition Intake Intake of c		HQ =	Intake / RfD					
Parameter Definition	2		or EAC / RfC					
	-					D - 5 14		
	hamla-17	n 1 1				Default		
	hemical (mg		40)			see intake		
	Air Concentr					see intake		
	ope factor (m		1			see chempror		
	unit risk (ug/					see chempror		
	dose (mg/k					see chemprop		
RfC Inhalation	reference co	oncentration	ı (mg/m^3)			see chemprop)	
INGESTION								
Chemical	Slope Factor	RfD		Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotient	
4,4-DDD `	2.40E-01			1.14E-10	3.19E-10	2.73E-11		
Aluminum		1.00E+00		9.47E-05	2.65E-04		2.65E-04	
Aroclor-1254	2.00E+00			3.17E-09	8.88E-09	6.34E-09	4.44E-04	
Benzo(a)anthracene	7.30E-01	UU		3.17E-09 3.95E-09		2.88E-09	7.776-04	
		_			1.11E-08			
Benzo(a)pyrene	7.30E+00	-		5.11E-09	1.43E-08	3.73E-08		
Benzo(b)fluoranthene	7.30E-01	_		7.00E-09	1.96E-08	5.11E-09		
Benzo(k)fluoranthene	7.30E-02	-		2.32E-09	6.49E-09	1.69E-10		
Dibenz(a,h)anthracene	7.30E+00	-		2.17E-09	6.08E-09	1.59E-08		
Dieldrin	1.60E+01	5,00E-05		1.30E-11	3.65E-11	2.09E-10	7.31E-07	
Indeno(1,2,3-cd)pyrene	7.30E-01			5.65E-09	1,58E-08	4.13E-09	–	
Iron	-	7.00E-01		2.10E-04	5.87E-04		8,38E-04	
				1.22E-08			3.42E-07	
Isopropyibenzene (cumene)	-	1.00E-01			3.42E-08		3,42E-U/	
Lead Napthalene	_	2.00E-02		7.86E-07 4.78E-09	2.20E-06 1.34E-08		6.70E-07	
			PATH	WAY TOTAL		7.20E-08	1.55E-03	1
				10170		7.202.00	1.002-00	
DERMAL CONTACT								
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor			Carc	Noncarc	Risk	Quotient	
4,4-DDD	2.40E-01	-		5.18E-11	1.45E-10	1.24E-11		
	4.40E-01	1.005.00				1.245-11	0.205.00	
Aluminum		1.00E+00		3.31E-06	9.28E-06	0.445.00	9.28E-06	
Aroclor-1254	2.00E+00	2.00E-05		1.55E-09	4.35E-09	3.11E-09	2.17E-04	
Benzo(a)anthracene	7.30E-01	-		1.80E-09	5.03E-09	1.31E-09		
Benzo(a)pyrene	7.30E+00	-		2.32E-09	6.51E-09	1.70E-08		
Benzo(b)fluoranthene	7.30E-01	-		3.19E-09	8,92E-09	2.33E-09		
Benzo(k)fluoranthene	7.30E-02	_		1.06E-09	2.95E-09	7.70E-11		
Dibenz(a,h)anthracene	7.30E+00	_		9.88E-10	2,77E-09	7.22E-09		
Dieldrin		5.00E-05		5.94E-12	1.66E-11	9,50E-11	3.32E-07	
Indeno(1,2,3-cd)pyrene	7.30E-01	J.00E 00		2.57E-09	7.20E-09	1,88E-09	5,54L-01	
	1.000-01	7.005.04				1.002-03	2 03⊑ 0E	
lron	-	7.00E-01		7.33E-06	2.05E-05		2.93E-05	
Isopropylbenzene (cumene)	_	1.00E-01		5.55E-09	1.55E-08		1.55E-07	
Lead Napthalene	_	2.00E-02		2.75E-08 2.18E-09	7.70E-08 6.10E-09		3,05E-07	
114Palaiollo	_	UUL-UZ						
			PATH	WAY TOTAL	L.=	3.30E-08	2.57E-04	
INHALATION								
	IUR	RfC		EAC	EAC	Cancer	Hazard	
Chemical	1511		С		Noncarc (mg/m3)	Risk	Quotient	
				1.80E-11	5.05E 14			
4.4.000	_	E 005 00			5.05E-14		4 755 05	
	***	5.00E-03		3.13E-05	8.77E-08		1.75E-05	
Aluminum		-		8.57E-10	2.40E-12	4.89E-13		
Aluminum Aroclor-1254	5.70E-04			2.10E-09	5.87E-12	1.84E-13		
Aluminum Aroclor-1254 Benzo(a)anthracene	8.80E-05	-						
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene	8.80E-05 8.80E-04			2.66E-09	7.45E-12	2.34E-12		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene	8.80E-05			2.66E-09 3.45E-09	7.45E-12 9.67E-12	2,34E-12 3.04E-13		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	8.80E-05 8.80E-04			3.45E-09	9.67E-12			
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	8.80E-05 8.80E-04 8.80E-05 8.80E-06			3.45E-09 1.43E-09	9.67E-12 4.01E-12	3.04E-13 1.26E-14		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04			3.45E-09 1.43E-09 1.10E-09	9.67E-12 4.01E-12 3.07E-12	3.04E-13 1.26E-14 9.66E-13		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03			3.45E-09 1.43E-09 1.10E-09 8.22E-12	9.67E-12 4.01E-12 3.07E-12 2.30E-14	3.04E-13 1.26E-14 9.66E-13 3.78E-14		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Diblenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04			3.45E-09 1.43E-09 1.10E-09 8.22E-12 2.84E-09	9.67E-12 4.01E-12 3.07E-12 2.30E-14 7.94E-12	3.04E-13 1.26E-14 9.66E-13		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,f)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03	- - -		3.45E-09 1.43E-09 1.10E-09 8.22E-12 2.84E-09 9.56E-05	9.67E-12 4.01E-12 3.07E-12 2.30E-14 7.94E-12 2.68E-07	3.04E-13 1.26E-14 9.66E-13 3.78E-14		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene)	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03			3.45E-09 1.43E-09 1.10E-09 8.22E-12 2.84E-09	9.67E-12 4.01E-12 3.07E-12 2.30E-14 7.94E-12	3.04E-13 1.26E-14 9.66E-13 3.78E-14	9.22E-07	
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene)	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03	- - -		3.45E-09 1.43E-09 1.10E-09 8.22E-12 2.84E-09 9.56E-05	9.67E-12 4.01E-12 3.07E-12 2.30E-14 7.94E-12 2.68E-07	3.04E-13 1.26E-14 9.66E-13 3.78E-14	9.22E-07	
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03	- - -		3.45E-09 1.43E-09 1.10E-09 8.22E-12 2.84E-09 9.56E-05 1.32E-04	9.67E-12 4.01E-12 3.07E-12 2.30E-14 7.94E-12 2.68E-07 3.69E-07	3.04E-13 1.26E-14 9.66E-13 3.78E-14	9.22E-07 1.79E-09	
4,4-DDD Aluminum Arcolor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dibeldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	 4.00E-01	РАТЬ	3.45E-09 1.43E-09 1.10E-09 8.22E-12 2.84E-09 9.56E-05 1.32E-04 4.09E-07	9.67E-12 4.01E-12 3.07E-12 2.30E-14 7.94E-12 2.68E-07 3.69E-07 1.14E-09 5.36E-12	3.04E-13 1.26E-14 9.66E-13 3.78E-14		L
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	 4.00E-01	PATE	3.45E-09 1.43E-09 1.10E-09 8.22E-12 2.84E-09 9.56E-05 1.32E-04 4.09E-07 1.91E-09	9.67E-12 4.01E-12 3.07E-12 2.30E-14 7.94E-12 2.68E-07 3.69E-07 1.14E-09 5.36E-12	3.04E-13 1.26E-14 9.66E-13 3.78E-14 2.50E-13	1.79E-09	

TABLE D-3 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN RME -- YOUTH TRESPASSER (age 6 to 18)

Cancer Risk =	Intake*CSF	=	HQ =	Intake / RfD					
	or EAC * IIID			or EAC / DfC					
	EAC * IUR			EAC / RfC					
	Definition						Default		
		nemical (mg					see intake		
		ir Concentra					see intake		
		pe factor (m		1			see chemprop		
		ınit risk (ug/					see chemprop		
		dose (mg/k					see chemprop		
RfC	Inhalation r	eference co	ncentration	n (mg/m^3)			see chemprop)	
INGESTION									
Chemical		Slope Factor	RfD		Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotient	
								<u> </u>	
4,4-DDD		2.40E-01	4.00=		2.98E-09	8.35E-09	7.16E-10	4.055	
Aluminum			1.00E+00		4.81E-04	1.35E-03		1.35E-03	
Aroclor-1254		2.00E+00	2.00E-05		4.54E-08	1.27E-07	9.08E-08	6.35E-03	
Benzo(a)anthracene	9	7.30E-01	-		3.77E-08	1.06E-07	2.76E-08		
Benzo(a)pyrene		7.30E+00	_		4.48E-08	1.25E-07	3.27E-07		
Benzo(b)fluoranther	ne	7.30E-01	_		4.83E-08	1.35E-07	3.52E-08		
Benzo(k)fluoranther		7,30E-02	_		2.24E-08	6.26E-08	1.63E-09		
Dibenz(a,h)anthrace		7.30E+00	_		1.06E-08	2,96E-08	7.71E-08		
	0110	1.60E+01	5.00E-05		1.24E-10	3.47E-10	1.71E-08 1.98E-09	6,94E-06	
Dieldrin			J.UUE-U5					0.545-00	
Indeno(1,2,3-cd)pyr	ene	7.30E-01			3.86E-08	1.08E-07	2.82E-08		
iron		-	7.00E-01		1.02E-03	2.87E-03		4.10E-03	
isopropylbenzene (d	cumene)		1.00E-01		3.43E-07	9.61E-07		9.61E-06	
Lead		-			6.11E-06	1.71E-05			
Napthalene		-	2.00E-02		1.56E-10	4.36E-10		2.18E-08	
				PATI	HWAY TOTA	L =	5.90E-07	1.18E-02	
DERMAL CONTAC	T					=			
	,								
Chemical		Slope Factor	RfD ————		Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotient	
4,4-DDD		2.40E-01	-		1.36E-09	3.80E-09	3,26E-10		
			1.005 - 00				J,ZUE-10	4 705 05	
Aluminum			1.00E+00		1.68E-05	4.72E-05	==	4.72E-05	
Aroclor-1254		2.00E+00	2.00E-05		2.22E-08	6.23E-08	4.45E-08	3.11E-03	
Benzo(a)anthracene	9	7.30E-01	-		1.72E-08	4.81E-08	1.25E-08		
Benzo(a)pyrene		7.30E+00	-		2.04E-08	5.71E-08	1.49E-07		
Benzo(b)fluoranther	ne	7.30E-01	-		2.20E-08	6.15E-08	1.60E-08		
Benzo(k)fluoranther		7.30E-02	_		1.02E-08	2.85E-08	7.43E-10		
Dibenz(a,h)anthrace		7.30E+00	_		4.81E-09	1.35E-08	3.51E-08		
Dieldrin	-	1.60E+01	5.00E-05		5.64E-11	1.58E-10	9.02E-10	3.16E-06	
	one	7.30E-01	J.00E-03		1.76E-08	4.92E-08	1.28E-08	J. 10L-00	
Indeno(1,2,3-cd)pyr	0110	1.50⊏-01	7.005.04				1,202-00	1.435.04	
Iron		-	7.00E-01		3.59E-05	1.00E-04		1.43E-04	
Isopropylbenzene (d	cumene)	-	1.00E-01		1.56E-07	4.37E-07		4.37E-06	
Lead Napthalene		_	2.00E-02		2.14E-07 7.08E-11	5,98E-07 1.98E-10		9.91E-09	
rapulalelle		_	2.00E-02						
				PATI	HWAY TOTA	L =	2.72E-07	3,31E-03	
INHALATION									
		IUR	RfC		EAC	EAC	Cancer	Hazard	
Chemical		IUK	NIC.			Noncarc (mg/m3)	Risk	Quotient	
					6.34E-12	1.78E-14			
4.4-DDD			-		1.40E-04	3.91E-07		7 925 05	
4,4-DDD		-	5 00F 02			3.91E-U/		7.82E-05	
Aluminum			5.00E-03				4 005 44		
Aluminum Aroclor-1254		5.70E-04	-		1.79E-08	5.02E-11	1.02E-11		
Aluminum Aroclor-1254 Benzo(a)anthracene	ə	8.80E-05	5.00E-03 		1.79E-08 2.12E-08	5.02E-11 5.94E-11	1.87E-12		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene		8.80E-05 8.80E-04	-		1.79E-08 2.12E-08 2.55E-08	5.02E-11 5.94E-11 7.13E-11	1.87E-12 2.24E-11		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene		8.80E-05			1.79E-08 2.12E-08	5.02E-11 5.94E-11	1.87E-12		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther	ne	8.80E-05 8.80E-04 8.80E-05	- - -		1.79E-08 2.12E-08 2.55E-08 2.59E-08	5.02E-11 5.94E-11 7.13E-11 7.25E-11	1.87E-12 2.24E-11		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther	ne ne	8.80E-05 8.80E-04 8.80E-05 8.80E-06	- - -		1.79E-08 2.12E-08 2.55E-08 2.59E-08 1.55E-08	5.02E-11 5.94E-11 7.13E-11 7.25E-11 4.33E-11	1.87E-12 2.24E-11 2.28E-12 1.36E-13		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Dibenz(a,h)anthrace	ne ne	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04	- - -		1.79E-08 2.12E-08 2.55E-08 2.59E-08 1.55E-08 5.75E-09	5.02E-11 5.94E-11 7.13E-11 7.25E-11 4.33E-11 1.61E-11	1.87E-12 2.24E-11 2.28E-12 1.36E-13 5.06E-12		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Dibenz(a,h)anthrace Dieldrin	ne ne ene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03	- - -		1.79E-08 2.12E-08 2.55E-08 2.59E-08 1.55E-08 5.75E-09 7.37E-11	5.02E-11 5.94E-11 7.13E-11 7.25E-11 4.33E-11 1.61E-11 2.06E-13	1.87E-12 2.24E-11 2.28E-12 1.36E-13 5.06E-12 3.39E-13		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Dieldrin Indeno(1,2,3-cd)pyr	ne ne ene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04	- - -		1.79E-08 2.12E-08 2.55E-08 2.59E-08 1.55E-08 5.75E-09 7.37E-11 2.19E-08	5.02E-11 5.94E-11 7.13E-11 7.25E-11 4.33E-11 1.61E-11 2.06E-13 6.12E-11	1.87E-12 2.24E-11 2.28E-12 1.36E-13 5.06E-12		
Aluminum Aroclor-1254 Benzo(a)anthracent Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Dibenz(a,h)anthrace Didenic(a,c)acd)pyr Indeno(1,2,3-cd)pyr	ne ne ene ene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03	-		1.79E-08 2.12E-08 2.55E-08 2.59E-08 1.55E-08 5.75E-09 7.37E-11 2.19E-08 5.63E-04	5.02E-11 5.94E-11 7.13E-11 7.25E-11 4.33E-11 1.61E-11 2.06E-13 6.12E-11 1.58E-06	1.87E-12 2.24E-11 2.28E-12 1.36E-13 5.06E-12 3.39E-13		
Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranther Benzo(b)fluoranther Dibenz(a,h)anthrace Dieldrin indeno(1,2,3-cd)pyn Iron Isopropylbenzene (c	ne ne ene ene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	- - -		1.79E-08 2.12E-08 2.55E-08 2.59E-08 1.55E-08 5.75E-09 7.37E-11 2.19E-08 5.63E-04 3.71E-03	5.02E-11 5.94E-11 7.13E-11 7.25E-11 4.33E-11 1.61E-11 2.06E-13 6.12E-11 1.58E-06 1.04E-05	1.87E-12 2.24E-11 2.28E-12 1.36E-13 5.06E-12 3.39E-13	2.59E-05	
Aluminum Arocior-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Dibenz(a,h)anthrace Dibenz(a,h)anthrace Dieldrin Indeno(1,2,3-cd)pyn Iron Isopropylbenzene (c	ne ne ene ene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	 4.00E-01		1.79E-08 2.12E-08 2.55E-08 2.59E-08 1.55E-08 5.75E-09 7.37E-11 2.19E-08 5.63E-04 3.71E-03 3.45E-06	5.02E-11 5.94E-11 7.13E-11 7.25E-11 4.33E-11 1.61E-11 2.06E-13 6.12E-11 1.58E-06 1.04E-05 9.66E-09	1.87E-12 2.24E-11 2.28E-12 1.36E-13 5.06E-12 3.39E-13		
Auminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Dibenz(a,h)anthrace Dieldrin	ne ne ene ene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	-		1.79E-08 2.12E-08 2.55E-08 2.59E-08 1.55E-08 5.75E-09 7.37E-11 2.19E-08 5.63E-04 3.71E-03	5.02E-11 5.94E-11 7.13E-11 7.25E-11 4.33E-11 1.61E-11 2.06E-13 6.12E-11 1.58E-06 1.04E-05	1.87E-12 2.24E-11 2.28E-12 1.36E-13 5.06E-12 3.39E-13	2.59E-05 5.81E-11	
Aluminum Arocior-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranther Benzo(k)fluoranther Dibenz(a,h)anthrace Dibenz(a,h)anthrace Dieldrin Indeno(1,2,3-cd)pyn Iron Isopropylbenzene (c	ne ne ene ene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	 4.00E-01	PATI	1.79E-08 2.12E-08 2.55E-08 2.59E-08 1.55E-08 5.75E-09 7.37E-11 2.19E-08 5.63E-04 3.71E-03 3.45E-06	5.02E-11 5.94E-11 7.13E-11 7.25E-11 4.33E-11 1.61E-11 2.06E-13 6.12E-11 1.58E-06 1.04E-05 9.66E-09 1.74E-13	1.87E-12 2.24E-11 2.28E-12 1.36E-13 5.06E-12 3.39E-13		

TABLE D-4 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE -- CONSTRUCTION WORKER

Cancer Risk =	Intake*CSF	=	HQ =	Intake / RfD					
	or EAC * IUR			or EAC / RfC					
D	Deficial						D = 6=+ 14		
Parameter ntake	Definition	hemical (mg	/kn_day/				Default see intake		
				.42\					
EAC		ir Concentra					see intake		
CSF		pe factor (m		1			see chemprop		
IUR		unit risk (ug/					see chemprop		
RfD		dose (mg/kg					see chemprop		
RfC	Inhalation i	reference co	ncentration	n (mg/m^3)			see chemprop		
NGESTION									
Chemical		Slope Factor	RfD		Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotient	
							_	Quotioni	
4,4-DDD		2.40E-01			6.44E-11	4.51E-09	1.55E-11		
Aluminum		_	1.00E+00		5.36E-05	3.75E-03		3,75E-03	
Aroclor-1254		2.00E+00	2.00E-05		1.79E-09	1.26E-07	3.59E-09	6.28E-03	
Benzo(a)anthracen	e	7.30E-01	_		2.23E-09	1.56E-07	1.63E-09		
Benzo(a)pyrene		7.30E+00	_		2.89E-09	2.02E-07	2.11E-08		
			-						
Benzo(b)fluoranthe		7.30E-01	-		3.96E-09	2.77E-07	2.89E-09		
Benzo(k)fluoranthe	ne	7.30E-02	-		1.31E-09	9.18E-08	9.58E-11		
Dibenz(a,h)anthrac	ene	7.30E+00			1.23E-09	8.60E-08	8.97E-09		
Dieldrin		1.60E+01	5.00E-05		7.38E-12	5.17E-10	1.18E-10	1.03E-05	
	rono		J.00E-00		3.20E-09			UUL-UU	
ndeno(1,2,3-cd)py	rene	7.30E-01				2.24E-07	2.33E-09		
ron		_	7.00E-01		1.19E-04	8.30E-03		1.19E-02	
sopropylbenzene (cumene)		1.00E-01		6.90E-09	4.83E-07		4.83E-06	
ead.					4.44E-07	3.11E-05			
Napthalene		_	2.00E-02		2.71E-09	1.89E-07		9.47E-06	
				PATI	HWAY TOTAL	L =	4.07E-08	2.19E-02	
DERMAL CONTAC	т								
		Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical		Factor			Carc	Noncarc	Risk	_Quotient	
4.4-DDD		2,40E-01	_		2.35E-11	1.64E-09	5.63E-12		
Aluminum			1.00E+00		1.50E-06	1.05E-04	··	1.05E-04	
		2.005.00					4 445 00		
Aroclor-1254		2.00E+00	2.00E-05		7.03E-10	4.92E-08	1.41E-09	2.46E-03	
Benzo(a)anthracen	e	7.30E-01	-		8.13E-10	5.69E-08	5.93E-10		
Benzo(a)pyrene		7.30E+00			1.05E-09	7.36E-08	7.68E-09		
Benzo(b)fluoranthe	ne	7.30E-01	_		1.44E-09	1.01E-07	1.05E-09		
Benzo(k)fluoranthe		7.30E-02			4.78E-10	3.34E-08	3,49E-11		
Dibenz(a,h)anthrac	ene	7.30E+00	_		4.47E-10	3.13E-08	3.27E-09		
Dieldrin		1.60E+01	5.00E-05		2.69E-12	1.88E-10	4.30E-11	3.76E-06	
ndeno(1,2,3-cd)py	rene	7.30E-01	_		1.16E-09	8,15E-08	8.49E-10		
ron			7.00E-01		3.32E-06	2.32E-04	J	3.32E-04	
		_							
sopropylbenzene (cumene)	_	1.00E-01		2.51E-09	1.76E-07		1.76E-06	
_ead		-	-		1,24E-08	8.71E-07			
Napthalene		-	2.00E-02		9.85E-10	6.90E-08		3.45E-06	
				PATI	HWAY TOTAL	L=	1.49E-08	2.91E-03	
NILIAI ATION									
NHALATION									
Chemical		IUR	RfC	,	EAC	EAC Noncarc (mg/m3)	Cancer Risk	Hazard Quotient	
-					raio (agrillo)	Transare (mg/ma)	1 // of/	_ dangerit	
4,4-DDD		_			1.08E-11	7.57E-13			
Aluminum		_	5.00E-03		1.88E-05	1.32E-06		2.63E-04	
Aroclor-1254		5.70E-04			E 44E 40	3.60E-11	2.93E-13		
	_				5.14E-1U				
Benzo(a)anthracen	е	8.80E-05	-		1.26E-09	8.80E-11	1.11E-13		
Benzo(a)pyrene		8.80E-04	-		1.60E-09	1.12E-10	1.40E-12		
Benzo(b)fluoranthe	ne	8.80E-05	_		2.07E-09	1.45E-10	1.82E-13		
Benzo(k)fluoranthe		8.80E-06	_		8.59E-10	6.02E-11	7.56E-15		
NII	епе	8.80E-04	-		6.59E-10	4.61E-11	5.80E-13		
		4.60E-03	-		4.93E-12	3.45E-13	2.27E-14		
	rene	8.80E-05	_		1.70E-09	1.19E-10	1.50E-13		
Dieldrin		J.JJL 00			5.74E-05	4.02E-06			
Dieldrin ndeno(1,2,3-cd)pyr		-	4.00= 0:					4.005.05	
Dieldrin ndeno(1,2,3-cd)pyr ron		-	4.00E-01		7.90E-05	5.53E-06		1.38E-05	
Dieldrin ndeno(1,2,3-cd)pyr ron sopropylbenzene (cumene)				2.45E-07	1.72E-08			
Dibenz(a,h)anthrac Dieldrin Indeno(1,2,3-cd)pyr Iron sopropylbenzene (Lead	cumene)	-	3 005 00			9 04E 44		7 605 00	
Dieldrin ndeno(1,2,3-cd)pyr ron sopropylbenzene (cumene)	-	3.00E-03		1.15E-09	8.04E-11		2.68E-08	
Dieldrin ndeno(1,2,3-cd)pyl ron sopropylbenzene (.ead	cumene)		3.00E-03	PATI			2.75E-12	2.68E-08 2.77E-04	

TABLE D-5 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN RME -- CONSTRUCTION WORKER

Cancer Risk =	Intake*CSI	F	HQ =	Intake / RfD					
	or EAC * IUR			or EAC / RfC					
	EAC "IUR			EAC / RIC					
Parameter	Definition						Default		
Intake		hemical (mg					see intake		
EAC		ir Concentra					see intake		
CSF		pe factor (m		1			see chemprop		
IUR		unit risk (ug/					see chemprop		
RfD		dose (mg/kg					see chemprop		
RfC	Inhalation i	reference co	ncentration	n (mg/m^3)			see chemprop		
INGESTION									
		Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical		Factor			Carc	Noncarc	Risk	Quotient	
4,4-DDD		2.40E-01	-		2.34E-09	1.64E-07	5.62E-10		
Aluminum		-	1.00E+00		3.78E-04	2.65E-02		2.65E-02	
Aroclor-1254		2.00E+00	2.00E-05		3.57E-08	2.50E-06	7.13E-08	1.25E-01	
Benzo(a)anthracen	е	7.30E-01	-		2.97E-08	2.08E-06	2.17E-08		
Benzo(a)pyrene		7.30E+00	_		3,52E-08	2.46E-06	2.57E-07		
Benzo(b)fluoranthe	ne	7.30E-01	_		3.79E-08	2,65E-06	2.77E-08		
Benzo(k)fluoranthe		7.30E-02	_		1.76E-08	1,23E-06	1.28E-09		
Dibenz(a,h)anthrac		7.30E+00	_		8.30E-09	5,81E-07	6.06E-08		
Dieldrin		1.60E+01	5.00E-05		9.73E-11	6.81E-09	1.56E-09	1.36E-04	
	rono		J.UUE-UD					1.300-04	
Indeno(1,2,3-cd)py	EIIE	7.30E-01	7.005.01		3.04E-08	2.12E-06	2.22E-08	0.055.00	
ron		-	7.00E-01		8.05E-04	5.64E-02		8.05E-02	
sopropylbenzene (cumene)	-	1.00E-01		2.70E-07	1.89E-05		1.89E-04	
Lead Napthalene		_	2.00E-02		4,80E-06 1,22E-10	3,36E-04 8,56E-09		4.28E-07	
·				DATI	HWAY TOTAL		4.64E-07	2.32E-01	
				1	10174		4.04107	Z.02L-01	
DERMAL CONTAC	T								
		Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical		Factor			Carc	Noncarc	Risk	Quotient	
4,4-DDD		2.40E-01	_		9.14E-10	6.40E-08	2.19E-10		
Aluminum		_	1.00E+00		1.13E-05	7.94E-04		7.94E-04	
Aroclor-1254		2.00E+00	2.00E-05		1.50E-08	1.05E-06	3.00E-08	5.24E-02	
Benzo(a)anthracen	е	7.30E-01	_		1.16E-08	8.10E-07	8.44E-09	· · · -	
Benzo(a)pyrene		7.30E+00	_		1.37E-08	9.61E-07	1.00E-07		
Benzo(b)fluoranthe	ne	7.30E-01	_		1.48E-08	1.04E-06	1.08E-08		
Benzo(k)fluoranthe		7.30E-01	_		6.85E-09	4.80E-07	5.00E-10		
Dibenz(a,h)anthrac		7.30E+00	_		3.24E-09	2.27E-07	2.36E-08		
	CITE		E 00E 05					E 24E 05	
Dieldrin		1.60E+01	5.00E-05		3.80E-11	2.66E-09	6.07E-10	5.31E-05	
ndeno(1,2,3-cd)py	rene	7.30E-01	7.007.0		1.18E-08	8.29E-07	8.64E-09	0.405	
ron		-	7.00E-01		2.42E-05	1.69E-03		2.42E-03	
sopropylbenzene (cumene)	-	1.00E-01		1.05E-07	7.36E-06		7.36E-05	
Lead		-	-		1.44E-07	1.01E-05		4 075	
Napthalene		-	2.00E-02		4.77E-11	3.34E-09		1.67E-07	
				PATI	WAY TOTAL		1.83E-07	5.58E-02	
NHALATION									
		IUR	RfC		EAC	EAC	Cancer	Hazard	
		IUIN	NO	C		Noncarc (mg/m3)	Risk	Quotient	
Chemical									
Chemical		_			2.64F-12				
4,4-DDD	············		_ 5.00E-03		2.64E-12 5.82E-05	1.85E-13		8 15E 04	
I,4-DDD Numinum	·····	 5 70E 04	_ 5.00E-03		5.82E-05	1.85E-13 4.07E-06	4 265 42	8.15E-04	
4,4-DDD Aluminum Aroclor-1254		 5.70E-04	-		5.82E-05 7.48E-09	1.85E-13 4.07E-06 5.23E-10	4.26E-12	8.15E-04	
I,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen	e	8.80E-05	_		5.82E-05 7.48E-09 8.84E-09	1.85E-13 4.07E-06 5.23E-10 6.18E-10	7.78E-13	8.15E-04	
I,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene		8.80E-05 8.80E-04	_ _ _		5,82E-05 7,48E-09 8,84E-09 1,06E-08	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10	7.78E-13 9.34E-12	8.15E-04	
4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe	ne	8.80E-05 8.80E-04 8.80E-05	- - -		5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10	7.78E-13 9.34E-12 9.49E-13	8.15E-04	
i,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe	ne ne	8.80E-05 8.80E-04 8.80E-05 8.80E-06	_ _ _		5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10	7.78E-13 9.34E-12 9.49E-13 5.67E-14	8.15E-04	
i,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe	ne ne	8.80E-05 8.80E-04 8.80E-05	- - -		5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10	7.78E-13 9.34E-12 9.49E-13	8.15E-04	
4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe	ne ne	8.80E-05 8.80E-04 8.80E-05 8.80E-06	- - - -		5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10	7.78E-13 9.34E-12 9.49E-13 5.67E-14	8.15E-04	
4.4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthraco	ne ne ene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03			5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09 2.40E-09 3.07E-11	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10 1.68E-10 2.15E-12	7.78E-13 9.34E-12 9.49E-13 5.67E-14 2.11E-12 1.41E-13	8.15E-04	
4,4-DDD Numinum Aroclor-1254 3enzo(a)anthracen 8enzo(a)pyrene 8enzo(b)fluoranthe 8enzo(k)fluoranthe Dibenz(a,n)anthrac Dieldrin ndeno(1,2,3-cd)pyr	ne ne ene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04	- - - - -		5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09 2.40E-09	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10 1.68E-10 2.15E-12 6.38E-10	7.78E-13 9.34E-12 9.49E-13 5.67E-14 2.11E-12	8.15E-04	
4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin ndeno(1,2,3-cd)pyron	ne ne ene rene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	-		5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09 2.40E-09 3.07E-11 9.11E-09 2.34E-04	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10 1.68E-10 2.15E-12 6.38E-10 1.64E-05	7.78E-13 9.34E-12 9.49E-13 5.67E-14 2.11E-12 1.41E-13		
i,4-DDD Aluminum Aroclor-1254 3enzo(a)anthracen 3enzo(a)pyrene 3enzo(b)fluoranthe 3enzo(k)fluoranthracene 3enzo(a,h)anthracene 3eldrin ndeno(1,2,3-cd)pyrosopropylbenzene (ne ne ene rene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03	- - - - -		5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09 2.40E-09 3.07E-11 9.11E-09 2.34E-04 1.54E-03	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10 1.68E-10 2.15E-12 6.38E-10 1.64E-05 1.08E-04	7.78E-13 9.34E-12 9.49E-13 5.67E-14 2.11E-12 1.41E-13	8.15E-04 2.70E-04	
i,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin ndeno(1,2,3-cd)pyron	ne ne ene rene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	-		5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09 2.40E-09 3.07E-11 9.11E-09 2.34E-04	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10 1.68E-10 2.15E-12 6.38E-10 1.64E-05	7.78E-13 9.34E-12 9.49E-13 5.67E-14 2.11E-12 1.41E-13		
i,4-DDD Numinum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin Indeno(1,2,3-cd)pyron sopropylbenzene (ead	ne ne ene rene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	- - - - - - - - 4.00E-01	РАТІ	5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09 2.40E-09 3.07E-11 9.11E-09 2.34E-04 1.54E-03 1.44E-06 2.59E-11	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10 1.68E-10 2.15E-12 6.38E-10 1.64E-05 1.08E-04 1.01E-07 1.82E-12	7.78E-13 9.34E-12 9.49E-13 5.67E-14 2.11E-12 1.41E-13 8.02E-13	2.70E-04 6.05E-10	
i,4-DDD Numinum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin Indeno(1,2,3-cd)pyron sopropylbenzene (ead	ne ne ene rene	8.80E-05 8.80E-04 8.80E-05 8.80E-06 8.80E-04 4.60E-03 8.80E-05	- - - - - - - - 4.00E-01	PATI	5.82E-05 7.48E-09 8.84E-09 1.06E-08 1.08E-08 6.44E-09 2.40E-09 3.07E-11 9.11E-09 2.34E-04 1.54E-03 1.44E-06	1.85E-13 4.07E-06 5.23E-10 6.18E-10 7.43E-10 7.55E-10 4.51E-10 1.68E-10 2.15E-12 6.38E-10 1.64E-05 1.08E-04 1.01E-07 1.82E-12	7.78E-13 9.34E-12 9.49E-13 5.67E-14 2.11E-12 1.41E-13	2.70E-04	

TABLE D-6 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE -- INDUSTRIAL WORKER

Cancer Risk = I	ntake*CSF	HQ =	Intake / RfD					
	or EAC * IUR		<i>or</i> EAC / RfC					
Parameter [Definition					Default		
	ntake of chemical	(malka day)				see intake		
			/m/\ai\					
	Effective Air Conce					see intake		
	Cancer slope facto)-1			see chemprop		
	nhalation unit risk				*	see chemprop		
	Reference dose (m					see chemprop		
RfC I	nhalation referenc	e concentrati	on (mg/m^3)			see chemprop		
INGESTION								
	Slope	e RfD		Intake	Intake	Cancer	Hazard	
Chemical	Facto			Carc	Noncarc	Risk	Quotient	
4,4-DDD	2.40E-	-01		1,36E-09	3,80E-09	3.25E-10		
Aluminum	_	1.00E+0	00	1.13E-03	3.16E-03		3.16E-03	
Aroclor-1254	2.00E+			3.77E-08	1,06E-07	7.55E-08	5.28E-03	
Benzo(a)anthracene	7.30E-			4.70E-08	1.32E-07	3.43E-08	-,	
Benzo(a)pyrene	7.30E+			6.08E-08	1.70E-07	4.44E-07		
Benzo(b)fluoranthen				8,33E-08	2.33E-07	6.08E-08		
Benzo(k)fluoranthen				2.76E-08	7.73E-08	2.02E-09		
Dibenz(a,h)anthrace	ne 7.30E+	- 00		2.59E-08	7.24E-08	1.89E-07		
Dieldrin	1.60E+	+01 5.00E-0	5	1.55E-10	4.35E-10	2.49E-09	8.70E-06	
Indeno(1,2,3-cd)pyre				6.73E-08	1.88E-07	4.91E-08		
iron		7.00E-0	11	2.49E-03	6.98E-03		9.98E-03	
	ımene)	1.00E-0		1.45E-07	4.07E-07		4.07E-06	
lsopropylbenzene (cı		1,002-0	1				4.07 ⊆-00	
Lead	-	_ =	_	9.35E-06	2.62E-05			
Napthalene	-	2.00E-0	2	5.70E-08	1.59E-07		7.97E-06	
			PAT	HWAY TOTA	L =	8.57E-07	1.84E-02	
			1			0.01 = 01	1.076-02	
DERMAL CONTACT								
	Slop			Intake	Intake	Cancer	Hazard	
Chemical	Facto	or		Carc	Noncarc	Risk	Quotient	
4,4-DDD	2.40E-	-01		2.44E-10	6.84E-10	5.86E-11		
Aluminum	-	1.00E+0	00	1.56E-05	4.37E-05		4.37E-05	
Aroclor-1254	2.00E+			7.32E-09	2.05E-08	1.46E-08	1.03E-03	
Benzo(a)anthracene	7.30E-		-	8.47E-09	2.37E-08	6,18E-09	1.502-00	
Benzo(a)pyrene	7.30E+			1.10E-08	3,07E-08	8.00E-08		
Benzo(b)fluoranthen				1.50E-08	4.20E-08	1.10E-08		
Benzo(k)fluoranthen				4.97E-09	1.39E-08	3.63E-10		
Dibenz(a,h)anthrace				4.66E-09	1.30E-08	3,40E-08		
Dieldrin	1.60E+	+01 5,00E-0	5	2.80E-11	7.84E-11	4,48E-10	1,57E-06	
Indeno(1,2,3-cd)pyre				1.21E-08	3.39E-08	8.85E-09		
ron	,	7,00E-0	11	3.46E-05	9.68E-05		1.38E-04	
	imono)							
sopropylbenzene (ci	umene) -	1.00E-0	11	2.62E-08	7.33E-08		7.33E-07	
Lead Napthalene	_	2.00E-0	2	1.30E-07 1.03E-08	3.63E-07 2.87E-08		1.44E-06	
• · · · · · · ·								
<u></u>			PAT	HWAY TOTA	Ľ=	1.56E-07	1.21E-03	
INHALATION								
		5/0		E40	E40	0	11	
Chemical	IUR	RfC		EAC Carc (ug/m3)	EAC Noncarc (mg/m3)	Cancer Risk	Hazard Quotient	
4,4-DDD				7 515 40	2 405 42			
•				7.51E-10	2.10E-12		7.645 - :	
Aluminum		5.00E-0	3	1.31E-03	3.65E-06		7.31E-04	
Aroclor-1254	5,70E			3,57E-08	1.00E-10	2.04E-11		
Benzo(a)anthracene	8.80E	-05		8.73E-08	2.45E-10	7.68E-12		
Benzo(a)pyrene	8.80E	-04		1.11E-07	3.10E-10	9.75E-11		4
Benzo(b)fluoranthen				1.44E-07	4.03E-10	1.27E-11		
Benzo(k)fluoranthen				5.97E-08	1.67E-10	5.25E-13		
Dibenz(a,h)anthrace				4.57E-08	1.28E-10	4.03E-11		
Dieldrin	4.60E			3.42E-10	9.59E-13	1.58E-12		
ndeno(1,2,3-cd)pyre	ne 8.80E	-05		1.18E-07	3.31E-10	1.04E-11		
ron		_		3,98E-03	1.12E-05			
sopropylbenzene (ci	umene) -	4.00E-0	11	5.49E-03	1.54E-05		3.84E-05	
		4.00€-0	•				0.042-00	
∟ead Napthalene	_	3,00E-0	3	1.70E-05 7.97E-08	4.77E-08 2.23E-10		7.44E-08	
						1.91E-10		
			PAI	HWAY TOTA	<u> </u>	1.916-10	7.69E-04	
					TOTAL	1.01E-06		

TABLE D-7 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN RME -- INDUSTRIAL WORKER

Paramater	Cancer Risk =	Intake*CSF	-	HQ =	Intake / RfD				==	
Intake of chemical (mptly-day) see Intake		<i>or</i> EAC * IUR			or EAC / RfC					
Intake Intake of chemical (mgkq-day) see Intake	Darameter	Definition						Default		
Effective Air Concentration (might*3) see Intake			nemical (mo	/kn-day)						
Cancer shope factor (mp/kg-day) See chempropose ch					n^3)					
NR										
RED Reference close (mightq-day) see chemprop see chempro					•					
Inhalation reference concentration (mg/m²3) See chemprop										
Chemical Slope RID Intake Intake Carc Riok Quotient					n (mg/m^3)					
Chemical Factor Carc Noncarc Risk Quotient	INGESTION						" -			
A4-DDD				RfD						
Alumhum	Chemical		Factor			Carc	Noncarc	Risk	Quotient	
Arcolor-1254			2.40E-01	-				2.13E-09		
Benzo(a)pyrene 7,30E-01 - 1,12E-07 3,15E-07 8,20E-08 Benzo(a)pyrene 7,30E-01 - 1,33E-07 3,73E-07 9,73E-07 Benzo(a)pyrene 7,30E-01 - 1,44E-07 4,02E-07 1,05E-07 Benzo(a)pyrene 7,30E-01 - 1,44E-07 4,02E-07 1,05E-07 Benzo(a)pyrene 7,30E-01 - 1,44E-07 4,02E-07 1,05E-07 Benzo(a)pyrene 7,30E-01 - 6,86E-08 1,81E-08 2,30E-07 Dilentaria, nitropyrene 7,30E-01 - 1,50E-03 8,81E-08 2,30E-07 Dilentaria, nitropyrene 7,30E-01 - 1,50E-07 3,22E-07 3,22E-07 B,39E-08 Indenot(1,2,3-cd)pyrene (cumene) - 1,00E-01 1,02E-06 2,88E-06 2,88E-06 1,00E-01 1,00E-01 1,02E-06 2,88E-06 2,88E-06 1,00E-01 1,			-							
Benzo(plyprene 7,30E+00 - 1,33E-07 3,73E-07 9,73E-07 Benzo(plytoranthene 7,30E-01 - 1,44E-07 4,02E-07 1,05E-07 Benzo(plytoranthene 7,30E-02 - 6,68E-08 1,88E-07 4,86E-09 1,05E-07 1,05				2.00E-05					1.89E-02	
Benzo(s)flutoranthene		•		-						
Serzo(Niturarithene 7.30E-02										
Dilentiral Ajanthracene				-						
Dielefun 1.60E+01 5.00E+05 3.69E+10 1.03E+09 5.90E+09 2.06E+05 Indenot(1,2.3-cd)pyrene 7.30E+01 - 1.15E-07 3.22E+07 8.39E-08 Indenot(1,2.3-cd)pyrene 7.30E+01 - 1.10E-07 3.22E+07 8.39E-08 Indenot(1,2.3-cd)pyrene Cumene) - 1.00E-01 1.02E-08 2.86E-06 2.86E-05 Indenot(1,2.2-cd) Indenot(1,2.3-cd)pyrene 2.00E-02 Indenot(1,2.3-cd)pyrene 8.00E-05 Indenot(1,2.3-cd)pyrene 8.00E-05 Indenot(1,2.3-cd)pyrene 8.00E-05 Indenot(1,2.3-cd)pyrene 8.00E-05 Indenot(1,2.3-cd)pyrene 8.00E-05 Indenot(1,2.3-cd)pyrene Indenot(1,2.3-cd)pyrene 8.00E-05 Indenot(1,2.3-cd)pyrene 8.00E-05 Indenot(1,2.3-cd)pyrene Indenot(1,2.3-cd)pyre				-						
Indemot 2,3-cdpyrene 7,30E-01 -		ene								
Transport 1,00E-01 1,02E-02 2,88E-03 1,22E-02 2,88E-05 2,88E-0				5.00E-05					2.06E-05	
		ene	7.30E-01					8.39E-08		
Lead			-							
Naphalene		:umene)	-	1.00E-01					2.86E-05	
PATHWAY TOTAL = 1.76E-06 3.52E-02			-						0.405.00	
DERMAL CONTACT	Napthalene		-	2.00E-02				818 ty 870.	_	-
Chemical Slope RfD Intake Intake Cancer Hazard Quollent					PAT	HWAY TOTA	\L =	1.76E-06	3.52E-02	
Chemical Factor Carc Noncarc Risk Quotient	DERMAL CONTAC	T								
4.4-DDD			Slope	RfD		Intake	Intake	Cancer	Hazard	
Aluminum — 1.00E-00 1.89E-04 5.29E-04 5.29E-04 Aroclor-1254 2.00E+00 2.00E-05 2.50E-07 6.99E-07 4.99E-07 3.49E-02 Benzz(a)anthracene 7.30E-01 — 1.93E-07 5.40E-07 1.41E-07 Benzz(a)pyrene 7.30E+00 — 2.29E-07 6.41E-07 1.67E-06 Benzz(a)pyrene 7.30E-01 — 2.48E-07 6.90E-07 1.80E-07 Benzz(a)pyrene 7.30E-01 — 2.48E-07 6.90E-07 1.80E-07 Benzz(a)pyrene 7.30E-01 — 2.48E-07 6.90E-07 1.80E-07 Benzz(a)pyrene 7.30E-01 — 5.40E-03 1.51E-07 3.94E-07 Diledrin 1.60E+01 5.00E-05 6.33E-10 1.77E-09 1.01E-08 3.54E-05 Indeno(1,2,3-cd)pyrene 7.30E-01 — 1.97E-07 5.52E-07 1.44E-07 Indeno(1,2,3-cd)pyrene 7.30E-01 — 1.97E-07 5.52E-07 1.44E-07 Indeno(1,2,3-cd)pyrene 7.30E-01 — 1.00E-01 1.75E-06 4.91E-06 4.91E-06 4.91E-06 4.91E-06 4.91E-06 A.91E-06 A.91E-06 A.91E-06 A.91E-06 A.91E-06 A.92E-09 Indeno(1,2,3-cd)pyrene 7.30E-01 A.90E-01 1.75E-06 A.91E-06	Chemical									
Aluminum — 1.00E-00 1.89E-04 5.29E-04 5.29E-04 Aroclor-1254 2.00E+00 2.00E-05 2.50E-07 6.99E-07 4.99E-07 3.49E-02 Benzz(a)anthracene 7.30E-01 — 1.93E-07 5.40E-07 1.41E-07 Benzz(a)pyrene 7.30E+00 — 2.29E-07 6.41E-07 1.67E-06 Benzz(a)pyrene 7.30E-01 — 2.48E-07 6.90E-07 1.80E-07 Benzz(a)pyrene 7.30E-01 — 2.48E-07 6.90E-07 1.80E-07 Benzz(a)pyrene 7.30E-01 — 2.48E-07 6.90E-07 1.80E-07 Benzz(a)pyrene 7.30E-01 — 5.40E-03 1.51E-07 3.94E-07 Diledrin 1.60E+01 5.00E-05 6.33E-10 1.77E-09 1.01E-08 3.54E-05 Indeno(1,2,3-cd)pyrene 7.30E-01 — 1.97E-07 5.52E-07 1.44E-07 Indeno(1,2,3-cd)pyrene 7.30E-01 — 1.97E-07 5.52E-07 1.44E-07 Indeno(1,2,3-cd)pyrene 7.30E-01 — 1.00E-01 1.75E-06 4.91E-06 4.91E-06 4.91E-06 4.91E-06 4.91E-06 A.91E-06 A.91E-06 A.91E-06 A.91E-06 A.91E-06 A.92E-09 Indeno(1,2,3-cd)pyrene 7.30E-01 A.90E-01 1.75E-06 A.91E-06	4.4-DDD		2.40E-01			1,52E-08	4,26E-08	3.66E-09		
Aroclor-1254				1.00F+00					5.29F-04	
Benzo(a)anthracene 7.30E-01 - 1.93E-07 5.40E-07 1.41E-07 Benzo(a)pyrene 7.30E-01 - 2.29E-07 6.41E-07 1.50E-06 Benzo(b)fluoranthene 7.30E-01 - 2.49E-07 6.90E-07 1.80E-07 Benzo(b)fluoranthene 7.30E-01 - 2.49E-07 6.90E-07 1.80E-09 Dibenz(a)hanthracene 7.30E-00 - 5.40E-08 1.51E-07 3.20E-07 8.34E-09 Dibenz(a)hanthracene 7.30E-01 - 5.40E-08 1.51E-07 3.20E-07 8.34E-09 Dibenz(a)hanthracene 7.30E-01 - 1.97E-07 5.52E-07 1.44E-07 1.00E-05 1.00E-05 1.77E-09 1.01E-08 3.54E-05 Indeno(1,2,3-cd)pyrene 7.30E-01 - 1.97E-07 5.52E-07 1.44E-07 1.00E-05 1.97E-07 1.90E-06 4.91E-06 4.91E-06 4.91E-06 1.00E-05 1.00E-05 1.75E-06 4.91E-06 4.91E-06 1.00E-05 1.00E			2.00F+00					4.99F-07		
Benzo(a)pyrene 7,30E+00 - 2,29E-07 6,41E-07 1,67E-06 Benzo(b)fluoranthene 7,30E-01 - 2,46E-07 6,90E-07 1,80E-07 Benzo(b)fluoranthene 7,30E-02 - 1,14E-07 3,20E-07 8,34E-09 Dibenz(a,h)anthracene 7,30E+00 - 5,40E-08 1,51E-07 3,94E-07 Dibeldrin 1,60E+01 5,00E-05 6,33E-10 1,77E-09 1,01E-08 3,54E-05 Indeno(1,2,3-cd)pyrene 7,30E-01 - 1,09E-01 1,79E-07 5,52E-07 1,44E-07 Dibenz(a,h)anthracene 1 1,00E-01 1,73E-06 4,91E-06		•							J,70L-0£	
Benzo(b) Tuoranthene		•		_						
Benzo(k)fluoranthene		ne		_						
Dibenz(a,h)anthracene				_						
Dieldrin 1,60E+01 5,00E-05 6,33E-10 1,77E-09 1,01E-08 3,54E-05 1,01E-07 7,30E-01 -				_						
Indeno(1,2,3-cd)pyrene		.,,0		5 00F-05					3.54F_05	
Iron		ene		J.UUE-U3					J.J7E-03	
Sopropylbenzene (cumene)		CITC	7.30E-01	7.00=.04				1.446-07	1 61E 02	
Lead		umene)	-							
Napthalene - 2.00E-02 7.95E-10 2.22E-09 1.11E-07		aniene)		1.UUE-UT					7.71C-UD	
NHALATION IUR RfC EAC Carcer (ug/m3) Noncarc (mg/m3) Risk Quotient			_	2.00F-02					1 11F-07	
IUR RfC EAC EAC Cancer Hazard Quotient	Taphiaiche		-	E.00E-02						
LUR RfC EAC Carc (ug/m3) Noncarc (mg/m3) Risk Quotient				=	PAT	ATOT YAWL	\L =	3.05E-06	3.72E-02	l
Carc (ug/m3) Noncarc (mg/m3) Risk Quotient	NHALATION									
A,4-DDD 6.60E-11 1.85E-13 Aluminum - 5.00E-03 1.45E-03 4.07E-06 8.15E-04 Arcolor-1254 5.70E-04 - 1.87E-07 5.23E-10 1.07E-10 Benzo(a)anthracene 8.80E-05 - 2.21E-07 6.18E-10 1.94E-11 Benzo(a)pyrene 8.80E-04 - 2.65E-07 7.43E-10 2.34E-10 Benzo(b)fluoranthene 8.80E-05 - 2.70E-07 7.55E-10 2.37E-11 Benzo(k)fluoranthene 8.80E-06 - 1.61E-07 4.51E-10 1.42E-12 Dibenz(a,h)anthracene 8.80E-04 - 5.99E-08 1.68E-10 5.27E-11 Dicledrin 4.60E-03 - 7.68E-10 2.15E-12 3.53E-12 Indeno(1,2,3-cd)pyrene 8.80E-05 - 2.28E-07 6.38E-10 2.00E-11 Fron 5.86E-03 1.64E-05 Isopropylbenzene (cumene) - 4.00E-01 3.86E-02 1.08E-04 2.70E-04 Lead - 3.59E-05 1.01E-07 Napthalene - 3.00E-03 6.48E-10 1.82E-12 6.05E-10			IUR	RfC						
Aluminum - 5.00E-03	Chemical				(Carc (ug/m3)	Noncarc (mg/m3)	Risk	Quotient	
Aluminum - 5.00E-03	4,4-DDD			-		6.60E-11	1.85E-13			
Aroclor-1254 5,70E-04 - 1,87E-07 5,23E-10 1,07E-10 Benzo(a)pyrene 8,80E-05 - 2,21E-07 7,43E-10 1,94E-11 Benzo(a)pyrene 8,80E-05 - 2,70E-07 7,43E-10 2,34E-10 Benzo(b)fluoranthene 8,80E-05 - 2,70E-07 7,55E-10 2,37E-11 Benzo(b)fluoranthene 8,80E-06 - 1,61E-07 4,51E-10 1,42E-12 Dibenz(a,h)anthracene 8,80E-04 - 5,99E-08 1,88E-10 5,27E-11 Dieldrin 4,60E-03 - 7,68E-10 2,15E-12 3,53E-12 Indeno(1,2,3-cd)pyrene 8,80E-05 - 2,28E-07 6,38E-10 2,00E-11 Iron 5,86E-03 1,64E-05 Isopropylbenzene (cumene) - 4,00E-01 3,86E-02 1,08E-04 2,70E-04 Lead - 3,00E-03 6,48E-10 1,82E-12 6,05E-10 PATHWAY TOTAL = 4,61E-10 1,08E-03			_	5.00E-03					8.15E-04	
Benzo(a)anthracene 8.80E-05 - 2.21E-07 6.18E-10 1.94E-11 Benzo(b)fluoranthene 8.80E-04 - 2.65E-07 7.43E-10 2.34E-10 Benzo(b)fluoranthene 8.80E-05 - 2.70E-07 7.55E-10 2.37E-11 Benzo(k)fluoranthene 8.80E-06 - 1.61E-07 4.51E-10 1.42E-12 Dibenz(a,h)anthracene 8.80E-04 - 5.99E-08 1.68E-10 5.27E-11 Dieldrin 4.60E-03 - 7.68E-10 2.15E-12 3.53E-12 Indeno(1,2,3-cd)pyrene 8.80E-05 - 2.28E-07 6.38E-10 2.00E-11 Fron - 5.86E-03 1.64E-05 Sopropylbenzene (cumene) - 4.00E-01 3.86E-02 1.08E-04 2.70E-04 Lead - 3.59E-05 1.01E-07 Napthalene - 3.00E-03 6.48E-10 1.82E-12 6.05E-10			5,70E-04	_				1.07E-10		
Benze(a)pyrene 8.80E-04 - 2.66E-07 7.43E-10 2.34E-10 Benze(b)fluoranthene 8.80E-05 - 2.70E-07 7.55E-10 2.37E-11 Benze(k)fluoranthene 8.80E-06 - 1.61E-07 4.51E-10 1.42E-12 Dibenz(a,h)anthracene 8.80E-04 - 5.99E-08 1.68E-10 5.27E-11 Dieldrin 4.60E-03 - 7.68E-10 2.15E-12 3.53E-12 Indeno(1,2,3-cd)pyrene 8.80E-05 - 2.28E-07 6.38E-10 2.00E-11 Iron - 5.86E-03 1.64E-05 Sopropylbenzene (cumene) - 4.00E-01 3.86E-02 1.08E-04 2.70E-04 Lead - 3.59E-05 1.01E-07 Napthalene - 3.00E-03 6.48E-10 1.82E-12 6.05E-10		•	8.80E-05	_						
Benze(k)fluoranthene 8.80E-05 - 2.70E-07 7.55E-10 2.37E-11 Benze(k)fluoranthene 8.80E-06 - 1.61E-07 4.51E-10 1.42E-12 Benze(k)fluoranthene 8.80E-04 - 5.99E-08 1.68E-10 5.27E-11 Dieldrin 4.60E-03 - 7.68E-10 2.15E-12 3.53E-12 ndeno(1,2,3-cd)pyrene 8.80E-05 - 2.28E-07 6.38E-10 2.00E-11 ron - 5.86E-03 1.64E-05 sopropylbenzene (cumene) - 4.00E-01 3.86E-02 1.08E-04 2.70E-04 Lead - 3.00E-03 6.48E-10 1.82E-12 6.05E-10 PATHWAY TOTAL = 4.61E-10 1.08E-03				_						
Benzo(k)fluoranthene		ne		_						
Dibenz(a,h)anthracene				_						
Dieldrin										
ndeno(1,2,3-cd)pyrene ron 8.80E-05 - 2.28E-07 6.38E-10 2.00E-11 ron - - 5.86E-03 1.64E-05 - 2.70E-04 sopropylbenzene (cumene) - 4.00E-01 3.86E-02 1.08E-04 2.70E-04 Lead - 3.59E-05 1.01E-07 - Napthalene - 3.00E-03 6.48E-10 1.82E-12 6.05E-10 PATHWAY TOTAL = 4.61E-10 1.08E-03										
ron - 5.88E-03 1.64E-05 sopropylbenzene (cumene) - 4.00E-01 3.86E-02 1.08E-04 2.70E-04 ead - 3.59E-05 1.01E-07 Napthalene - 3.00E-03 6.48E-10 1.82E-12 6.05E-10 PATHWAY TOTAL = 4.61E-10 1.08E-03		ene								
Sopropylbenzene (cumene)				_						
Lead - 3.59E-05 1.01E-07 Napthalene - 3.00E-03 6.48E-10 1.82E-12 6.05E-10 PATHWAY TOTAL = 4.61E-10 1.08E-03		umene)	_	4.00F-01					2 70F-04	
Napthalene – 3.00E-03 6.48E-10 1.82E-12 6.05E-10 PATHWAY TOTAL = 4.61E-10 1.08E-03			_	T					2.702-07	
			_	3.00E-03					6.05E-10	
									_	,
TOTAL 4.81E-06 7.34E-02					PAT	HWAY TOTA	\L =	4.61E-10	1.08E-03	

APPENDIX D-2
RISK CALCULATIONS
NORTH OF MARLIN SOIL

TABLE D-8
CHEMICAL SPECIFIC TOXICITY VALUES*

Compound	EPA weight- of-evidence	CAS Number	Chronic RfD		Inhalaiton RfC		Oral Slope Factor		Inhalation Unit Risk		Dermal Absorption	
	classification		mg/kg-day	Notes:	mg/m3	Notes:	1/mg/kg-day	Notes:	1/ug/m3	Notes:	(unitless)	Notes:
1,2-Dichloroethane	B2	107-06-2	2.00E-02		2.40E+00		9.10E-02		2.60E-05		1.30E-01	
Aluminum	Not available	7429-90-5	1.00E-01		5.00E-03						1.00E-02	
Aroclor-1254	B2	1336-36-3	2.00E-05				2.00E+00		5.70E-04		1.30E-01	
Benzo(a)anthracene	B2	56-55-3			-		7.30E-01		8.80E-05		1.30E-01	
Benzo(a)pyrene	B2	50-32-8					7.30E+00		8.80E-04		1.30E-01	
Benzo(b)fluoranthene	B2	205-99-2					7.30E-01		8.80E-05		1.30E-01	
Dibenz(a,h)anthracene	B2	53-70-3					7.30E+00		8.80E-04		1.30E-01	
Indeno(1,2,3-cd)pyrene	B2	193-39-5					7.30E-01		8.80E-05		1.30E-01	
Iron	Not available	7439-89-6	7.00E-01	NCEA, 2006							1.00E-02	
Tetrachloroethene	B2	127-18-4	1.00E-02	,	2.70E-01		5.20E-02		5.80E-07		1.30E-01	

Notes:

^{*} Unless otherwise noted, the values were obtained from EPA's on-line database, IRIS.

TABLE D-9 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- YOUTH TRESPASSER

Cancer Risk =	Intake*CSF	HQ =	Intake / RfD					
	or EAC * IUR		<i>or</i> EAC / RfC					
Parameter	Definition					Default		
Intake	Intake of chemical (mg/kg-day)				see intake		
EAC	Effective Air Concer		n^3)			see intake		
CSF	Cancer slope factor					see chemprop		
IUR	Inhalation unit risk (•			see chemprop		
RfD	Reference dose (mg					see chemprop		
			(m. a./m. A2)					
RfC	Inhalation reference	concentratio	n (mg/m^3)			see chemprop		
INGESTION								
Chemical	Slope Factor			Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotient	
Criemical	Factor			Carc	Noncarc	Nisk	Quotient	
1,2-Dichloroethane	9.10E-0	2 2.00E-02		2.86E-10	8.01E-10	2.60E-11	4.01E-08	
Aluminum		1.00E-01		1.80E-04	5.04E-04		5.04E-03	
Aroclor-1254	2 NOF+0	00 2.00E-05		2.66E-09	7.44E-09	5.31E-09	3.72E-04	
Benzo(a)anthracen				1.60E-09	4.48E-09	1.17E-09		
, , ,								
Benzo(a)pyrene	7.30E+0			1.38E-09	3.85E-09	1.00E-08		
Benzo(b)fluoranthe				2.11E-09	5.92E-09	1.54E-09		
Dibenz(a,h)anthrac				1.01E-09	2.83E-09	7.37E-09		
Indeno(1,2,3-cd)py	rene 7.30E-0	11		1.69E-09	4.73E-09	1.23E-09		
Iron		7.00E-01		3.07E-04	8.58E-04		1.23E-03	
Tetrachloroethene	5.20E-0	2 1.00E-02		1.85E-10	5.18E-10	9.62E-12	5.18E-08	
			PATI	-WAY TOTAL =		2.67E-08	6.64E-03	
DERMAL CONTAC	T							
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor			Carc	Noncarc	Risk	Quotient	
1,2-Dichloroethane	9.10E-0	2 2,00E-02		1.30E-10	3.65E-10	1.19E-11	1.82E-08	
Aluminum		1,00E-01		6.30E-06	1.76E-05		1.76E-04	
Aroclor-1254		00 2,00E-05		1,21E-09	3.38E-09	2.42E-09	1.69E-04	
Benzo(a)anthracen				7.28E-10	2.04E-09	5.31E-10		
, ,								
Benzo(a)pyrene	7.30E+0			6.26E-10	1.75E-09	4.57E-09		
Benzo(b)fluoranthe				9.62E-10	2.69E-09	7.02E-10		
Dibenz(a,h)anthrac				4.59E-10	1.29E-09	3.35E-09		
Indeno(1,2,3-cd)py	rene 7.30E-0	1		7.68E-10	2.15E-09	5.61E-10		
Iron		7.00E-01		1.07E-05	3.00E-05		4.29E-05	
Tetrachloroethene	5.20E-0	2 1.00E-02		8.41E-11	2.36E-10	4.38E-12	2.36E-08	
			PATI	HWAY TOTAL =	:	1.21E-08	3.89E-04	
INHALATION								
Ob!	IUR	RfC		EAC	EAC	Cancer	Hazard	
Chemical	····			Carc (ug/m3) No	oricarc (mg/m3)	Risk	Quotient	
 1,2-Dichloroethane	2 60⊑-0	5 2.40E+00)	8.10E-06	2.27E-08			
l '	2.00E-0	5.00E-03					3.51E-05	
Aluminum	 			6.27E-05	1.75E-07	4.000.44	0.0 IE-UD	
Aroclor-1254	5.70E-0			7.16E-11	2.01E-13	4.08E-14		
Benzo(a)anthracen				6.93E-09	1.94E-11	6.10E-13		
Benzo(a)pyrene	8.80E-0	14		6.99E-10	1.96E-12	6.15E-13		
	ne 8.80E-0)5		9.92E-10	2.78E-12	8.73E-14		
	ene 8.80E-0	14		4.51E-10	1.26E-12	3.97E-13		
Benzo(b)fluoranthe				9.10E-10	2.55E-12	8.01E-14		
Benzo(b)fluoranthe Dibenz(a,h)anthrac)5						
Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)py)5		1 14F-04	3 20F-07			
Benzo(b)fluoranthe Dibenz(a,h)anthrad Indeno(1,2,3-cd)py Iron	rene 8.80E-0			1.14E-04 4.88E-05	3.20E-07 1.37E-07	2 83F-11	5.06F-07	
Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)py Iron Tetrachloroethene	rene 8.80E-0	 07 2.70E-01		4.88E-05	1.37E-07	2.83E-11	5.06E-07	
Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)py Iron	rene 8.80E-0				1.37E-07	2.83E-11 3.02E-11	5.06E-07 3.56E-05	

TABLE D-10 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- YOUTH TRESPASSER (age 6 to 18)

Cancer Risk =	Intake*CSF	HQ =	Intake / RfD					
	or		or					
	EAC * IUR		EAC / RfC					
Parameter	Definition					Dofoult		
Parameter Intake	Intake of chemical (m	g/kg-day)				Default see intake		
EAC	Effective Air Concent		1^3)			see intake		
CSF	Cancer slope factor (see chemprop		
IUR	Inhalation unit risk (ug	,	•			see chemprop		
RfD	Reference dose (mg/					see chemprop		
RfC	Inhalation reference of		n (mg/m^3)			see chemprop		
								
INGESTION								
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor			Carc	Noncarc	Risk	Quotient	
1,2-Dichloroethane	9.10E-02	2.00E-02		7.46E-12	2.09E-11	6.78E-13	1.04E-09	
	9.10E-02	1.00E-01		7.40E-12 7.83E-04		0.766-13		
Aluminum Aroclor-1254		1.00E-01 2.00E-05		7.83E-04 2.52E-10	2.19E-03	5 05E 40	2.19E-02 3.53E-05	
1					7.07E-10	5.05E-10	ა.აა⊏-05	
Benzo(a)anthracen				6.52E-10	1.82E-09	4.76E-10		
Benzo(a)pyrene	7.30E+00			2.22E-08	6.21E-08	1.62E-07		
Benzo(b)fluoranthe				1.48E-08	4.14E-08	1.08E-08		
Dibenz(a,h)anthrac				6.34E-10	1.78E-09	4.63E-09		
Indeno(1,2,3-cd)py	ene 7.30E-01			2.32E-08	6.51E-08	1.70E-08		
Iron		7.00E-01		2.17E-03	6.06E-03		8.66E-03	
Tetrachloroethene	5.20E-02	1.00E-02		1.24E-11	3.47E-11	6.44E-13	3.47E-09	
			PAT	HWAY TOTA	l =	1.95E-07	3.06E-02	٦
			1711	1111/11		1.002.07	0.001.02	
DERMAL CONTAC	Т							
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor	ND		Carc	Noncarc	Risk	Quotient	
OTIOTHIOGI	1 40101			Outo	140110410	TUOK	Quotient	
1,2-Dichloroethane	9 10F-02	2.00E-02		3.39E-12	9.50E-12	3.09E-13	4.75E-10	
Aluminum	0.10L-02	1.00E-01		2.74E-05	7.68E-05	0.002 10	7.68E-04	
Aroclor-1254	2.00E+00					2 205 40	1.61E-05	
1		2.00E-05		1.15E-10	3.22E-10	2.30E-10	1.01E-03	
Benzo(a)anthracen				2.97E-10	8.30E-10.	2.16E-10		
Benzo(a)pyrene	7.30E+00			1.01E-08	2.83E-08	7.37E-08		
Benzo(b)fluoranthe				6.73E-09	1.88E-08	4.91E-09		
Dibenz(a,h)anthrac				2.88E-10	8.08E-10	2.11E-09		
Indeno(1,2,3-cd)py	ene 7.30E-01			1.06E-08	2.96E-08	7.72E-09		
Iron		7.00E-01		7.58E-05	2.12E-04		3.03E-04	
Tetrachloroethene	5.20E-02	1.00E-02		5.64E-12	1.58E-11	2.93E-13	1.58E-09	
			PAT	HWAY TOTA		8.89E-08	1.09E-03	1
INHALATION								
	IUR	RfC		EAC	EAC	Cancer	Hazard	
Chemical	-			Carc (ug/m3)	Noncarc (mg/m		Quotient	
4.0 Diable of the	2000	0.405:55		0.445.07		5.405.40	0.405.46	
1,2-Dichloroethane	2.60E-05	2.40E+00		2.11E-07	5.91E-10	5.49E-12	2.46E-10	
Aluminum		5.00E-03		2.86E-04	8.01E-07		1.60E-04	
Aroclor-1254	5.70E-04			1.01E-10	2.82E-13	5.74E-14		
Benzo(a)anthracen				2.58E-10	7.23E-13	2.27E-14		
Benzo(a)pyrene	8.80E-04			2.72E-10	7.63E-13	2.40E-13	-	
Benzo(b)fluoranthe				8.76E-09	2.45E-11	7.71E-13		
Dibenz(a,h)anthrac	ene 8.80E-04			2.58E-10	7.23E-13	2.27E-13		
Indeno(1,2,3-cd)py				1.60E-08	4.48E-11	1.41E-12		
Iron				9.66E-04	2.70E-06			
Tetrachloroethene	5.80E-07	2.70E-01		3.27E-06	9.16E-09	1.90E-12	3.39E-08	
		•	PAT	HWAY TOTA		1.01E-11	1.60E-04	7
	S							
					TOTAL	2.84E-07	3.19E-02	

TABLE D-11 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE – CONSTRUCTION WORKER

Cancer Risk =	Intake*CSF	HQ =	Intake / RfD					
	or EAC * IUR		or EAC / RfC					
Parameter	Definition					Default		
Intake	Intake of chemical (m	g/kg-day)				see intake		
EAC	Effective Air Concent		1^3)			see intake		
CSF	Cancer slope factor (r					see chemprop		
IUR	Inhalation unit risk (ug	/m^3)-1				see chemprop		
RfD	Reference dose (mg/l					see chemprop		
RfC	Inhalation reference of		n (mg/m^3)			see chemprop		
INGESTION		***************************************						
	01	D/D						
Chemical	Slope Factor	RfD		Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotient	
1,2-Dichloroethane	9.10E-02	2.00E-02		1.62E-10	1,13E-08	1.47E-11	5.67E-07	
Aluminum		1.00E-01		1.02E-04	7.13E-03		7.13E-02	
Aroclor-1254	2 00F+00	2.00E-05		1.50E-09	1.05E-07	3.01E-09	5.26E-03	
Benzo(a)anthracen				9.05E-10	6.34E-08	6.61E-10	3,202 00	
Benzo(a)pyrene	7.30E+00			7.78E-10	5.45E-08	5.68E-09		
Benzo(b)fluoranthe				1.20E-09	8.37E-08	8.73E-10		
Dibenz(a,h)anthrac				5.71E-10	4.00E-08	4.17E-09		
Indeno(1,2,3-cd)py		-		9.55E-10	6.68E-08	6.97E-10		
Iron		7.00E-01		1.73E-04	1.21E-02		1.73E-02	
Tetrachloroethene	5.20E-02	1.00E-02		1.05E-10	7.32E-09	5.44E-12	7.32E-07	
			PATI	ATOT YAWH	L =	1.51E-08	9.39E-02	1
DERMAL CONTAC								
DERIVIAL CONTAC	•1							
Chemical	Slope Factor	RfD		Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotient	
1,2-Dichloroethane	9.10E-02	2.00E-02		5.89E-11	4.13E-09	5.36E-12	2.06E-07	
Aluminum		1.00E-01		2.85E-06	2,00E-04		2.00E-03	
Aroclor-1254	2 00F+00	2,00E-05		5.47E-10	3.83E-08	1.09E-09	1.91E-03	
Benzo(a)anthracen				3.29E-10	2.31E-08	2.40E-10	1.012 00	
Benzo(a)pyrene	7.30E+00			2.83E-10	1.98E-08	2.07E-09		
Benzo(b)fluoranthe				4.35E-10	3.05E-08	3.18E-10		
Dibenz(a,h)anthrac				2.08E-10	1.46E-08	1.52E-09		
Indeno(1,2,3-cd)pyi				3.48E-10	2.43E-08	2.54E-10		
Iron		7.00E-01		4.86E-06	3.40E-04		4.86E-04	
Tetrachloroethene	5,20E-02	1.00E-02		3.81E-11	2.67E-09	1.98E-12	2.67E-07	
			PATI	ATOT YAWH	L =	5.50E-09	4.40E-03	
INHALATION								
								-
Chemical	IUR	RfC	C	EAC arc (ug/m3)	EAC Noncarc (mg/m3)	Cancer Risk	Hazard Quotient	
1,2-Dichloroethane	2.60E-05	2.40E+00		4.86E-06	3.40E-07	1.26E-10	1.42E-07	
Aluminum	-	5.00E-03		3.76E-05	2.63E-06		5.26E-04	
Aroclor-1254	5.70E-04			4.30E-11	3.01E-12	2.45E-14		
Benzo(a)anthracen				4.16E-09	2.91E-10	3.66E-13		
Benzo(a)pyrene	8.80E-04			4.19E-10	2.93E-11	3.69E-13		•
Benzo(b)fluoranthe				5.95E-10	4.17E-11	5.24E-14		
Dibenz(a,h)anthrac				2.71E-10	1.90E-11	2.38E-13		
Indeno(1,2,3-cd)pyr				5.46E-10	3.82E-11	4.80E-14		
Iron	U.OUL-UO			6.86E-05	4.80E-06	4.00L-14		
Tetrachloroethene	5.80E-07	2.70E-01		2.93E-05	2.05E-06	1.70E-11	7.60E-06	
	•		DATE	AVAY TOTA	1 =	1 //E 10	5 3 4 E 04	1
			L PATE	ATOT YAWH	L -	1.44E-10	5.34E-04	<u> </u>
					TOTAL	2.07E-08	9.88E-02	
L								

TABLE D-12 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- CONSTRUCTION WORKER

Cancer Risk =	Intake*CSF	HQ =	Intake / RfD		·····			
	or EAC * IUR		<i>or</i> EAC / RfC					
Parameter	Definition					Default		
Intake	Intake of chemical (n	ng/kg-day)		-		see intake		
EAC	Effective Air Concen		1^3)			see intake		
CSF	Cancer slope factor					see chempro		
			1					
IUR	Inhalation unit risk (u					see chempro		
RfD	Reference dose (mg					see chempro		
RfC	Inhalation reference	concentratio	n (mg/m^3)			see chemprop)	
INGESTION	····							
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor			Carc	Noncarc	Risk	Quotient	
1,2-Dichloroethane	9.10E-02	2 2.00E-02		5.86E-12	4.10E-10	5,33E-13	2.05E-08	
Aluminum		1.00E-01		6.16E-04	4.31E-02		4.31E-01	
Aroclor-1254	2 00F±0	0 2.00E-05		1.98E-10	1.39E-08	3,97E-10	6.94E-04	
Benzo(a)anthracer				5.12E-10	3.58E-08	3.74E-10	0.07L-04	
Benzo(a)pyrene	7.30E+0			1.74E-08	1.22E-06	1.27E-07		
Benzo(b)fluoranthe				1.16E-08	8.14E-07	8.49E-09		
Dibenz(a,h)anthrad	ene 7.30E+0	0		4.98E-10	3.49E-08	3,64E-09		
Indeno(1,2,3-cd)py				1.83E-08	1.28E-06	1.33E-08		
iron		7.00E-01		1.70E-03	1.19E-01		1.70E-01	
Tetrachloroethene	5.20E-02			9.73E-12	6.81E-10	5.06E-13	6.81E-08	
			DATL	IWAY TOTAL	=	1.54E-07	6,02E-01	7
			I FAIR	VVAI TOTAL	- -	1,045-07	0,025-01	<u></u>
DERMAL CONTAC	Т				<u></u>			
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor			Carc	Noncarc	Risk	Quotient	
1,2-Dichloroethane	9.10E-02	2 2.00E-02		2.28E-12	1.60E-10	2.08E-13	8,00E-09	
Aluminum	_	1.00E-01		1.85E-05	1.29E-03		1.29E-02	
Aroclor-1254	2.00=+0	0 2.00E-05		7.74E-11	5.41E-09	1.55E-10	2.71E-04	
							2.7 11-04	
Benzo(a)anthracer				2.00E-10	1.40E-08	1.46E-10		
Benzo(a)pyrene	7.30E+0			6.80E-09	4.76E-07	4.96E-08		
Benzo(b)fluoranthe	ne 7.30E-01	1		4.53E-09	3.17E-07	3.31E-09		
Dibenz(a,h)anthrac	ene 7.30E+0	0		1.94E-10	1.36E-08	1.42E-09		
Indeno(1,2,3-cd)py				7.12E-09	4.99E-07	5.20E-09		
Iron		7.00E-01		5.11E-05	3.57E-03		5.11E-03	
Tetrachloroethene	5.20E-02	1.00E-01 2 1.00E-02		3.80E-12	2.66E-10	1.97E-13	2.66E-08	
								7
			<u>PATH</u>	IWAY TOTAL		5.99E-08	1.83E-02	L
INHALATION								
	IUR	RfC		EAC	EAC	Cancer	Hazard	-
Chemical			C	arc (ug/m3)	Noncarc (mg/m3)	Risk	Quotient	
1,2-Dichloroethane	2.60F-0	5 2.40E+00		8.80E-08	6.16E-09	2.29E-12	2,57E-09	
	2.002 00	5.00E-03		1.19E-04	8.35E-06		1.67E-03	
Aluminum	E 70F 0					2 205 44	1.07 E-03	
Aroclor-1254	5.70E-04			4.20E-11	2.94E-12	2.39E-14		
Benzo(a)anthracen				1.08E-10	7.53E-12	9.47E-15		
Benzo(a)pyrene	8.80E-04			1.14E-10	7.95E-12	9.99E-14		
Benzo(b)fluoranthe	ne 8.80E-0	š		3.65E-09	2.55E-10	3.21E-13		
Dibenz(a,h)anthrac	ene 8.80E-04	1		1.08E-10	7.53E-12	9.47E-14		
Indeno(1,2,3-cd)py				6.67E-09	4.67E-10	5.87E-13		
				4.02E-04	2.82E-05	3.07 L-10		
Iron	5.80E-07	7 2.70E-01		1.36E-06	9.54E-08	7.91E-13	3.53E-07	
Iron Tetrachloroethene								
			DATU	WAY TOTAL		4 21E 12	1 675 02	7
Iron Tetrachloroethene			PATH	IWAY TOTAL	_=	4.21E-12	1.67E-03	<u>l</u>

TABLE D-13 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- INDUSTRIAL WORKER

Parameter Intake EAC	or EAC * IUR	HQ =	Intake / RfD					
Intake	EAC * IUR		or					
Intake			EAC / RfC					
Intake	Definition				Г	Default		
	Definition Intake of chemical (me	-/ka-day/				ee intake		
	Effective Air Concentr		۸۹)			see intake		
CSF	Cancer slope factor (r					see intake see chemproi	,	
IUR	Inhalation unit risk (ug		'			see chempro		
RfD	Reference dose (mg/l					ee chempro		
RfC	Inhalation reference c		(ma/m^3)			ee chempro		
	milalation rotoronoo o	on oon a daoi	(mg/m 0)		·	oo onomproj	•	
INGESTION								
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor			Carc	Noncarc	Risk	Quotient	
1,2-Dichloroethane	9.10E-02	2.00E-02		3.41E-09	9.54E-09	3.10E-10	4.77E-07	
Aluminum		1.00E-01		2.14E-03	6.00E-03		6.00E-02	
Aroclor-1254	2.00E+00	2.00E-05		3.16E-08	8.86E-08	6.33E-08	4.43E-03	
Benzo(a)anthracen	∋ 7.30E-01			1.90E-08	5,33E-08	1.39E-08		
Benzo(a)pyrene	7.30E+00			1.64E-08	4.58E-08	1.20E-07		
Benzo(b)fluoranthe				2.52E-08	7.05E-08	1.84E-08		
Dibenz(a,h)anthrac				1.20E-08	3.37E-08	8.78E-08		
Indeno(1,2,3-cd)py				2.01E-08	5.63E-08	1.47E-08		
Iron		7.00E-01		3.65E-03	1.02E-02		1.46E-02	
Tetrachloroethene	5.20E-02	1.00E-02		2,20E-09	6.16E-09	1.14E-10	6.16E-07	
			PATI	ATOT YAWH	L=	3.18E-07	7.90E-02	
DERMAL CONTAC	T							
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor			Carc	Noncarc	Risk	Quotient	
1,2-Dichloroethane	9.10E-02	2.00E-02		6.14E-10	1.72E-09	5.59E-11	8.59E-08	
Aluminum	-	1.00E-01		2.97E-05	8.32E-05		8.32E-04	
Aroclor-1254		2.00E-05		5.70E-09	1.60E-08	1.14E-08	7.98E-04	
Benzo(a)anthracen				3.43E-09	9.61E-09	2.51E-09		
Benzo(a)pyrene	7.30E+00			2.95E-09	8.26E-09	2.15E-08		
Benzo(b)fluoranthe				4.53E-09	1.27E-08	3.31E-09		
Dibenz(a,h)anthrac				2.17E-09	6.06E-09	1.58E-08		
Indeno(1,2,3-cd)py	ene 7.30E-01			3.62E-09	1.01E-08	2.64E-09		
Iron		7.00E-01		5.06E-05	1.42E-04		2.02E-04	
	E 20E 02	1.00E-02		3.97E-10	1.11E-09	2.06E-11	4 44E 07	
Tetrachloroethene	5.20E-02						1.11E-07	
Tetrachloroethene	3.20E-02		DATE	WAVA TOTAL				
Tetrachloroethene	5.20E-02		PATI	HWAY TOTA	L =	5.73E-08	1.83E-03	
	5.20E-U2		PATI	ATOT YAW	L=	5.73E-08		
Tetrachloroethene	5.20E-02		PATI	ATOT YAW	L =	5.73E-08		
		D.C.	PATI				1.83E-03	
INHALATION	1UR	RfC		EAC	EAC	Cancer	1,83E-03	
		RfC		EAC			1.83E-03	
INHALATION Chemical	IUR			EAC carc (ug/m3)	EAC Noncarc (mg/m3)	Cancer Risk	1.83E-03 Hazard Quotient	
INHALATION Chemical 1,2-Dichloroethane	IUR 2.60E-05	2.40E+00		EAC carc (ug/m3) 3.38E-04	EAC Noncarc (mg/m3) 9.45E-07	Cancer	1.83E-03 Hazard Quotient 3.94E-07	
INHALATION Chemical 1,2-Dichloroethane Aluminum	IUR 2.60E-05	2.40E+00 5.00E-03		EAC carc (ug/m3) 3.38E-04 2.61E-03	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06	Cancer Risk 8.78E-09	1.83E-03 Hazard Quotient	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254	IUR 2.60E-05 5.70E-04	2.40E+00		EAC carc (ug/m3) 3.38E-04 2.61E-03 2.98E-09	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12	Cancer Risk 8.78E-09 1.70E-12	1.83E-03 Hazard Quotient 3.94E-07	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen	2.60E-05 5.70E-04 8.80E-05	2.40E+00 5.00E-03		EAC Carc (ug/m3) 3.38E-04 2.61E-03 2.98E-09 2.89E-07	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10	Cancer Risk 8.78E-09 1.70E-12 2.54E-11	1.83E-03 Hazard Quotient 3.94E-07	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene	2.60E-05 5.70E-04 8.80E-05 8.80E-04	2.40E+00 5.00E-03		EAC carc (ug/m3) 3.38E-04 2.61E-03 2.98E-09 2.89E-07 2.91E-08	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11	1.83E-03 Hazard Quotient 3.94E-07	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe	2.60E-05 5.70E-04 e 8.80E-05 8.80E-04 ne 8.80E-05	2.40E+00 5.00E-03		EAC Carc (ug/m3) 3.38E-04 2.61E-03 2.98E-09 2.89E-07 2.91E-08 4.13E-08	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11 3.64E-12	1.83E-03 Hazard Quotient 3.94E-07	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrace	2.60E-05 5.70E-04 8.80E-05 8.80E-04 ne 8.80E-05 ene 8.80E-04	2.40E+00 5.00E-03		EAC carc (ug/m3) 3.38E-04 2.61E-03 2.98E-09 2.89E-07 2.91E-08 4.13E-08 1.88E-08	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11 3.64E-12 1.66E-11	1.83E-03 Hazard Quotient 3.94E-07	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)pyi	2.60E-05 5.70E-04 8.80E-05 8.80E-04 ne 8.80E-05 ene 8.80E-04	2.40E+00 5.00E-03		EAC Carc (ug/m3) 3.38E-04 2.61E-03 2.98E-09 2.89E-07 2.91E-08 4.13E-08 1.88E-08 3.79E-08	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11 1.06E-10	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11 3.64E-12	1.83E-03 Hazard Quotient 3.94E-07	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)pyl	2.60E-05 5.70E-04 8.80E-05 8.80E-04 ne 8.80E-05 ene 8.80E-04 ene 8.80E-05	2.40E+00 5.00E-03 		EAC carc (ug/m3) 3.38E-04 2.61E-03 2.98E-09 2.89E-07 2.91E-08 4.13E-08 1.88E-08 3.79E-08 4.76E-03	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11 1.06E-10 1.33E-05	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11 3.64E-12 1.66E-11 3.34E-12	1.83E-03 Hazard Quotient 3.94E-07 1.46E-03	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)pyi	2.60E-05 5.70E-04 8.80E-05 8.80E-04 ne 8.80E-05 ene 8.80E-04 ene 8.80E-05	2.40E+00 5.00E-03		EAC Carc (ug/m3) 3.38E-04 2.61E-03 2.98E-09 2.89E-07 2.91E-08 4.13E-08 1.88E-08 3.79E-08	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11 1.06E-10	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11 3.64E-12 1.66E-11	1.83E-03 Hazard Quotient 3.94E-07	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)pyl	2.60E-05 5.70E-04 8.80E-05 8.80E-04 ne 8.80E-05 ene 8.80E-04 ene 8.80E-05	2.40E+00 5.00E-03 	C	EAC carc (ug/m3) 3.38E-04 2.61E-03 2.89E-07 2.91E-08 4.13E-08 1.88E-08 3.79E-08 4.76E-03 2.03E-03	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11 1.06E-10 1.33E-05 5.70E-06	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11 3.64E-12 1.66E-11 3.34E-12 1.18E-09	1.83E-03 Hazard Quotient 3.94E-07 1.46E-03	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)pyl	2.60E-05 5.70E-04 8.80E-05 8.80E-04 ne 8.80E-05 ene 8.80E-04 ene 8.80E-05	2.40E+00 5.00E-03 	C	EAC carc (ug/m3) 3.38E-04 2.61E-03 2.98E-09 2.89E-07 2.91E-08 4.13E-08 1.88E-08 3.79E-08 4.76E-03	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11 1.06E-10 1.33E-05 5.70E-06	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11 3.64E-12 1.66E-11 3.34E-12	1.83E-03 Hazard Quotient 3.94E-07 1.46E-03	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)pyl	2.60E-05 5.70E-04 8.80E-05 8.80E-04 ne 8.80E-05 ene 8.80E-04 ene 8.80E-05	2.40E+00 5.00E-03 	C	EAC carc (ug/m3) 3.38E-04 2.61E-03 2.89E-07 2.91E-08 4.13E-08 1.88E-08 3.79E-08 4.76E-03 2.03E-03	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11 1.06E-10 1.33E-05 5.70E-06 L =	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11 3.64E-12 1.66E-11 3.34E-12 1.18E-09	1.83E-03 Hazard Quotient 3.94E-07 1.46E-03	
INHALATION Chemical 1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Dibenz(a,h)anthrac Indeno(1,2,3-cd)pyl	2.60E-05 5.70E-04 8.80E-05 8.80E-04 ne 8.80E-05 ene 8.80E-04 ene 8.80E-05	2.40E+00 5.00E-03 	C	EAC carc (ug/m3) 3.38E-04 2.61E-03 2.89E-07 2.91E-08 4.13E-08 1.88E-08 3.79E-08 4.76E-03 2.03E-03	EAC Noncarc (mg/m3) 9.45E-07 7.31E-06 8.36E-12 8.08E-10 8.15E-11 1.16E-10 5.27E-11 1.06E-10 1.33E-05 5.70E-06	Cancer Risk 8.78E-09 1.70E-12 2.54E-11 2.56E-11 3.64E-12 1.66E-11 3.34E-12 1.18E-09	1.83E-03 Hazard Quotient 3.94E-07 1.46E-03	

TABLE D-14 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- INDUSTRIAL WORKER

Cancer Risk =	Intake*CSF	HQ =	Intake / RfD					
	or EAC * IUR		or EAC / RfC					
						5 ()		
Parameter	Definition					Default		
Intake	Intake of chemical (mg		40)			see intake		
EAC	Effective Air Concentr					see intake		
CSF	Cancer slope factor (n		1			see chemprop		
IUR	Inhalation unit risk (ug	/m^3)-1				see chemprop		
RfD	Reference dose (mg/k	g-day)				see chemprop		
RfC	Inhalation reference of	oncentration	n (mg/m^3)			see chemprop		
INGESTION								
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor			Carc	Noncarc	Risk	Quotient	
1,2-Dichloroethane	9.10E-02	2.00E-02		2.22E-11	6.21E-11	2.02E-12	3.11E-09	
Aluminum		1.00E-01		2.33E-03	6.53E-03		6.53E-02	
Aroclor-1254	2 00F+00	2.00E-05		7.51E-10	2.10E-09	1.50E-09	1.05E-04	
Benzo(a)anthracen				1.94E-09	5.43E-09	1.42E-09		
, , ,	7.30E+00			6.60E-08	1.85E-07	4.82E-07		
Benzo(a)pyrene				4.40E-08	1.83E-07 1.23E-07	3.21E-08		
Benzo(b)fluoranthe								
Dibenz(a,h)anthrac				1.89E-09	5.28E-09	1.38E-08		
Indeno(1,2,3-cd)py	rene 7.30E-01			6.92E-08	1.94E-07	5.05E-08		
Iron		7.00E-01		6.45E-03	1.80E-02		2.58E-02	
Tetrachloroethene	5.20E-02	1.00E-02		3,69E-11	1.03E-10	1.92E-12	1.03E-08	
			PATI	ATOT YAWH	L=	5.81E-07	9.12E-02	l
DERMAL CONTAC	YT.							
DEKNAL CONTAC	,1							
	Slope	RfD		Intake	Intake	Cancer	Hazard	
Chemical	Factor	TAID		Carc	Noncarc	Risk	Quotient	
1,2-Dichloroethane	9 10F-02	2.00E-02		3.81E-11	1.07E-10	3.47E-12	5.33E-09	
'	3.10L-02	1.00E-01		3.08E-04	8.62E-04	0.47 L-12	8.62E-03	
Aluminum	0.005.00					0.505.00		
Aroclor-1254		2.00E-05		1.29E-09	3.61E-09	2.58E-09	1.80E-04	
Benzo(a)anthracen				3.33E-09	9.32E-09	2.43E-09		
Benzo(a)pyrene	7.30E+00	-		1.13E-07	3.17E-07	8.27E-07		
Benzo(b)fluoranthe	ne 7.30E-01			7.56E-08	2.12E-07	5.52E-08		
Dibenz(a,h)anthrac				3.24E-09	9.07E-09	2.36E-08		
Indeno(1,2,3-cd)py	rene 7.30E-01			1.19E-07	3.32E-07	8.67E-08		
Iron		7.00E-01		8.51E-04	2.38E-03		3.40E-03	
Tetrachloroethene	5.20E-02	1.00E-02		6,33E-11	1.77E-10	3.29E-12	1.77E-08	
			PATI	HWAY TOTA	L =	9.98E-07	1.22E-02	l
INHALATION								
	IUR	RfC		EAC	EAC	Cancer	Hazard	
Chemical			C	arc (ug/m3)	Noncarc (mg/m3)	Risk	Quotient	
1.2 Diablersethers	2.605.05	3 40E±00		2 205 00	6.16E-09	5.72E-11	2 57E 00	
1,2-Dichloroethane		2.40E+00		2.20E-06		3.1ZE-11	2.57E-09	
Aluminum	 5.705.04	5.00E-03		2.98E-03	8.35E-06	E 00E 10	1.67E-03	
Aroclor-1254	5.70E-04			1.05E-09	2.94E-12	5.98E-13		
Benzo(a)anthracen				2.69E-09	7.53E-12	2.37E-13		
Benzo(a)pyrene	8.80E-04			2.84E-09	7.95E-12	2.50E-12		
Benzo(b)fluoranthe	ne 8.80E-05			9.12E-08	2.55E-10	8.03E-12		
Dibenz(a,h)anthrac	ene 8.80E-04			2.69E-09	7.53E-12	2.37E-12		
Indeno(1,2,3-cd)py				1.67E-07	4.67E-10	1.47E-11		
Iron				1.01E-02	2.82E-05			
Tetrachloroethene	5.80E-07	2.70E-01		3.41E-05	9.54E-08	1.98E-11	3.53E-07	
			PATI	HWAY TOTA	L=	1.05E-10	1.67E-03]
								<u> </u>
					TOTAL	1.58E-06	1.05E-01	
					· 			

APPENDIX D-3
RISK CALCULATIONS
SEDIMENT

TABLE D-15
CHEMICAL SPECIFIC TOXICITY VALUES*

Compound	EPA weight- of-evidence classification	CAS Number	Chronic RfD mg/kg-day		nhalaiton RfC mg/m3 No	Oral Slope Factor tes: 1/mg/kg-day. No	Inhalation Unit Risk tes: 1/ug/m3 No	Dermal Absorption tes: (unitless) Note
Benzo(a)pyrene	B2	50-32-8				7.30E+00	8.80E-04	1.30E-01
Dibenz(a,h)anthracene	B2	53-70-3				7.30E+00	8.80E-04	1.30E-01
Iron	Not available	7439-89-6	7.00E-01	NCEA, 2006				1.00E-02

Notes:

^{*} Unless otherwise noted, the values were obtained from the TCEQ's June 26, 2007 Toxicity Factors and other tables.

TABLE D-16 RISK/HAZARD CALCULATIONS FOR SEDIMENT INTRACOASTAL WATERWAY AVERAGE

Cancer Risk =	Intake*CSI	F	HQ =	Intake / RfD			 		
Parameter Intake CSF RfD	Cancer slo	hemical (mg pe factor (m dose (mg/kg	g/kg-day)-1	 I	<u>-</u>		Default see intake see chemprop see chemprop		
INGESTION Chemical		Slope Factor	RfD	CPS - S		iIntake Noncarc		Hazard Quotient	
Benzo(a)pyrene Dibenz(a,h)anthrac Iron	ene	7.30E+00 7.30E+00	 7.00E-01		1.31E-09 9.83E-10 1.84E-04	3.66E-09 2.75E-09 5.16E-04	9.54E-09 7.18E-09	7.38E-04	
				PATI	HWAY TOTAL	_=	1.67E-08	7.38E-04	
DERMAL CONTAC	T in the			erake - yu					
Chemical		Slope Factor	RfD	erent er	Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotient	
Benzo(a)pyrene Dibenz(a,h)anthrac Iron	ene	7.30E+00 7.30E+00	 7.00E-01		2.24E-09 1.69E-09 2.43E-05	6.28E-09 4.72E-09 6.82E-05	1.64E-08 1.23E-08	9.74E-05	
			· · · · · · · · · · · · · · · · · · ·	PATI	HWAY TOTAL	.=	2.87E-08	9.74E-05	
						TOTAL	4.54E-08	8.35E-04	

TABLE D-17 RISK/HAZARD CALCULATIONS FOR SEDIMENT INTRACOASTAL WATERWAY RME

Cancer Risk =	Intake*CSF		HQ =	Intake / RfD					
Parameter Intake CSF RfD	Definition Intake of ch Cancer slop Reference of	e factor (m	g/kg-day)-1				Default see intake see chemprop see chemprop		
INGESTION		Slope Factor	RíD		Intake Carc	Intake Noncarc	Cancer Risk	. Hazard Quotient	
Benzo(a)pyrene Dibenz(a,h)anthrac Iron		7.30E+00 7.30E+00 	 7.00E-01		8.61E-10 8.56E-10 1.20E-03	2.41E-09 2.40E-09 3.36E-03	6.29E-09 6.25E-09	4.80E-03	
				PATI	WAY TOTAL	=	1.25E-08	4.80E-03	
DERMAL CONTAC	T start	Slope Factor	RfD.		Intake Carc	Intake Noncarc	ı Cancer Risk	Hazard Quotient	
Benzo(a)pyrene Dibenz(a,h)anthrac Iron		7.30E+00 7.30E+00 	 7.00E-01		1.48E-09 1.47E-09 1.58E-04	4.14E-09 4.11E-09 4.43E-04	1.08E-08 1.07E-08	6.34E-04	
	<u> </u>	 %		PATI	HATOT YAWL	=	2.15E-08	6.34E-04	· · · · · · · · · · · · · · · · · · ·
						TOTAL	3.40E-08	5.43E-03	

TABLE D-18
CHEMICAL SPECIFIC TOXICITY VALUES*

Compound	EPA weight- of-evidence classification	CAS Number	RfD	Notes:	Inhalaiton RfC mg/m3 No	Oral Slope Factor otes: 1/mg/kg-day No	Inhalation Unit Risk	Dermal Absorption tes: (unitless) Notes
	SE Classifications		ing/kg-uay	arpe Notes.	nig/nis ni	otes armgreg-day No	tes intgrins no	ies a (uniness) a Notes
Aluminum								
Benzo(a)pyrene	B2	50-32-8				7.30E+00	8.80E-04	1.30E-01
Dibenz(a,h)anthracene	B2	53-70-3				7.30E+00	8.80E-04	1.30E-01
Indeno(1,2,3-cd)pyrene								
Iron	Not available	7439-89-6	7.00E-01	NCEA, 2006				1.00E-02
				,				

Notes:

^{*} Unless otherwise noted, the values were obtained from the TCEQ's June 26, 2007 Toxicity Factors and other tables.

TABLE D-19 RISK/HAZARD CALCULATIONS FOR SEDIMENT NORTH OF MARLIN AVE. AVERAGE

Cancer Risk =	Intake*CSF		HQ =	Intake / RfD						
	Definition							Default		
	Intake of ch	nemical (mg	/kg-day)					see intake		
		pe factor (m		1 -				see chemprop		
RfD	Reference	dose (mg/k	g-day)					see chemprop		
INGESTION						. 15	18.00 E.S.			
		1.7				46				4.47
		Slope	RfD		Intake	الهزارية	ASSESS AND LOSS AND A	Cancer	Hazard	
Chemical		Factor			Carc	· · · · N	oncarc.	Risk	=Quotient=	
Aluminum		0.00E+00	0.00E+00		1.83E-04	5.	12E-04	0.00E+00		
Benzo(a)pyrene		7.30E+00			1.52E-09	4.	25E-09	1.11E-08		
Dibenz(a,h)anthrace	ene	7.30E+00			3.96E-09	1.	11E-08	2.89E-08		
Indeno(1,2,3-cd)pyr	ene	0.00E+00	0.00E+00		3.04E-09	8.	51E-09	0.00E+00		
Iron			7.00E-01		2.37E-04	6.	63E-04		9.47E-04	
				PATI	WAY TOTA	\L =		4.00E-08	9.47E-04	1
										·
DERMAL CONTAC	T. C.		1.1			9.17	33-37	200		The second second
	River.	7				1.7				4.0
		Slope	RfD	la de la colo	Intake 🔠			Cancer	Hazard	The second second
Chemical		Factor		net a liste.	Carc	N	oncarc	Risk	Quotient	id And
Aluminum		0.00E+00	0.00E+00		0.00E+00	0.0	00E+00	0.00E+00		
Benzo(a)pyrene		7.30E+00			2.61E-09		30E-09	1.90E-08		
Dibenz(a,h)anthrace	ene	7.30E+00			6.80E-09		90E-08	4.97E-08		
Indeno(1,2,3-cd)pyr		0.00E+00	0.00E+00		0.00E+00		00E+00	0.00E+00		
Iron	5		7.00E-01		3.13E-05		75E-05	0.002.00	1.25E-04	
						0.				
				PATI	ATOT YAW	\L =		6.87E-08	1.25E-04	
						Т	OTAL	1.09E-07	1.07E-03	
L							 			

TABLE D-20 RISK/HAZARD CALCULATIONS FOR SEDIMENT NORTH OF MARLIN AVE. RME

Cancer Risk =	Intake*CSI		HQ =	Intake / RfD					
	Definition					·	Default		
Intake		hemical (mg	• • • • • • • • • • • • • • • • • • • •				see intake		
CSF		pe factor (m		1			see chemprop		
RfD	Reference	dose (mg/kg	g-day)			see chemprop			
INCESTION	36 St					n e	+ 1		
		Slope	RfD	10	Intake :	Intake	Cancer	Hazard	
Chemical		Factor	IND		Carc	A Second Control of the Control of t	Risk		
Aluminum		0.00E+00	0.00F+00		7.63E-04	2.14E-03	0.00E+00		
Benzo(a)pyrene		7.30E+00			1.89E-08	5.30E-08	1.38E-07		
Dibenz(a,h)anthrac	ene	7.30E+00			2.04E-09	5.72E-09	1.49E-08		
Indeno(1,2,3-cd)pyr	rene	0.00E+00	0.00E+00		1.73E-08	4.84E-08	0.00E+00		
Iron			7.00E-01		1.03E-03	2.87E-03		4.10E-03	
				PATH	WAY TOTAL	_=	1.53E-07	4.10E-03	l
DERMAL CONTAC	Т '						277.417		
		Slope	RfD	444	Intake	latal a	Cancer	Hazard	
Chemical		Factor	שוא			Noncarc		Quotient	
220-11-11-11-11-11-11-11-11-11-11-11-11-11	CARCINICATE INC.	olef Marcan or 3 d 117 1780	CHEST BOOK CONTRACTOR	conneces a salaries for a service	CONSIDERAÇÃO POR COMPANSO POR CO		PART THAT CHARLES CONTRACTED	2.100	The state of the s
Aluminum		0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00		
Benzo(a)pyrene		7.30E+00			3.25E-08	9.09E-08	2.37E-07		
Dibenz(a,h)anthrac		7.30E+00			3.51E-09	9.82E-09	2.56E-08		
Indeno(1,2,3-cd)pyr	rene	0.00E+00			0.00E+00	0.00E+00	0.00E+00		
Iron		-	7.00E-01		1.35E-04	3.79E-04		5.42E-04	
				PATH	WAY TOTAL	=	2.63E-07	5.42E-04]
			· · · · ·			TOTAL	4.16E-07	4.65E-03	
<u> </u>									

TABLE D-21
CHEMICAL SPECIFIC TOXICITY VALUES*

Compound	EPA weight- of-evidence classification	MATERIAL CONTRACTOR OF THE PROPERTY OF THE PRO	Chronic RfD mg/kg-day	Notes:	Inhalaiton RfC mg/m3		Oral Slope Factor	Inhalation Unit Risk	Dermal Absorption
	Not available	7429-90-5	estimo de la compania	Notes,		Notes:	/mg/kg-day∞	Notes: 1/ug/m3 Notes	A CONTROL OF THE PROPERTY OF T
luminum	Not available Not available	7429-90-5 7439-89-6	1.00E-01 7.00E-01	NCEA 2006	5.00E-03				1.00E-02
ron	Not available			NCEA, 2006	4 005 00			-	1.00E-02
m,p-Cresol	C	1319-77-3	5.00E-02		1.00E-02	-			1.00E-01

Notes:

^{*} Unless otherwise noted, the values were obtained from the TCEQ's June 26, 2007 Toxicity Factors and other tables.

TABLE D-22 RISK/HAZARD CALCULATIONS FOR POND SEDIMENT AVERAGE

Cancer Risk =	Intake*CSF	HQ =	Intake / RfD		·			
Parameter	Definition					Default		
Intake	Intake of chemic	al (mg/kg-day)			see intake		
CSF	Cancer slope fac				see chemprop			
RfD	Reference dose (mg/kg-day)			see chemprop				
INGESTION				Fig. 7				
Chemical		ope RfD ctor		Intake Garc		Cancer Risk	Hazard Quotient	
Aluminum		1.00E-	01	1.62E-04	4.54E-04		4.54E-03	
Iron		7.00E-		2.11E-04	5.91E-04		8.44E-04	
m,p-Cresol		5.00E-		5.18E-10	1.45E-09		2.90E-08	
			PAT	PATHWAY TOTAL =			5.39E-03	
DERMAL CONTA	CT	1				100		
	CONTRACTOR OF THE PROPERTY AND ADDRESS OF THE PERSON OF TH				Intake	Cancer	Hazard	
Chemical J	Fa	ctor		Carc	Noncarc	, ∴Risk, ≺	Quotient	
Aluminum		1.00E-	01	2.14E-05	6.00E-05		6.00E-04	
Iron		7.00E-		2.78E-05	7.80E-05		1.11E-04	
m,p-Cresol		5.00E-		6.84E-10	1.91E-09		3.83E-08	
								_
			PAT	HWAY TOTAL =		0.00E+00	7.11E-04	
					TOTAL	0.00E+00	6.10E-03	

TABLE D-23 RISK/HAZARD CALCULATIONS FOR POND SEDIMENT RME

Cancer Risk =	Intake*CSF		HQ =	Intake / RfD					
Parameter Intake CSF RfD	Definition Intake of chemi Cancer slope fa Reference dose	actor (ı	mg/kg-day)-	1		Default see intake see chemprop see chemprop			
INGESTION Chemical		lope actor	R f D	in the second	Intake Carc	Intake Noncarc	Cancer Risk		
Aluminum Iron m,p-Cresol		 	1.00E-01 7.00E-01 5.00E-02		7.63E-04 9.49E-04 1.28E-09	2.14E-03 2.66E-03 3.57E-09		2.14E-02 3.79E-03 7.14E-08	
				PATH	ATOT YAW	L =	0.00E+00	2.52E-02	L
DERMAL CONTAG	S	lope actor	RID		Intake Carc	Intake Noncarc	Cancer Risk	Hazard Quotienta	
Aluminum Iron m,p-Cresol		 	1.00E-01 7.00E-01 5.00E-02		1.01E-04 1.25E-04 1.68E-09	2.82E-04 3.51E-04 4.71E-09		2.82E-03 5.01E-04 9.43E-08	
				PATHWAY TOTAL =		0.00E+00	3.32E-03	<u> </u>	
						TOTAL	0.00E+00	2.85E-02	

APPENDIX E

RESTRICTIVE COVENANTS

RESTRICTIVE COVENANT FOR LIMITATION ON USES, CONSTRUCTION AND GROUNDWATER USE

Doc# 2009036113

STATE OF TEXAS \$

COUNTY OF BRAZORIA \$

This Restrictive Covenant is filed to provide information concerning certain use limitations upon that parcel of real property (the "Property") described in Exhibits A and B, attached hereto and incorporated herein by reference, and which at the time of this filing is listed on the United States Environmental Protection Agency's ("EPA") National Priority List as a "Superfund Site."

As of the date of this Restrictive Covenant, the record owner of fee title to the Property is LDL COASTAL LIMITED, L.P., a Texas limited partnership ("Owner"), with an address of c/o Allen Daniels, 6363 Woodway Drive, Suite 730, Houston, Texas 77057. The appropriate land use for the Property is commercial/industrial.

Owner has agreed to place the following restrictions on the Property in favor of The Dow Chemical Company ("Dow"), Chromalloy American Corporation ("Chromalloy"), the Texas Commission on Environmental Quality ("TCEQ"), the State of Texas and EPA.

NOW THEREFORE, in consideration of the premises and other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, the following restrictive covenants in favor of Dow, Chromalloy, TCEQ, the State of Texas and EPA are placed on the Property, to-wit:

1. Commercial/Industrial Use.

The Property shall not be used for any purposes other than commercial/industrial uses, as that term is defined under 30 T.A.C §350.4(a)(13), and thus shall not be used for human habitation or for other purposes with a similar potential for human exposure. Portions of the soils and/or groundwater of the Property contain certain identified chemicals of concern. Future users of the Property are advised to review and take into consideration environmental data from publicly available sources (i.e. TCEQ and EPA) prior to utilizing the Property for any purpose.

2. Groundwater.

The groundwater underlying the Property shall not be used for any beneficial purpose, including: (1) drinking water or other potable uses; (2) the irrigation or watering of landscapes or (3) agricultural uses. For any activities that may result in potential exposure to the groundwater, a plan must be in place to address and ensure the appropriate handling, treatment and disposal of any affected soils or groundwater.

1

3. Construction.

Construction of any building on the Property is not advisable. If any person desires in the future to construct a building at the Property, the EPA and TCEQ must be notified and must approve of such construction in writing, as additional response actions, such as protection against indoor vapor intrusion, may be necessary before the Property may be built upon. The costs for any additional response actions will be borne by the party(s) desiring to construct upon the Property.

4. These restrictions shall be a covenant running with the land.

For additional information, contact:

The Dow Chemical Company 2030 Dow Center 8th Floor Legal Dept. Midland, MI 48674 ATTN: General Counsel

Chromalloy American Corporation C/O Sequa Corporation 200 Park Avenue New York, NY 10166 ATTN: General Counsel

U.S. Environmental Protection Agency, Region 6 Superfund Division (6RC-S) 1445 Ross Avenue, Suite 1200 Dallas, TX 75202-2733

ATTN: Assistant Regional Counsel

Texas Commission on Environmental Quality P.O. Box 13087 Austin, TX 78711-3087 ATTN: Remediation Division

State of Texas
Office of the Texas Attorney General
Natural Resources Division
300 W. 15th Street
Austin, TX 78701

The restrictions imposed by this Restrictive Covenant may be rendered of no further force or effect only by a release executed by Dow, Chromalloy, TCEQ, the State of Texas and EPA or their successors and filed in the same Real Property Records as those in which this Restrictive Covenant is filed.

Executed this	OWNER:	2009. LDL COASTAL LIMITED, L.P.,
	OWNER.	a Texas limited partnership
		IWAY Management, L.L.C., a Texas ed liability company, its sole general ner Name: Alley B. Daniels Title: Meniger
STATE OF TEXAS COUNTY OF HUMS	§ §	
BEFORE ME, on this the 28 day of 2 day of 3 day of 2 day	nent, L.L.C., a mited, L.P., a to the foregoin	Texas limited liability company and Texas limited partnership, known to me ig instrument, and acknowledged to me
GIVEN UNDER MY HAND AND 2009.	SEAL OF OF	FICE, this the <u>28</u> day of
Meredith Anne Moran My Commission Expires 12/13/2011	Notary Publi	c in and for the State of Texas

3

(

Exhibit A

Legal Description of the Property

4

PARCEL No. 1, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 55 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 1 OF 2

ALL THAT CERTAIN 5.0010 ACRE tract of land lying in and situated in the Frederick J. Calvit League, Abstract 51, Brazoria County, Texas, being all of Lot 55 of the Brazos Coast Investment Company Subdivision, Division 8 (B.C.I.C. Div. 8), according to the map or plat thereof recorded in Volume 2, Page 141 of the Brazoria County Plat Records (B.C.P.R.) and being the same tract of land conveyed by deed on August 6, 1999 from Janet Casciato-Northrup, Trustee of the Chapter 7 Bankruptcy Estate of Hercules Marine Services Corporation to LDL Coastal Limited, L.P., as recorded in Clerk's File No. 99-036339 of the Brazoria County Official Records (B.C.O.R.), the herein described tract of land being more particularly described by metes and bounds, using survey terminology which refers to the Texas State Plane Coordinate System, South Central Zone (NAD83), in which the directions are Lambert grid bearings and the distances are surface level horizontal lengths (S.F.= 0.99988752832) as follows

COMMENCING at a 3/4" iron rod found marking the North corner Lot 80, same being the West corner of Lot 81 of the aforementioned B.C.I.C. Div. 8 subdivision, located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, said Point of Commencement being at Texas at State Plane Coordinate System position X=3155152.81 and Y=13556863.07, from which an old 3" x 3/4" hard-wood stake located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, found marking the North corner of Lot 66, same being the and the West corner of Lot 67 bears South 42°51'47" West, a distance of 4620.94 feet (called 4620.00 feet), at Texas State Plane Coordinate System position X=3152009.76 and Y=13553476.39, herein located point of commencement and point of reference, being shown in 1952 Dow Chemical Company survey by Herman D. Smith, RPS #916, drawing number: B8-8-19000-10488;

THENCE South 42°51'47" West, coincident with the southeastern right-of-way boundary line of said 40 foot wide platted road, a distance of 1320.27 feet to a point for the North corner of Lot 76, same being the West corner of Lot 77 of the B.C.I.C. Div. 8 subdivision, at position X=3154254.79 and Y=13555895.45;

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 77, same being the northeastern boundary line of Lot 76 of the B.C.I.C. Div. 8 subdivision, a distance of 660.00 feet to the POINT OF BEGINNING, at a 5/8" iron rod with survey cap marked "WPD 4467" set, from which a 5/8" iron rod bears South 37°54' West, a distance of 11.7 feet, for the common corner of Lot 54, Lot 55, Lot 76 and Lot 77 of the B.C.I.C. Div. 8 subdivision and the North corner of the herein described 5.0010 acre tract, at position X=3154738.50 and Y=13555446.53;

131 Commerce Street • Clute, Texas 77531-5601
Phone: 979-265-3622 • Fax: 979-265-9940 • Email: <u>DW-Surveyor.com</u>

PARCEL No. 1, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 55 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 2 OF 2

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 54, same being the northeastern boundary line of Lot 55 of the B.C.I.C. Div. 8 subdivision, at a distance of 640.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a point in the northwestern boundary line of a 40 foot wide platted roadway, at the South corner of Lot 54, same being the East corner of Lot 55 of the B.C.I.C. Div. 8 subdivision, from which an 1" iron pipe bears South 48°12' West, a distance of 1.6 feet, for the East corner of the herein described 5.0010 acre tract, at position X=3155222.22 and Y=13554997.62;

THENCE South 42°51'47" West, coincident with the northwestern right-of-way boundary line of said 40 foot wide platted road, same being the southeastern boundary line of Lot 55 of the B.C.I.C. Div. 8 subdivision, a distance of 330.07 feet to a point for the East corner of Lot 56, same being the South corner of Lot 55 of the B.C.I.C. Div. 8 subdivision, for the South corner of the herein described 5.0010 acre tract, at position X=3154997.71 and Y=13554755.72;

THENCE North 47°08'13" West, coincident with the northeastern boundary line of Lot 56, same being the southwestern boundary line of Lot 55, at a distance of 20.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a 5/8" iron rod with survey cap marked "WPD 4467" set at the common corner of Lot 55, Lot 56, Lot 75 and Lot 76 of the B.C.I.C. Div. 8 subdivision, for the West corner of the herein described 5.0010 acre tract, from which an iron rod with survey cap bears South 38°39' West, a distance of 11.8 feet, at position X=3154514.00 and Y=13555204.63;

THENCE North 42°51'47" East, coincident with the northwestern boundary line of Lot 55, same being the southeastern boundary line of Lot 76, a distance of 330.07 feet to the POINT OF BEGINNING, containing 5.0010 acres of land, more or less.

Wm. Patrick Doyle

Registered Professional Land Surveyor

Texas Registration Number 4467

March 24, 2009

This description is based on a survey, a plat of which, March 18, 2009 is on file in the office of Doyle & Wachtstetter, Inc.

PARCEL No. 2, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 57 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 1 OF 2

ALL THAT CERTAIN 5.0010 ACRE tract of land lying in and situated in the Frederick J. Calvit League, Abstract 51, Brazoria County, Texas, being all of Lot 57 of the Brazos Coast Investment Company Subdivision, Division 8 (B.C.I.C. Div. 8), according to the map or plat thereof recorded in Volume 2, Page 141 of the Brazoria County Plat Records (B.C.P.R.) and being the same tract of land conveyed by deed on August 6, 1999 from Janet Casciato-Northrup, Trustee of the Chapter 7 Bankruptcy Estate of Hercules Marine Services Corporation to LDL Coastal Limited, L.P., as recorded in Clerk's File No. 99-036339 of the Brazoria County Official Records (B.C.O.R.), the herein described tract of land being more particularly described by metes and bounds, using survey terminology which refers to the Texas State Plane Coordinate System, South Central Zone (NAD83), in which the directions are Lambert grid bearings and the distances are surface level horizontal lengths (S.F.= 0.99988752832) as follows

COMMENCING at a 3/4" iron rod found marking the North corner Lot 80, same being the West corner of Lot 81 of the aforementioned B.C.I.C. Div. 8 subdivision, located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, said Point of Commencement being at Texas at State Plane Coordinate System position X=3155152.81 and Y=13556863.07, from which an old 3" x 3/4" hard-wood stake located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, found marking the North corner of Lot 66, same being the and the West corner of Lot 67 bears South 42°51'47" West, a distance of 4620.94 feet (called 4620.00 feet), at Texas State Plane Coordinate System position X=3152009.76 and Y=13553476.39, herein located point of commencement and point of reference, being shown in 1952 Dow Chemical Company survey by Herman D. Smith, RPS #916, drawing number: B8-8-19000-10488;

THENCE South 42°51'47" West, coincident with the southeastern right-of-way boundary line of said 40 foot wide platted road, a distance of 1980.40 feet to a point for the North corner of Lot 74, same being the West corner of Lot 75 of the B.C.I.C. Div. 8 subdivision, at position X=3153805.79 and Y=13555411.64;

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 75, same being the northeastern boundary line of Lot 74 of the B.C.I.C. Div. 8 subdivision, a distance of 660.00 feet to the POINT OF BEGINNING, at a 5/8" iron rod with survey cap marked "WPD 4467" set for the common corner of Lot 56, Lot 57, Lot 74 and Lot 75 of the B.C.I.C. Div. 8 subdivision and the North corner of the herein described 5.0010 acre tract, at position X=3154289.50 and Y=13554962.72;

131 Commerce Street • Clute, Texas 77531-5601
Phone: 979-265-3622 • Fax: 979-265-9940 • Email: <u>DW-Surveyor.com</u>

PARCEL No. 2, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 57 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 2 OF 2

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 56, same being the northeastern boundary line of Lot 57 of the B.C.I.C. Div. 8 subdivision, at a distance of 640.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a point in the northwestern boundary line of a 40 foot wide platted roadway, at the South corner of Lot 56, same being the East corner of Lot 57 of the B.C.I.C. Div. 8 subdivision, for the East corner of the herein described 5.0010 acre tract, at position X=3154773.21 and Y=13554513.81;

THENCE South 42°51'47" West, coincident with the northwestern right-of-way boundary line of said 40 foot wide platted road, same being the southeastern boundary line of Lot 57 of the B.C.I.C. Div. 8 subdivision, a distance of 330.07 feet to a point for the East corner of Lot 58, same being the South corner of Lot 57 of the B.C.I.C. Div. 8 subdivision, for the South corner of the herein described 5.0010 acre tract, from which an iron rod with survey cap bears North 78°35' West, a distance of 22.4 feet, at position X=3154548.71 and Y=13554271.90;

THENCE North 47°08'13" West, coincident with the northeastern boundary line of Lot 58, same being the southwestern boundary line of Lot 57, at a distance of 20.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a 5/8" iron rod with survey cap marked "WPD 4467" set at the common corner of Lot 57, Lot 58, Lot 73 and Lot 74 of the B.C.I.C. Div. 8 subdivision, for the West corner of the herein described 5.0010 acre tract, from which an iron rod with survey cap bears South 38°39' West, a distance of 11.6 feet, at position X=3154065.00 and Y=13554720.82;

THENCE North 42°51'47" East, coincident with northwestern boundary line of Lot 57, same being the southeastern boundary line of Lot 74 of the B.C.I.C. Div. 8 subdivision, a distance of 330.07 feet to the POINT OF BEGINNING, containing 5.0010 acres of land, more or less.

Wm. Patrick Doyle

Registered Professional Land Surveyor

Texas Registration Number 4467

March 18, 2009

This description is based on a survey, a plat of which, February 17, 2009 is on file in the office of Doyle & Wachtstetter, Inc. Legalpaticulted Lois7 Environmental Management 5.00 Acre Tract BCICE.dog

Exhibit B

Plat Map of the Property – area covered by Restrictive Covenant for Limitation on Uses, Construction and Groundwater Use

Doc# 2009036113 # Pages 10 80/13/2009 1:44PM Official Public Records of BRAZDRIA COUNTY JOYCE HUDMAN COUNTY CLERK Fees #52.00

Georgee Historian

RESTRICTIVE COVENANT FOR LIMITATION ON USES AND GROUNDWATER USE

This Restrictive Covenant is filed to provide information concerning certain environmental conditions and use limitations upon that parcel of real property (the "Property") described in Exhibits A and B, attached hereto and incorporated herein by reference, and which at the time of this filing is listed on the United States Environmental Protection Agency's ("EPA") National Priority List as a "Superfund Site."

As of the date of this Restrictive Covenant, the record owner of fee title to the Property is LDL COASTAL LIMITED, L.P., a Texas limited partnership ("Owner"), with an address of c/o Allen Daniels, 6363 Woodway Drive, Suite 730, Houston, Texas 77057. The appropriate land use for the Property is commercial/industrial.

LDL Coastal Limited, L.P. has agreed to place the following restrictions on the Property in favor of The Dow Chemical Company ("Dow"), Chromalloy American Corporation ("Chromalloy"), the Texas Commission on Environmental Quality ("TCEQ"), the State of Texas and EPA.

NOW THEREFORE, in consideration of the premises and other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, the following restrictive covenants in favor of Dow, Chromalloy, TCEQ, the State of Texas and EPA are placed on the Property, to-wit:

1. Commercial/Industrial Use.

The Property shall not be used for any purposes other than commercial/industrial uses, as that term is defined under 30 T.A.C §350.4(a)(13), and thus shall not be used for human habitation or for other purposes with a similar potential for human exposure. Portions of the soils and/or groundwater of the Property contain certain identified chemicals of concern. Future users of the Property are advised to review and take into consideration environmental data from publicly available sources (i.e. TCEQ and EPA) prior to utilizing the Property for any purpose.

2. Groundwater.

The groundwater underlying the Property shall not be used for any beneficial purpose, including: (1) drinking water or other potable uses; (2) the irrigation or watering of landscapes or (3) agricultural uses. For any activities that may result in potential exposure to the groundwater, a plan must be in place to address and ensure the appropriate handling, treatment and disposal of any affected soils or groundwater.

3. These restrictions shall be a covenant running with the land.

1

For additional information, contact:

The Dow Chemical Company 2030 Dow Center 8th Floor Legal Dept. Midland, MI 48674 ATTN: General Counsel

Chromalloy American Corporation C/O Sequa Corporation 200 Park Avenue New York, NY 10166 ATTN: General Counsel

U.S. Environmental Protection Agency, Region 6
Superfund Division (6RC-S)
1445 Ross Avenue, Suite 1200
Dallas, TX 75202-2733
ATTN: Assistant Regional Counsel

Texas Commission on Environmental Quality P.O. Box 13087 Austin, TX 78711-3087 ATTN: Remediation Division

State of Texas Office of the Texas Attorney General Natural Resources Division 300 W. 15th Street Austin, TX 78701

The restrictions imposed by this Restrictive Covenant may be rendered of no further force or effect only by a release executed by Dow, Chromalloy, TCEQ, the State of Texas and EPA or their successors and filed in the same Real Property Records as those in which this Restrictive Covenant is filed.

Executed this 1874 day of July , 2009.

	OWNER: LDL COASTAL LIMITED, L.P., a Texas limited partnership
	By: RAMWAY Management, L.L.C., a Texas limited liability company, its sole general partner. By:
	Name: Allen B. Daniels
	Title: Makaget
STATE OF TEXAS	§
COUNTY OF WINS	§ §
BEFORE ME, on this the 28 day of 1000, 2009, personally appeared Allen B. Daniels, Manager, of RAMWAY Management, L.L.C., a Texas limited liability company and the sole general partner of LDL Coastal Limited, L.P., a Texas limited partnership, known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that he executed the same for the purposes and in the capacity herein expressed.	
GIVEN UNDER MY HAND AND S JUMY, 2009.	SEAL OF OFFICE, this the <u>28</u> day of
Meredith Anne Moran My Commission Expires 12/13/2011	Multiple Grand for the State of Texas My Commission Expires: \2 13 20 1

Exhibit A

Legal Description of the Property

4

2662308.1/SP/73364/0238/052909

PARCEL No. 1, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 58 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 1 OF 2

ALL THAT CERTAIN 5.0010 ACRE tract of land lying in and situated in the Frederick J. Calvit League, Abstract 51, Brazoria County, Texas, being all of Lot 58 of the Brazos Coast Investment Company Subdivision, Division 8 (B.C.I.C. Div. 8), according to the map or plat thereof recorded in Volume 2, Page 141 of the Brazoria County Plat Records (B.C.P.R.) and being the same tract of land conveyed by deed on August 6, 1999 from Janet Casciato-Northrup, Trustee of the Chapter 7 Bankruptcy Estate of Hercules Marine Services Corporation to LDL Coastal Limited, L.P., as recorded in Clerk's File No. 99-036339 of the Brazoria County Official Records (B.C.O.R.), the herein described tract of land being more particularly described by metes and bounds, using survey terminology which refers to the Texas State Plane Coordinate System, South Central Zone (NAD83), in which the directions are Lambert grid bearings and the distances are surface level horizontal lengths (S.F.= 0.99988752832) as follows

COMMENCING at a 3/4" iron rod found marking the North corner Lot 80, same being the West corner of Lot 81 of the aforementioned B.C.I.C. Div. 8 subdivision, located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, said Point of Commencement being at Texas at State Plane Coordinate System position X=3155152.81 and Y=13556863.07, from which an old 3" x 3/4" hard-wood stake located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, found marking the North corner of Lot 66, same being the and the West corner of Lot 67 bears South 42°51'47" West, a distance of 4620.94 feet (called 4620.00 feet), at Texas State Plane Coordinate System position X=3152009.76 and Y=13553476.39, herein located point of commencement and point of reference, being shown in 1952 Dow Chemical Company survey by Herman D. Smith, RPS #916, drawing number: B8-8-19000-10488;

THENCE South 42°51'47" West, coincident with the southeastern right-of-way boundary line of said 40 foot wide platted roadway, a distance of 2310.47 feet to a point for the North corner of Lot 73, same being the West corner of Lot 74 of the said B.C.I.C. Div. 8 subdivision, at position X=3153581.28 and Y=13555169.73;

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 74, same being the northeastern boundary line of Lot 73 of the said B.C.I.C. Div. 8 subdivision, a distance of 660.00 feet to the **POINT OF BEGINNING**, at a 5/8" iron rod with survey cap marked "WPD 4467" set, from which an iron rod with survey cap bears South 38°39' West, a distance of 11.6 feet, for the common corner of Lot 57, Lot 58, Lot 73 and Lot 74 of the B.C.I.C. Div. 8 subdivision and the North corner of the herein described 5.0010 acre tract, at position X=3154065.00 and Y=13554720.82;

131 Commerce Street • Clute, Texas 77531-5601 Phone: 979-265-3622 • Fax: 979-265-9940 • Email: <u>DW-Surveyor.com</u> PARCEL No. 1, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 58 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 2 OF 2

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 57, same being the northeastern boundary line of Lot 58 of the B.C.I.C. Div. 8 subdivision, at a distance of 640.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a point in the northwestern boundary line of a 40 foot wide platted roadway, at the South corner of Lot 57, same being the East corner of Lot 58 of the B.C.I.C. Div. 8 subdivision, from which an iron rod with survey cap bears North 78°35' West, a distance of 22.4 feet, for the East corner of the herein described 5.0010 acre tract, at position X=3154548.71 and Y=13554271.90;

THENCE South 42°51'47" West, coincident with the northwestern right-of-way boundary line of said 40 foot wide platted road, same being the southeastern boundary line of Lot 58 of the B.C.I.C. Div. 8 subdivision, a distance of 330.07 feet to a point for the East corner of Lot 59, same being the South corner of Lot 58 of the B.C.I.C. Div. 8 subdivision, from which an iron rod with cap bears North 78°08' West, a distance of 22.4 feet, for the South corner of the herein described 5.0010 acre tract, at position X=3154324.20 and Y=13554030.00;

THENCE North 47°08'13" West, coincident with the northeastern boundary line of Lot 59, same being the southwestern boundary line of Lot 58, at a distance of 20.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a 5/8" iron rod with survey cap marked "WPD 4467" set at the common corner of Lot 58, Lot 59, Lot 72 and Lot 73 of the B.C.I.C. Div. 8 subdivision, for the West corner of the herein described 5.0010 acre tract, at position X=3153840.49 and Y=13554478.91;

THENCE North 42°51'47" East, coincident with the northwest boundary line of Lot 58, same being the southeastern boundary line of Lot 73 of the B.C.I.C. Div. 8 subdivision, a distance of 330.07 feet to the POINT OF BEGINNING, containing 5.0010 acres of land, more or less.

Wm. Patrick Doyle

Registered Professional Land Surveyor

Texas Registration Number 4467

March 23, 2009

This description is based on a survey, a plat of which, March 18, 2009 is on file in the office of Doyle & Wachtstetter, Inc.
Legalpath Gulftca Lot 58 Environmental Management 5,00 Acre Tract BCIC8.doc

PARCEL No. 2, 24.7552 ACRE ENVIRONMENTAL MANAGEMENT TRACT ALL OF LOT 21 THROUGH LOT 25 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 1 OF 3

ALL THAT CERTAIN 24.7552 ACRE tract of land lying in and situated in the Frederick J. Calvit League, Abstract 51, Brazoria County, Texas, being all of Lots 21, 22, 23, 24 and 25 of the Brazos Coast Investment Company Subdivision, Division 8 (B.C.I.C. Div. 8), according to the map or plat thereof recorded in Volume 2, Page 141 of the Brazoria County Plat Records (B.C.P.R.) and being the same tract of land conveyed by deed on August 6, 1999 from Janet Casciato-Northrup, Trustee of the Chapter 7 Bankruptcy Estate of Hercules Marine Services Corporation to LDL Coastal Limited, L.P., as recorded in Clerk's File No. 99-036339 of the Brazoria County Official Records (B.C.O.R.), the herein described tract of land being more particularly described by metes and bounds, using survey terminology which refers to the Texas State Plane Coordinate System, South Central Zone (NAD83), in which the directions are Lambert grid bearings and the distances are surface level horizontal lengths (S.F.=0.99988752832) as follows:

COMMENCING at a 3/4" iron rod found marking the North corner Lot 80, same being the West corner of Lot 81 of the aforementioned B.C.I.C. Div. 8 subdivision, located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, said Point of Commencement being at Texas at State Plane Coordinate System position X=3155152.81 and Y=13556863.07, from which an old 3" x 3/4" hard-wood stake located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, found marking the North corner of Lot 66, same being the and the West corner of Lot 67 bears South 42°51'47" West, a distance of 4620.94 feet (called 4620.00 feet), at Texas State Plane Coordinate System position X=3152009.76 and Y=13553476.39, herein located point of commencement and point of reference, being shown in 1952 Dow Chemical Company survey by Herman D. Smith, RPS #916, drawing number: B8-8-19000-10488;

THENCE South 47°08'13" East, a distance of 1360.00 feet to a point for corner, located in the northwestern boundary line of Lot 32 of the B.C.I.C. Div. 8 subdivision, same being the southeastern right-of-way boundary line of a 40 foot wide platted roadway, at position X=3156149.54 and Y=13555938.04;

THENCE South 42°51'47" West, coincident with the northwestern boundary line of Lot 26 through Lot 32 of the B.C.I.C. Div. 8 subdivision, same being the southeastern right-of-way boundary line of said 40 foot wide platted road, a distance of 1250.83 feet to the POINT OF BEGINNING of the description, from which a 2" iron pipe inside a 6" iron pipe found disturbed bears South 44°30' East, a distance of 20.7 feet, said point being the West corner of Lot 26, same being the North corner of Lot 25 of the B.C.I.C. Div. 8 subdivision and the herein described 24.7552 acre tract, at position X=3155298.76 and Y=13555021.31;

131 Commerce Street • Clute, Texas 77531-5601
Phone: 979-265-3622 • Fax: 979-265-9940 • Email: <u>DW-Surveyor.com</u>

PARCEL No. 2, 24.7552 ACRE ENVIRONMENTAL MANAGEMENT TRACT ALL OF LOT 21 THROUGH LOT 25 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 2 OF 3

THENCE South 47°08'13" East, coincident with the northeastern boundary line of Lot 25, same being the southwestern boundary line of Lot 26 of the B.C.I.C. Div. 8 subdivision, at a distance of 20.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the southeastern right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756 and being the East corner of all that certain 20 foot wide road easement conveyed by deed on August 15, 1961 from Joe M. Baggett, et al to Brazoria County, as recorded in Volume 798, Page 674 of the Brazoria County Deed Records (B.C.D.R.), at a distance of 730.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set for reference corner, continuing for a total distance of 1030.00 feet to a point, at the South corner of said Lot 26, East corner of said Lot 25 and the East corner of the United States of America Intracoastal Waterway easement, for the East corner of the herein described 24.7552 acre tract, at position X=3156053.65 and Y=13554320.73;

THENCE South 67°31'58" West, with the southeastern boundary line of said Lot 25 and said United States of America Intracoastal Waterway easement, a distance of 239.59 feet to the South corner of said Lot 25, same being the East corner of said Lot 24, for an angle corner of the herein described 24.7552 acre tract, at position X=3155832.27 and Y=13554229.18;

THENCE South 47°18'32" West, with the southeastern boundary line of said Lot 24 and said United States of America Intracoastal Waterway easement, a distance of 232.21 feet to the South corner of said Lot 24, same being the East corner of said Lot 23, for an angle corner of the herein described 24.7552 acre tract, at position X=3155661.61 and Y=13554071.75;

THENCE South 56°59'51" West, with the southeastern boundary line of said Lot 23 and said United States of America Intracoastal Waterway easement, a distance of 253.89 feet to the South corner of said Lot 23, same being the East corner of said Lot 22, for an angle corner of the herein described 24.7552 acre tract, at position X=3155448.71 and Y=13553933.48;

THENCE South 45°45'48" West, with the southeastern boundary line of said Lot 22 and the said United States of America Intracoastal Waterway easement, a distance of 256.93 feet to the south corner of said Lot 22, same being the East corner of said Lot 21, for an angle corner of the herein described 24.7552 acre tract, at position X=3155264.64 and Y=13553754.25;

THENCE South 46°33'11" West, with the southeastern boundary line of said Lot 21 and the said United States of America Intracoastal Waterway easement, a distance of 264.15 feet to the East corner of Lot 20, same being the South corner of said Lot 21 of the B.C.I.C. Div. 8 subdivision and the South corner of the herein described 24.7552 acre tract, at position X=3155072.89 and Y=13553572.62;

PARCEL No. 2, 24.7552 ACRE ENVIRONMENTAL MANAGEMENT TRACT ALL OF LOT 21 THROUGH LOT 25 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 3 OF 3

THENCE North 47°08'13" West, coincident with the southwestern boundary line of Lot 21, same being the northeastern boundary line of Lot 20, at a distance of 220.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set for reference corner, at a distance of 800.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the southeastern right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756 and the South corner of the of a 20 foot wide roadway easement conveyed on August 15, 1961 from R. F. Dwyer, III to Brazoria County, as recorded in Volume 798, Page 679 of the B.C.D.R., continuing for a total distance of 820.00 feet to a point for corner in the southeast right-of-way boundary line of said 40 foot wide platted roadway, at the North corner of Lot 20, West corner of Lot 21 and the West corner of the herein described 24.7552 acre tract, at position X=3154471.91 and Y=13554130.36;

THENCE North 42°51'47" East, coincident with the northwestern boundary line of Lot 21 through Lot 25 of the B.C.I.C. Div. 8 subdivision, same being the southeastern right-of-way boundary line of said 40 foot wide platted road, a distance of 1215.65 feet to the POINT OF BEGINNING, containing 24.7552 acres of land, more or less.

Wm. Patrick Doyle

Registered Professional Land Surveyor

Texas Registration Number 4467

March 23, 2009

This description is based on a survey, a plat of which, March 18, 2009 is on file in the office of Doyle & Wachtstetter, Inc. LegalyatPastor Behling & Wheeled Guilteo Superfund Lot2! through Lot25 Environmental Management 24,7552 Acre Tract BCIC#8.doc

Exhibit B

Plat Map of the Property – area covered by Restrictive Covenant for Limitation on Uses and Groundwater Use

Doc# 2009036114 # Pages 11 08/13/2009 1:44PM Official Public Records of BRAZORIA COUNTY JOYCE HUDMAN COUNTY CLERK Fees \$56.00

Joyce Hedman